mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
Add Meta-Bandit-LLM, a long-horizon multiturn interative awesome use case of verl (#3756)
[Meta-Bandit-LLM](https://github.com/sanxing-chen/meta-bandit-llm/) utilizes verl to train on-policy LLM agent with up to 50-turn interations, with support of async vLLM and LoRA. ### What does this PR do? > Add **concise** overview of what this PR aims to achieve or accomplish. Reference related GitHub issues and PRs that help with the review. ### Checklist Before Starting - [ ] Search for similar PRs. Paste at least one query link here: ... - [ ] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [ x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x ] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [x ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ x] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [x ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).) --------- Co-authored-by: gemini-code-assist[bot] <176961590+gemini-code-assist[bot]@users.noreply.github.com>
This commit is contained in:
@ -240,6 +240,7 @@ verl is inspired by the design of Nemo-Aligner, Deepspeed-chat and OpenRLHF. The
|
||||
- [Table-R1](https://github.com/Table-R1/Table-R1): Table-R1: Inference-Time Scaling for Table Reasoning 
|
||||
- [Revisual-R1](https://github.com/CSfufu/Revisual-R1): Revisual-R1: Advancing Multimodal Reasoning From Optimized Cold Start to Staged Reinforcement Learning 
|
||||
- [ARES](https://github.com/shawn0728/ARES): ARES: Multimodal Adaptive Reasoning via Difficulty-Aware Token-Level Entropy Shaping 
|
||||
- [Meta-Bandit-LLM](https://github.com/sanxing-chen/meta-bandit-llm): Meta-Bandit-LLM: Long-horizon multiturn interactive training for meta-bandit agents 
|
||||
|
||||
and many more awesome work listed in [recipe](recipe/README.md).
|
||||
|
||||
|
Reference in New Issue
Block a user