[megatron,recipe] feat: support Qwen3-30B (MoE) DAPO training on ASCEND NPU (#3203)

### What does this PR do?

Fix of megatron config, and example shell of Qwen3-30B-Dapo with
megatron.

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

critic/reward/mean:

<img width="1304" height="704" alt="dapo_30b_megatron"
src="https://github.com/user-attachments/assets/f2062e24-b37d-4d54-8dd6-e9da25f8c69b"
/>


response_length/mean:

<img width="815" height="407" alt="image"
src="https://github.com/user-attachments/assets/f59b6c7b-4f24-4aa7-9b9e-bb8184dac5d3"
/>

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [x] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [x] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
This commit is contained in:
Lingfeng Wang
2025-09-13 19:08:23 +08:00
committed by GitHub
parent 6e6fafdc74
commit b00b090149
6 changed files with 202 additions and 1 deletions

View File

@ -0,0 +1,28 @@
hydra:
searchpath:
- file://verl/trainer/config
defaults:
- ppo_megatron_trainer
- _self_
data:
gen_batch_size: ${data.train_batch_size}
reward_model:
reward_manager: dapo
overlong_buffer:
enable: False # We try to avoid forgetting to set enable
len: 0
penalty_factor: 0.0
log: False
algorithm:
filter_groups:
_target_: verl.trainer.config.FilterGroupsConfig
enable: False # We try to avoid forgetting to set enable
metric: null # acc / score / seq_reward / seq_final_reward / ...
max_num_gen_batches: 0 # Non-positive values mean no upper limit
trainer:
project_name: verl-dapo

View File

@ -0,0 +1,169 @@
#!/bin/bash
project_name='DAPO'
exp_name='DAPO-Qwen3-30B-megatron'
adv_estimator=grpo
use_kl_in_reward=False
kl_coef=0.0
use_kl_loss=False
kl_loss_coef=0.0
clip_ratio_low=0.2
clip_ratio_high=0.28
max_prompt_length=$((1024 * 2))
max_response_length=$((1024 * 20))
enable_overlong_buffer=True
overlong_buffer_len=$((1024 * 4))
overlong_penalty_factor=1.0
loss_agg_mode="token-mean"
enable_filter_groups=True
filter_groups_metric=acc
max_num_gen_batches=10
train_prompt_bsz=16
gen_prompt_bsz=$((train_prompt_bsz * 2))
n_resp_per_prompt=16
train_prompt_mini_bsz=2
# Ray
RAY_ADDRESS=${RAY_ADDRESS:-"http://localhost:8265"}
WORKING_DIR=${WORKING_DIR:-"${PWD}"}
RUNTIME_ENV=${RUNTIME_ENV:-"${WORKING_DIR}/verl/trainer/runtime_env.yaml"}
NNODES=${NNODES:-1}
# Paths
RAY_DATA_HOME=${RAY_DATA_HOME:-"${HOME}/verl"}
MODEL_PATH=${MODEL_PATH:-"${RAY_DATA_HOME}/models/Qwen3-30B-A3B"}
# MCORE_MODEL_PATH points to the converted checkpoint.
# To avoid loading these weights, set actor_rollout_ref.actor.megatron.use_dist_checkpointing=False.
MCORE_MODEL_PATH=${MCORE_MODEL_PATH:-"${RAY_DATA_HOME}/models/Qwen3-30B-A3B-dist_ckpt"}
CKPTS_DIR=${CKPTS_DIR:-"${RAY_DATA_HOME}/ckpts/${project_name}/${exp_name}"}
TRAIN_FILE=${TRAIN_FILE:-"${RAY_DATA_HOME}/data/dapo-math-17k.parquet"}
TEST_FILE=${TEST_FILE:-"${RAY_DATA_HOME}/data/aime-2024.parquet"}
# Algorithm
temperature=1.0
top_p=1.0
top_k=-1 # 0 for HF rollout, -1 for vLLM rollout
# Performance Related Parameter
sp_size=8
use_dynamic_bsz=True
actor_ppo_max_token_len=$(((max_prompt_length + max_response_length)))
infer_ppo_max_token_len=$(((max_prompt_length + max_response_length)))
offload=True
max_num_batched_tokens=$((max_prompt_length + max_response_length))
# Megatron backen
train_tp=4
train_ep=2
train_pp=2
train_cp=1
ray job submit --no-wait --runtime-env="${RUNTIME_ENV}" \
--address "${RAY_ADDRESS}" \
-- python3 -m recipe.dapo.main_dapo \
--config-name="dapo_megatron_trainer" \
data.filter_overlong_prompts=False \
data.train_files="${TRAIN_FILE}" \
data.val_files="${TEST_FILE}" \
data.shuffle=False \
data.prompt_key=prompt \
data.truncation='left' \
data.max_prompt_length=${max_prompt_length} \
data.max_response_length=${max_response_length} \
data.gen_batch_size=${gen_prompt_bsz} \
data.train_batch_size=${train_prompt_bsz} \
algorithm.adv_estimator=${adv_estimator} \
algorithm.use_kl_in_reward=${use_kl_in_reward} \
algorithm.kl_ctrl.kl_coef=${kl_coef} \
actor_rollout_ref.rollout.n=${n_resp_per_prompt} \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \
actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \
actor_rollout_ref.actor.clip_ratio_low=${clip_ratio_low} \
actor_rollout_ref.actor.clip_ratio_high=${clip_ratio_high} \
actor_rollout_ref.actor.clip_ratio_c=10.0 \
actor_rollout_ref.actor.ppo_epochs=1 \
algorithm.filter_groups.enable=${enable_filter_groups} \
algorithm.filter_groups.max_num_gen_batches=${max_num_gen_batches} \
algorithm.filter_groups.metric=${filter_groups_metric} \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.use_dynamic_bsz=${use_dynamic_bsz} \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=1 \
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=1 \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=1 \
actor_rollout_ref.ref.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \
actor_rollout_ref.rollout.log_prob_use_dynamic_bsz=${use_dynamic_bsz} \
actor_rollout_ref.actor.ppo_max_token_len_per_gpu=${actor_ppo_max_token_len} \
actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
actor_rollout_ref.model.path="${MODEL_PATH}" \
+actor_rollout_ref.model.override_config.attention_dropout=0. \
+actor_rollout_ref.model.override_config.embd_pdrop=0. \
+actor_rollout_ref.model.override_config.resid_pdrop=0. \
actor_rollout_ref.actor.optim.lr=1e-6 \
+actor_rollout_ref.critic.optim.lr=5e-8 \
actor_rollout_ref.actor.optim.lr_warmup_steps=10 \
actor_rollout_ref.actor.ppo_mini_batch_size=${train_prompt_mini_bsz} \
actor_rollout_ref.actor.megatron.param_offload=${offload} \
actor_rollout_ref.actor.megatron.optimizer_offload=${offload} \
actor_rollout_ref.actor.megatron.grad_offload=${offload} \
actor_rollout_ref.actor.megatron.pipeline_model_parallel_size=${train_pp} \
actor_rollout_ref.actor.megatron.tensor_model_parallel_size=${train_tp} \
actor_rollout_ref.actor.megatron.expert_model_parallel_size=${train_ep} \
actor_rollout_ref.actor.megatron.context_parallel_size=${train_cp} \
actor_rollout_ref.actor.megatron.dist_checkpointing_path=${MCORE_MODEL_PATH} \
actor_rollout_ref.actor.megatron.use_dist_checkpointing=True \
actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=${train_pp} \
actor_rollout_ref.ref.megatron.tensor_model_parallel_size=${train_tp} \
actor_rollout_ref.ref.megatron.expert_model_parallel_size=${train_ep} \
actor_rollout_ref.ref.megatron.context_parallel_size=${train_cp} \
actor_rollout_ref.ref.megatron.param_offload=${offload} \
actor_rollout_ref.ref.megatron.dist_checkpointing_path=${MCORE_MODEL_PATH} \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.actor.loss_agg_mode=${loss_agg_mode} \
actor_rollout_ref.rollout.gpu_memory_utilization=0.7 \
actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \
actor_rollout_ref.rollout.enable_chunked_prefill=True \
actor_rollout_ref.rollout.enable_prefix_caching=False \
actor_rollout_ref.rollout.max_num_batched_tokens=${max_num_batched_tokens} \
actor_rollout_ref.rollout.max_model_len=$((max_prompt_length + max_response_length)) \
actor_rollout_ref.rollout.temperature=${temperature} \
actor_rollout_ref.rollout.top_p=${top_p} \
actor_rollout_ref.rollout.top_k=${top_k} \
actor_rollout_ref.rollout.val_kwargs.temperature=${temperature} \
actor_rollout_ref.rollout.val_kwargs.top_p=${top_p} \
actor_rollout_ref.rollout.val_kwargs.top_k=${top_k} \
actor_rollout_ref.rollout.val_kwargs.do_sample=True \
actor_rollout_ref.rollout.val_kwargs.n=1 \
actor_rollout_ref.rollout.enforce_eager=True \
actor_rollout_ref.rollout.free_cache_engine=True \
actor_rollout_ref.ref.megatron.use_dist_checkpointing=True \
reward_model.reward_manager=dapo \
reward_model.overlong_buffer.enable=${enable_overlong_buffer} \
reward_model.overlong_buffer.len=${overlong_buffer_len} \
reward_model.overlong_buffer.penalty_factor=${overlong_penalty_factor} \
trainer.logger=['console'] \
trainer.project_name="${project_name}" \
trainer.experiment_name="${exp_name}" \
trainer.n_gpus_per_node=16 \
trainer.nnodes="${NNODES}" \
trainer.val_before_train=False \
trainer.test_freq=-1 \
trainer.save_freq=-1 \
trainer.total_epochs=1 \
trainer.default_local_dir="${CKPTS_DIR}" \
trainer.device="npu" \
actor_rollout_ref.nccl_timeout=14400 \
actor_rollout_ref.actor.use_torch_compile=False \
actor_rollout_ref.ref.use_torch_compile=False \
+actor_rollout_ref.actor.megatron.override_transformer_config.use_flash_attn=True \
+actor_rollout_ref.actor.megatron.override_transformer_config.recompute_method=uniform \
+actor_rollout_ref.actor.megatron.override_transformer_config.recompute_granularity=full \
+actor_rollout_ref.actor.megatron.override_transformer_config.recompute_num_layers=1

View File

@ -264,6 +264,7 @@ actor_rollout_ref:
freeze_moe_router: false
use_fused_kernels: false
trust_remote_code: false
use_remove_padding: false
data:
tokenizer: null
use_shm: false

View File

@ -43,6 +43,9 @@ actor_rollout_ref:
trust_remote_code: False
# Whether to remove padding tokens in inputs during training
use_remove_padding: false
rollout:
# may get higher throughput when set to True. When activated, Please increase max_num_batched_tokens or decrease max_model_len.
enable_chunked_prefill: False

View File

@ -55,7 +55,7 @@ def default_compute_score(
# from . import math_verify
# res = math_verify.compute_score(solution_str, ground_truth)
elif data_source == "math_dapo" or data_source.startswith("aime"):
elif data_source in ["math_dapo", "math", "math_dapo_reasoning"] or data_source.startswith("aime"):
from . import math_dapo
res = math_dapo.compute_score(solution_str, ground_truth)