mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 13:43:50 +08:00
[megatron] fix: remove the demising model.enable_gradient_checkpointing flags in the script (#2691)
### What does this PR do? They were removed in https://github.com/volcengine/verl/pull/2651 ... @ETOgaosion ### Checklist Before Starting - [x] Search for similar PRs. Paste at least one query link here: ... - [x] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [ ] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [ ] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
This commit is contained in:
@ -30,7 +30,6 @@ python3 -m verl.trainer.main_ppo --config-path=config \
|
||||
actor_rollout_ref.actor.kl_loss_coef=0.001 \
|
||||
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
|
||||
actor_rollout_ref.actor.entropy_coeff=0 \
|
||||
actor_rollout_ref.model.enable_gradient_checkpointing=True \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=4 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=2 \
|
||||
actor_rollout_ref.rollout.name=vllm \
|
||||
|
@ -34,7 +34,6 @@ python3 -m verl.trainer.main_ppo --config-path=./config --config-name='ppo_megat
|
||||
actor_rollout_ref.ref.megatron.tensor_model_parallel_size=2 \
|
||||
critic.optim.lr=1e-5 \
|
||||
critic.model.path=Qwen/Qwen2-7B-Instruct \
|
||||
critic.model.enable_gradient_checkpointing=False \
|
||||
critic.ppo_micro_batch_size_per_gpu=4 \
|
||||
algorithm.use_kl_in_reward=False \
|
||||
trainer.critic_warmup=0 \
|
||||
|
@ -38,7 +38,6 @@ python3 -m verl.trainer.main_ppo \
|
||||
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
|
||||
actor_rollout_ref.actor.entropy_coeff=0 \
|
||||
actor_rollout_ref.actor.megatron.seed=42 \
|
||||
actor_rollout_ref.model.enable_gradient_checkpointing=True \
|
||||
actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=2 \
|
||||
actor_rollout_ref.ref.megatron.virtual_pipeline_model_parallel_size=2 \
|
||||
actor_rollout_ref.ref.megatron.context_parallel_size=2 \
|
||||
|
@ -32,7 +32,6 @@ python3 -m verl.trainer.main_ppo --config-path=config \
|
||||
actor_rollout_ref.actor.kl_loss_coef=0.001 \
|
||||
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
|
||||
actor_rollout_ref.actor.entropy_coeff=0 \
|
||||
actor_rollout_ref.model.enable_gradient_checkpointing=True \
|
||||
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=1 \
|
||||
actor_rollout_ref.rollout.tensor_model_parallel_size=8 \
|
||||
actor_rollout_ref.rollout.name=vllm \
|
||||
@ -49,4 +48,4 @@ python3 -m verl.trainer.main_ppo --config-path=config \
|
||||
trainer.nnodes=1 \
|
||||
trainer.save_freq=-1 \
|
||||
trainer.test_freq=5 \
|
||||
trainer.total_epochs=15 $@
|
||||
trainer.total_epochs=15 $@
|
||||
|
@ -90,7 +90,6 @@ python3 -m recipe.one_step_off_policy.main_ppo \
|
||||
actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
|
||||
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
|
||||
actor_rollout_ref.model.path="${MODEL_PATH}" \
|
||||
actor_rollout_ref.model.enable_gradient_checkpointing=True \
|
||||
actor_rollout_ref.actor.optim.lr=1e-6 \
|
||||
actor_rollout_ref.actor.optim.lr_warmup_steps=10 \
|
||||
actor_rollout_ref.actor.optim.weight_decay=0.1 \
|
||||
@ -136,4 +135,4 @@ python3 -m recipe.one_step_off_policy.main_ppo \
|
||||
trainer.nnodes="${NNODES}" \
|
||||
trainer.n_gpus_per_node="${n_gpus_training}" \
|
||||
rollout.nnodes="${NNODES}" \
|
||||
rollout.n_gpus_per_node="${n_gpus_rollout}"
|
||||
rollout.n_gpus_per_node="${n_gpus_rollout}"
|
||||
|
Reference in New Issue
Block a user