mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
[fsdp, recipe] feat: add grpo reward model example using HH-RLHF dataset (#3417)
### What does this PR do? One example of using SOTA BT reward model to train GRPO model - Reward Model: [Skywork/Skywork-Reward-V2-Llama-3.1-8B](https://huggingface.co/Skywork/Skywork-Reward-V2-Llama-3.1-8B) - Dataset: [Dahoas/full-hh-rlhf](https://huggingface.co/datasets/Dahoas/full-hh-rlhf) ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [ ] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. - Wandb training curve: <img width="2004" height="614" alt="image" src="https://github.com/user-attachments/assets/c6dc9003-7b59-43af-8ff4-560114fe5b10" /> - AlpacaEval 2.0 eval results: | Model Name | AlpacaEval LC Win-rate | Win-rate |:------|:-------:|:-------:| | mistralai/Mistral-Nemo-Instruct-2407 | 42.24 | 38.68 | | mistral12b_skyworkllama8b_grpo_hhrlhf | **68.20** | **68.29** | ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [x] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [x] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
This commit is contained in:
50
examples/grpo_trainer/run_mistral13b_skyworkrm_hhrlhf.sh
Normal file
50
examples/grpo_trainer/run_mistral13b_skyworkrm_hhrlhf.sh
Normal file
@ -0,0 +1,50 @@
|
||||
train_files=data/full_hh_rlhf/rl/train.parquet
|
||||
test_files=data/full_hh_rlhf/rl/train.parquet # no use
|
||||
|
||||
max_prompt_length=4096
|
||||
max_response_length=2048
|
||||
|
||||
gen_tp=4
|
||||
n_per_prompt=5
|
||||
adv_estimator="grpo"
|
||||
|
||||
project_name=verl_full_hh_rlhf_examples
|
||||
exp_name="grpo_mistral13B-skyworkLlama8b-hhrlhf"
|
||||
|
||||
python3 -m verl.trainer.main_ppo \
|
||||
algorithm.adv_estimator=$adv_estimator \
|
||||
data.train_files="$train_files" \
|
||||
data.val_files="$test_files" \
|
||||
data.train_batch_size=512 \
|
||||
data.prompt_key="prompt" \
|
||||
data.return_raw_chat=True \
|
||||
data.max_prompt_length=$max_prompt_length \
|
||||
data.max_response_length=$max_response_length \
|
||||
data.filter_overlong_prompts=True \
|
||||
data.truncation='error' \
|
||||
actor_rollout_ref.model.path=mistralai/Mistral-Nemo-Instruct-2407 \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.ppo_mini_batch_size=128 \
|
||||
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=10 \
|
||||
actor_rollout_ref.actor.use_kl_loss=False \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=10 \
|
||||
actor_rollout_ref.rollout.name=vllm \
|
||||
actor_rollout_ref.rollout.n=$n_per_prompt \
|
||||
actor_rollout_ref.rollout.gpu_memory_utilization=0.7 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \
|
||||
actor_rollout_ref.model.enable_gradient_checkpointing=True \
|
||||
reward_model.enable=True \
|
||||
reward_model.model.fsdp_config.param_offload=True \
|
||||
reward_model.model.path=Skywork/Skywork-Reward-Llama-3.1-8B \
|
||||
reward_model.model.input_tokenizer=mistralai/Mistral-Nemo-Instruct-2407 \
|
||||
reward_model.micro_batch_size_per_gpu=4 \
|
||||
algorithm.use_kl_in_reward=False \
|
||||
trainer.logger='["console","wandb"]' \
|
||||
trainer.val_before_train=False \
|
||||
trainer.project_name=$project_name \
|
||||
trainer.experiment_name=$exp_name \
|
||||
trainer.n_gpus_per_node=8 \
|
||||
trainer.nnodes=1 \
|
||||
trainer.save_freq=10 \
|
||||
trainer.test_freq=-1 \
|
||||
trainer.total_epochs=5 $@
|
Reference in New Issue
Block a user