mirror of
https://github.com/volcengine/verl.git
synced 2025-10-20 05:33:49 +08:00
[ci] fix: use local models/configs/datasets to increase stability (#3616)
### What does this PR do? - As title ### Checklist Before Starting - [ ] Search for similar PRs. Paste at least one query link here: ... - [ ] Format the PR title as `[{modules}] {type}: {description}` (This will be checked by the CI) - `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`, `trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`, `ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`, `env`, `tool`, `ckpt`, `doc`, `data` - If this PR involves multiple modules, separate them with `,` like `[megatron, fsdp, doc]` - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test` - If this PR breaks any API (CLI arguments, config, function signature, etc.), add `[BREAKING]` to the beginning of the title. - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching` ### Test > For changes that can not be tested by CI (e.g., algorithm implementation, new model support), validate by experiment(s) and show results like training curve plots, evaluation results, etc. ### API and Usage Example > Demonstrate how the API changes if any, and provide usage example(s) if possible. ```python # Add code snippet or script demonstrating how to use this ``` ### Design & Code Changes > Demonstrate the high-level design if this PR is complex, and list the specific changes. ### Checklist Before Submitting > [!IMPORTANT] > Please check all the following items before requesting a review, otherwise the reviewer might deprioritize this PR for review. - [ ] Read the [Contribute Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md). - [ ] Apply [pre-commit checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting): `pre-commit install && pre-commit run --all-files --show-diff-on-failure --color=always` - [ ] Add / Update [the documentation](https://github.com/volcengine/verl/tree/main/docs). - [ ] Add unit or end-to-end test(s) to [the CI workflow](https://github.com/volcengine/verl/tree/main/.github/workflows) to cover all the code. If not feasible, explain why: ... - [ ] Once your PR is ready for CI, send a message in [the `ci-request` channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the `verl` Slack workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ). (If not accessible, please try [the Feishu group (飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
This commit is contained in:
@ -95,7 +95,7 @@ jobs:
|
||||
pip3 install -e .[test,gpu,sglang]
|
||||
- name: Prepare MATH dataset
|
||||
run: |
|
||||
python3 examples/data_preprocess/math_dataset.py
|
||||
python3 examples/data_preprocess/math_dataset.py --local_dataset_path $HOME/models/hf_data/DigitalLearningGmbH/MATH-lighteval
|
||||
- name: Running the E2E test with the SPPO algorithm
|
||||
run: |
|
||||
ray stop --force
|
16
.github/workflows/model.yml
vendored
16
.github/workflows/model.yml
vendored
@ -171,14 +171,14 @@ jobs:
|
||||
run: |
|
||||
pip3 install --no-deps -e .[test]
|
||||
pip install --upgrade "huggingface_hub[cli]"
|
||||
- name: Download model config files
|
||||
run: |
|
||||
hf download Qwen/Qwen2.5-7B config.json --local-dir $HOME/configs/Qwen/Qwen2.5-7B
|
||||
hf download Qwen/Qwen3-8B config.json --local-dir $HOME/configs/Qwen/Qwen3-8B
|
||||
hf download deepseek-ai/deepseek-coder-1.3b-instruct config.json --local-dir $HOME/configs/deepseek-ai/deepseek-coder-1.3b-instruct
|
||||
hf download Qwen/Qwen2-57B-A14B config.json --local-dir $HOME/configs/Qwen/Qwen2-57B-A14B
|
||||
hf download Qwen/Qwen3-30B-A3B config.json --local-dir $HOME/configs/Qwen/Qwen3-30B-A3B
|
||||
hf download deepseek-ai/DeepSeek-V3-Base config.json --local-dir $HOME/configs/deepseek-ai/DeepSeek-V3-Base
|
||||
# - name: Download model config files
|
||||
# run: |
|
||||
# hf download Qwen/Qwen2.5-7B config.json --local-dir $HOME/configs/Qwen/Qwen2.5-7B
|
||||
# hf download Qwen/Qwen3-8B config.json --local-dir $HOME/configs/Qwen/Qwen3-8B
|
||||
# hf download deepseek-ai/deepseek-coder-1.3b-instruct config.json --local-dir $HOME/configs/deepseek-ai/deepseek-coder-1.3b-instruct
|
||||
# hf download Qwen/Qwen2-57B-A14B config.json --local-dir $HOME/configs/Qwen/Qwen2-57B-A14B
|
||||
# hf download Qwen/Qwen3-30B-A3B config.json --local-dir $HOME/configs/Qwen/Qwen3-30B-A3B
|
||||
# hf download deepseek-ai/DeepSeek-V3-Base config.json --local-dir $HOME/configs/deepseek-ai/DeepSeek-V3-Base
|
||||
- name: Running mcore config converter tests on 8 L20 GPUs
|
||||
run: |
|
||||
torchrun --nproc_per_node=8 tests/special_distributed/test_mcore_config_converter.py
|
||||
|
2
.github/workflows/sgl.yml
vendored
2
.github/workflows/sgl.yml
vendored
@ -129,8 +129,8 @@ jobs:
|
||||
python3 examples/data_preprocess/gsm8k.py --local_dataset_path ${HOME}/models/hf_data/gsm8k
|
||||
- name: Test the latest SGLang Rollout async with agent loop
|
||||
run: |
|
||||
huggingface-cli download verl-team/gsm8k-v0.4.1 --repo-type dataset --local-dir ~/verl-data/gsm8k
|
||||
ROLLOUT_NAME=sglang pytest -svvv tests/experimental/agent_loop
|
||||
# huggingface-cli download verl-team/gsm8k-v0.4.1 --repo-type dataset --local-dir ~/verl-data/gsm8k
|
||||
- name: Test the latest SGLang
|
||||
run: |
|
||||
cd tests/workers/rollout
|
||||
|
5
.github/workflows/type-coverage-check.yml
vendored
5
.github/workflows/type-coverage-check.yml
vendored
@ -20,8 +20,9 @@ jobs:
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install gitpython
|
||||
pip install -e .[sglang]
|
||||
pip3 install torch torchvision --index-url https://download.pytorch.org/whl/cpu
|
||||
pip3 install -r requirements.txt
|
||||
pip3 install -e . --no-deps
|
||||
- name: Run type annotation coverage check
|
||||
run: |
|
||||
python3 tests/special_sanity/type_coverage_check.py
|
||||
|
@ -31,16 +31,28 @@ def extract_solution(solution_str):
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--local_dir", default="~/data/math")
|
||||
parser.add_argument("--local_dir", default=None)
|
||||
parser.add_argument("--hdfs_dir", default=None)
|
||||
parser.add_argument("--local_dataset_path", default=None, help="The local path to the raw dataset, if it exists.")
|
||||
parser.add_argument(
|
||||
"--local_save_dir", default="~/data/math", help="The save directory for the preprocessed dataset."
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
local_dataset_path = args.local_dataset_path
|
||||
|
||||
# 'lighteval/MATH' is no longer available on huggingface.
|
||||
# Use mirror repo: DigitalLearningGmbH/MATH-lighteval
|
||||
data_source = "DigitalLearningGmbH/MATH-lighteval"
|
||||
print(f"Loading the {data_source} dataset from huggingface...", flush=True)
|
||||
dataset = datasets.load_dataset(data_source, trust_remote_code=True)
|
||||
if local_dataset_path is not None:
|
||||
dataset = datasets.load_dataset(
|
||||
local_dataset_path,
|
||||
)
|
||||
else:
|
||||
dataset = datasets.load_dataset(
|
||||
data_source,
|
||||
)
|
||||
|
||||
train_dataset = dataset["train"]
|
||||
test_dataset = dataset["test"]
|
||||
@ -70,7 +82,13 @@ if __name__ == "__main__":
|
||||
train_dataset = train_dataset.map(function=make_map_fn("train"), with_indices=True)
|
||||
test_dataset = test_dataset.map(function=make_map_fn("test"), with_indices=True)
|
||||
|
||||
local_dir = os.path.expanduser(args.local_dir)
|
||||
local_save_dir = args.local_dir
|
||||
if local_save_dir is not None:
|
||||
print("Warning: Argument 'local_dir' is deprecated. Please use 'local_save_dir' instead.")
|
||||
else:
|
||||
local_save_dir = args.local_save_dir
|
||||
|
||||
local_dir = os.path.expanduser(local_save_dir)
|
||||
hdfs_dir = args.hdfs_dir
|
||||
|
||||
train_dataset.to_parquet(os.path.join(local_dir, "train.parquet"))
|
||||
|
1
requirements-cuda.txt
Normal file
1
requirements-cuda.txt
Normal file
@ -0,0 +1 @@
|
||||
flash-attn
|
@ -3,7 +3,6 @@ accelerate
|
||||
codetiming
|
||||
datasets
|
||||
dill
|
||||
flash-attn
|
||||
hydra-core
|
||||
liger-kernel
|
||||
numpy<2.0.0
|
||||
|
@ -49,7 +49,7 @@ def test_fsdp_ckpt(strategy="fsdp"):
|
||||
local_rank, rank, world_size = initialize_global_process_group()
|
||||
device_mesh = init_device_mesh("cuda", mesh_shape=(world_size,), mesh_dim_names=("dp",))
|
||||
|
||||
model_name = "Qwen/Qwen2.5-0.5B-Instruct"
|
||||
model_name = os.path.expanduser("~/models/Qwen/Qwen2.5-0.5B-Instruct")
|
||||
config = Qwen2Config(num_hidden_layers=1)
|
||||
|
||||
with torch.device("cuda"):
|
||||
|
@ -89,7 +89,7 @@ def test_mcore_config_converter():
|
||||
)
|
||||
for model_name in TEST_MODELS:
|
||||
print(f"testing {model_name}")
|
||||
hf_config = AutoConfig.from_pretrained(os.path.expanduser(f"~/configs/{model_name}/config.json"))
|
||||
hf_config = AutoConfig.from_pretrained(os.path.expanduser(f"~/models/configs/{model_name}/config.json"))
|
||||
hf_config = modify_hf_config(model_name, hf_config)
|
||||
tf_config = hf_to_mcore_config(hf_config, torch.bfloat16)
|
||||
check_config_converter_results(tf_config, hf_config)
|
||||
|
Reference in New Issue
Block a user