[fsdp, recipe] feat: add grpo reward model example using HH-RLHF dataset (#3417)

### What does this PR do?

One example of using SOTA BT reward model to train GRPO model 

- Reward Model:
[Skywork/Skywork-Reward-V2-Llama-3.1-8B](https://huggingface.co/Skywork/Skywork-Reward-V2-Llama-3.1-8B)
- Dataset:
[Dahoas/full-hh-rlhf](https://huggingface.co/datasets/Dahoas/full-hh-rlhf)


### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [ ] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

- Wandb training curve:

<img width="2004" height="614" alt="image"
src="https://github.com/user-attachments/assets/c6dc9003-7b59-43af-8ff4-560114fe5b10"
/>

- AlpacaEval 2.0 eval results:

| Model Name |  AlpacaEval LC Win-rate | Win-rate
|:------|:-------:|:-------:|
| mistralai/Mistral-Nemo-Instruct-2407    | 42.24 | 38.68 |
| mistral12b_skyworkllama8b_grpo_hhrlhf   |  **68.20** | **68.29** |

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [x] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [x] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
This commit is contained in:
Changlong Yu
2025-09-09 02:11:08 -07:00
committed by GitHub
parent c4f4caf0cd
commit a4d8952edc

View File

@ -0,0 +1,50 @@
train_files=data/full_hh_rlhf/rl/train.parquet
test_files=data/full_hh_rlhf/rl/train.parquet # no use
max_prompt_length=4096
max_response_length=2048
gen_tp=4
n_per_prompt=5
adv_estimator="grpo"
project_name=verl_full_hh_rlhf_examples
exp_name="grpo_mistral13B-skyworkLlama8b-hhrlhf"
python3 -m verl.trainer.main_ppo \
algorithm.adv_estimator=$adv_estimator \
data.train_files="$train_files" \
data.val_files="$test_files" \
data.train_batch_size=512 \
data.prompt_key="prompt" \
data.return_raw_chat=True \
data.max_prompt_length=$max_prompt_length \
data.max_response_length=$max_response_length \
data.filter_overlong_prompts=True \
data.truncation='error' \
actor_rollout_ref.model.path=mistralai/Mistral-Nemo-Instruct-2407 \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.ppo_mini_batch_size=128 \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=10 \
actor_rollout_ref.actor.use_kl_loss=False \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=10 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.n=$n_per_prompt \
actor_rollout_ref.rollout.gpu_memory_utilization=0.7 \
actor_rollout_ref.rollout.tensor_model_parallel_size=${gen_tp} \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
reward_model.enable=True \
reward_model.model.fsdp_config.param_offload=True \
reward_model.model.path=Skywork/Skywork-Reward-Llama-3.1-8B \
reward_model.model.input_tokenizer=mistralai/Mistral-Nemo-Instruct-2407 \
reward_model.micro_batch_size_per_gpu=4 \
algorithm.use_kl_in_reward=False \
trainer.logger='["console","wandb"]' \
trainer.val_before_train=False \
trainer.project_name=$project_name \
trainer.experiment_name=$exp_name \
trainer.n_gpus_per_node=8 \
trainer.nnodes=1 \
trainer.save_freq=10 \
trainer.test_freq=-1 \
trainer.total_epochs=5 $@