[megatron] fix: remove the demising model.enable_gradient_checkpointing flags in the script (#2691)

### What does this PR do?

They were removed in https://github.com/volcengine/verl/pull/2651 ... 
@ETOgaosion 

### Checklist Before Starting

- [x] Search for similar PRs. Paste at least one query link here: ...
- [x] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
This commit is contained in:
H
2025-07-22 18:25:30 -07:00
committed by GitHub
parent f252da34cf
commit 8888122a89
5 changed files with 2 additions and 7 deletions

View File

@ -30,7 +30,6 @@ python3 -m verl.trainer.main_ppo --config-path=config \
actor_rollout_ref.actor.kl_loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=4 \
actor_rollout_ref.rollout.tensor_model_parallel_size=2 \
actor_rollout_ref.rollout.name=vllm \

View File

@ -34,7 +34,6 @@ python3 -m verl.trainer.main_ppo --config-path=./config --config-name='ppo_megat
actor_rollout_ref.ref.megatron.tensor_model_parallel_size=2 \
critic.optim.lr=1e-5 \
critic.model.path=Qwen/Qwen2-7B-Instruct \
critic.model.enable_gradient_checkpointing=False \
critic.ppo_micro_batch_size_per_gpu=4 \
algorithm.use_kl_in_reward=False \
trainer.critic_warmup=0 \

View File

@ -38,7 +38,6 @@ python3 -m verl.trainer.main_ppo \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.actor.megatron.seed=42 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.ref.megatron.pipeline_model_parallel_size=2 \
actor_rollout_ref.ref.megatron.virtual_pipeline_model_parallel_size=2 \
actor_rollout_ref.ref.megatron.context_parallel_size=2 \

View File

@ -32,7 +32,6 @@ python3 -m verl.trainer.main_ppo --config-path=config \
actor_rollout_ref.actor.kl_loss_coef=0.001 \
actor_rollout_ref.actor.kl_loss_type=low_var_kl \
actor_rollout_ref.actor.entropy_coeff=0 \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=1 \
actor_rollout_ref.rollout.tensor_model_parallel_size=8 \
actor_rollout_ref.rollout.name=vllm \
@ -49,4 +48,4 @@ python3 -m verl.trainer.main_ppo --config-path=config \
trainer.nnodes=1 \
trainer.save_freq=-1 \
trainer.test_freq=5 \
trainer.total_epochs=15 $@
trainer.total_epochs=15 $@

View File

@ -90,7 +90,6 @@ python3 -m recipe.one_step_off_policy.main_ppo \
actor_rollout_ref.ref.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
actor_rollout_ref.rollout.log_prob_max_token_len_per_gpu=${infer_ppo_max_token_len} \
actor_rollout_ref.model.path="${MODEL_PATH}" \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.optim.lr_warmup_steps=10 \
actor_rollout_ref.actor.optim.weight_decay=0.1 \
@ -136,4 +135,4 @@ python3 -m recipe.one_step_off_policy.main_ppo \
trainer.nnodes="${NNODES}" \
trainer.n_gpus_per_node="${n_gpus_training}" \
rollout.nnodes="${NNODES}" \
rollout.n_gpus_per_node="${n_gpus_rollout}"
rollout.n_gpus_per_node="${n_gpus_rollout}"