[misc] feat: support build DataProto from TensordDict (#3726)

### What does this PR do?

Add a utility function to support building DataProto from TensorDict,
which helps integrate TransferQueue into verl.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [x] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
This commit is contained in:
Huazhong
2025-10-11 17:28:18 +08:00
committed by GitHub
parent 656f4e6705
commit f07596c02e
2 changed files with 59 additions and 0 deletions

View File

@ -30,6 +30,7 @@ from verl.protocol import (
union_numpy_dict,
union_tensor_dict,
)
from verl.utils import tensordict_utils as tu
def test_union_tensor_dict():
@ -761,6 +762,23 @@ def test_to_tensordict():
assert output["name"] == "abdce"
@pytest.mark.skipif(
parse_version(tensordict.__version__) < parse_version("0.10"), reason="requires at least tensordict 0.10"
)
def test_from_tensordict():
tensor_dict = {
"obs": torch.tensor([1, 2, 3, 4, 5, 6]),
"labels": ["a", "b", "c", "d", "e", "f"],
}
non_tensor_dict = {"name": "abdce"}
tensordict = tu.get_tensordict(tensor_dict, non_tensor_dict)
data = DataProto.from_tensordict(tensordict)
assert data.non_tensor_batch["labels"].tolist() == tensor_dict["labels"]
assert torch.all(torch.eq(data.batch["obs"], tensor_dict["obs"])).item()
assert data.meta_info["name"] == "abdce"
def test_serialize_deserialize_single_tensor():
"""Test serialization and deserialization of a single tensor"""
# Create test tensor

View File

@ -549,6 +549,47 @@ class DataProto:
meta_info[DataProtoConfig.auto_padding_key] = True
return cls(batch=tensor_dict, non_tensor_batch=non_tensors, meta_info=meta_info)
@classmethod
def from_tensordict(
cls,
tensor_dict: TensorDict = None,
meta_info=None,
num_batch_dims=1,
):
"""Create a DataProto from a TensorDict. This assumes that
1. All the tensor in tensor_dict have the same dim0
2. Only dim0 is the batch dim
"""
assert version.parse(tensordict.__version__) >= version.parse("0.10.0"), (
"Build DataProto from TensorDict at least requires tensordict version 0.10.0"
)
from tensordict import NonTensorData, NonTensorStack
assert num_batch_dims > 0, "num_batch_dims must be greater than zero"
if not all(isinstance(val, torch.Tensor) for val in tensor_dict.values()):
assert num_batch_dims == 1, "only support num_batch_dims=1 when tensor_dict contains non tensor data."
if meta_info is None:
meta_info = {}
batch = {}
non_tensor_batch = {}
batch_size = None
for key, val in tensor_dict.items():
if isinstance(val, torch.Tensor):
batch[key] = val
if batch_size is None:
batch_size = val.shape[:num_batch_dims]
elif isinstance(val, NonTensorStack):
non_tensor_batch[key] = np.array([elem.data for elem in val], dtype=object)
elif isinstance(val, NonTensorData):
meta_info[key] = val.data
return cls(
batch=TensorDict(batch, batch_size=batch_size),
non_tensor_batch=non_tensor_batch,
meta_info=meta_info,
)
def to(self, device) -> "DataProto":
"""move the batch to device