mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
[model, ci] feat: add qwen3-8b ppo script on ASCEND NPU (#3502)
### What does this PR do? add examples/ppo_trainer/run_qwen3-8b_npu.sh > Add **concise** overview of what this PR aims to achieve or accomplish. Reference related GitHub issues and PRs that help with the review. ### Checklist Before Starting - [ ] Search for similar PRs. Paste at least one query link here: ... - [ ] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [ ] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [ ] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
This commit is contained in:
5
.github/workflows/e2e_ascend.yml
vendored
5
.github/workflows/e2e_ascend.yml
vendored
@ -148,6 +148,11 @@ jobs:
|
||||
ray stop --force
|
||||
bash tests/special_npu/run_qwen3_06b_grpo.sh
|
||||
rm -rf $HOME/ckpts
|
||||
- name: Running gsm8k e2e qwen3 training tests with PPO on ASCEND NPU
|
||||
run: |
|
||||
ray stop --force
|
||||
bash tests/special_npu/run_qwen3_06b_ppo.sh
|
||||
rm -rf $HOME/ckpts
|
||||
- name: Running gsm8k e2e training tests with GRPO MindSpeed on ASCEND NPU
|
||||
run: |
|
||||
ray stop --force
|
||||
|
@ -193,6 +193,8 @@ vllm & vllm-ascend
|
||||
+-----------+-------------------------+-------------+-------------------+-------------------+-------------------+--------------------------+
|
||||
| DAPO | Qwen3-30B-base | 1.08% | pending | FSDP | vllm-ascend | Atlas 200T A2 Box16 |
|
||||
+-----------+-------------------------+-------------+-------------------+-------------------+-------------------+--------------------------+
|
||||
| PPO | Qwen3-8B | 4.49% | 0.874 | FSDP | vllm-ascend | Atlas 900 A2 PODc |
|
||||
+-----------+-------------------------+-------------+-------------------+-------------------+-------------------+--------------------------+
|
||||
|
||||
**表2** SFT类算法
|
||||
|
||||
|
55
examples/ppo_trainer/run_qwen3-8b_npu.sh
Normal file
55
examples/ppo_trainer/run_qwen3-8b_npu.sh
Normal file
@ -0,0 +1,55 @@
|
||||
set -x
|
||||
|
||||
export VLLM_USE_V1=1
|
||||
|
||||
python3 -m verl.trainer.main_ppo \
|
||||
algorithm.adv_estimator=gae \
|
||||
data.train_files=$HOME/data/dapo-math-17k.parquet \
|
||||
data.val_files=$HOME/data/dapo-math-17k.parquet \
|
||||
data.train_batch_size=256 \
|
||||
data.max_prompt_length=2000 \
|
||||
data.max_response_length=12000 \
|
||||
data.shuffle=False \
|
||||
actor_rollout_ref.model.path=Qwen/Qwen3-8B \
|
||||
actor_rollout_ref.model.use_remove_padding=True \
|
||||
actor_rollout_ref.model.enable_gradient_checkpointing=True \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
|
||||
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=1 \
|
||||
actor_rollout_ref.actor.fsdp_config.param_offload=True \
|
||||
actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \
|
||||
actor_rollout_ref.actor.use_kl_loss=False \
|
||||
actor_rollout_ref.actor.ulysses_sequence_parallel_size=2 \
|
||||
actor_rollout_ref.actor.use_dynamic_bsz=True \
|
||||
actor_rollout_ref.actor.use_torch_compile=False \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=1 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
|
||||
actor_rollout_ref.rollout.name=vllm \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.9 \
|
||||
actor_rollout_ref.rollout.max_num_batched_tokens=14000 \
|
||||
actor_rollout_ref.rollout.max_num_seqs=64 \
|
||||
actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=True \
|
||||
actor_rollout_ref.rollout.enable_chunked_prefill=True \
|
||||
actor_rollout_ref.rollout.enforce_eager=False \
|
||||
critic.optim.lr=1e-5 \
|
||||
critic.model.use_remove_padding=True \
|
||||
critic.model.path=Qwen/Qwen3-8B \
|
||||
critic.model.enable_gradient_checkpointing=True \
|
||||
critic.ppo_micro_batch_size_per_gpu=1 \
|
||||
critic.ulysses_sequence_parallel_size=2 \
|
||||
critic.model.fsdp_config.param_offload=True \
|
||||
critic.model.fsdp_config.optimizer_offload=True \
|
||||
critic.use_dynamic_bsz=True \
|
||||
trainer.critic_warmup=0 \
|
||||
trainer.logger=console \
|
||||
trainer.project_name='verl_example_dapo_math_17k' \
|
||||
trainer.experiment_name='qwen3_8b_fsdp' \
|
||||
trainer.n_gpus_per_node=8 \
|
||||
trainer.nnodes=1 \
|
||||
trainer.save_freq=20 \
|
||||
trainer.test_freq=-1 \
|
||||
trainer.val_before_train=False \
|
||||
trainer.device=npu \
|
||||
trainer.max_actor_ckpt_to_keep=1 \
|
||||
trainer.max_critic_ckpt_to_keep=1 \
|
||||
trainer.total_training_steps=100 $@
|
51
tests/special_npu/run_qwen3_06b_ppo.sh
Normal file
51
tests/special_npu/run_qwen3_06b_ppo.sh
Normal file
@ -0,0 +1,51 @@
|
||||
set -x
|
||||
|
||||
export VLLM_USE_V1=1
|
||||
|
||||
python3 -m verl.trainer.main_ppo \
|
||||
algorithm.adv_estimator=gae \
|
||||
data.train_files=$HOME/data/gsm8k/train.parquet \
|
||||
data.val_files=$HOME/data/gsm8k/test.parquet \
|
||||
data.train_batch_size=128 \
|
||||
data.max_prompt_length=512 \
|
||||
data.max_response_length=128 \
|
||||
data.shuffle=False \
|
||||
actor_rollout_ref.model.path=Qwen/Qwen3-0.6B \
|
||||
actor_rollout_ref.model.use_remove_padding=True \
|
||||
actor_rollout_ref.model.enable_gradient_checkpointing=True \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.ppo_mini_batch_size=64 \
|
||||
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=8 \
|
||||
actor_rollout_ref.actor.fsdp_config.param_offload=True \
|
||||
actor_rollout_ref.actor.fsdp_config.optimizer_offload=True \
|
||||
actor_rollout_ref.actor.use_kl_loss=False \
|
||||
actor_rollout_ref.actor.ulysses_sequence_parallel_size=2 \
|
||||
actor_rollout_ref.actor.use_dynamic_bsz=True \
|
||||
actor_rollout_ref.actor.use_torch_compile=False \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=8 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
|
||||
actor_rollout_ref.rollout.name=vllm \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.8 \
|
||||
actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=True \
|
||||
actor_rollout_ref.rollout.enable_chunked_prefill=True \
|
||||
actor_rollout_ref.rollout.enforce_eager=False \
|
||||
critic.optim.lr=1e-5 \
|
||||
critic.model.use_remove_padding=True \
|
||||
critic.model.path=Qwen/Qwen3-0.6B \
|
||||
critic.model.enable_gradient_checkpointing=True \
|
||||
critic.ppo_micro_batch_size_per_gpu=8 \
|
||||
critic.ulysses_sequence_parallel_size=2 \
|
||||
critic.model.fsdp_config.param_offload=True \
|
||||
critic.model.fsdp_config.optimizer_offload=True \
|
||||
critic.use_dynamic_bsz=True \
|
||||
trainer.critic_warmup=0 \
|
||||
trainer.logger='["console"]' \
|
||||
trainer.project_name='verl_ppo_example_gsm8k_qwen3' \
|
||||
trainer.experiment_name='qwen3_06b_fsdp' \
|
||||
trainer.n_gpus_per_node=8 \
|
||||
trainer.nnodes=1 \
|
||||
trainer.save_freq=-1 \
|
||||
trainer.test_freq=5 \
|
||||
trainer.total_epochs=1 \
|
||||
trainer.total_training_steps=2 \
|
||||
trainer.device=npu $@
|
Reference in New Issue
Block a user