[deployment] Fix deepseek671B grpo script (#3383)

### What does this PR do?

The current script is not actual grpo script. This PR adds the missing
parameters.

### Checklist Before Starting

- [X] Search for similar PRs. Paste at least one query link here: ...
- [X] Format the PR title as `[{modules}] {type}: {description}` (This
will be checked by the CI)
- `{modules}` include `fsdp`, `megatron`, `sglang`, `vllm`, `rollout`,
`trainer`, `ci`, `training_utils`, `recipe`, `hardware`, `deployment`,
`ray`, `worker`, `single_controller`, `misc`, `perf`, `model`, `algo`,
`env`, `tool`, `ckpt`, `doc`, `data`
- If this PR involves multiple modules, separate them with `,` like
`[megatron, fsdp, doc]`
  - `{type}` is in `feat`, `fix`, `refactor`, `chore`, `test`
- If this PR breaks any API (CLI arguments, config, function signature,
etc.), add `[BREAKING]` to the beginning of the title.
  - Example: `[BREAKING][fsdp, megatron] feat: dynamic batching`

### Test

> For changes that can not be tested by CI (e.g., algorithm
implementation, new model support), validate by experiment(s) and show
results like training curve plots, evaluation results, etc.

### API and Usage Example

> Demonstrate how the API changes if any, and provide usage example(s)
if possible.

```python
# Add code snippet or script demonstrating how to use this
```

### Design & Code Changes

> Demonstrate the high-level design if this PR is complex, and list the
specific changes.

### Checklist Before Submitting

> [!IMPORTANT]
> Please check all the following items before requesting a review,
otherwise the reviewer might deprioritize this PR for review.

- [ ] Read the [Contribute
Guide](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md).
- [ ] Apply [pre-commit
checks](https://github.com/volcengine/verl/blob/main/CONTRIBUTING.md#code-linting-and-formatting):
`pre-commit install && pre-commit run --all-files --show-diff-on-failure
--color=always`
- [ ] Add / Update [the
documentation](https://github.com/volcengine/verl/tree/main/docs).
- [ ] Add unit or end-to-end test(s) to [the CI
workflow](https://github.com/volcengine/verl/tree/main/.github/workflows)
to cover all the code. If not feasible, explain why: ...
- [ ] Once your PR is ready for CI, send a message in [the `ci-request`
channel](https://verl-project.slack.com/archives/C091TCESWB1) in [the
`verl` Slack
workspace](https://join.slack.com/t/verl-project/shared_invite/zt-3855yhg8g-CTkqXu~hKojPCmo7k_yXTQ).
(If not accessible, please try [the Feishu group
(飞书群)](https://applink.larkoffice.com/client/chat/chatter/add_by_link?link_token=772jd4f1-cd91-441e-a820-498c6614126a).)
This commit is contained in:
HaochenYuan
2025-09-07 21:30:30 +08:00
committed by GitHub
parent c3f63ebe9c
commit 3a89785f9a

View File

@ -48,9 +48,16 @@ use_dynamic_bsz=True
actor_ppo_max_token_len=$(((max_prompt_length + max_response_length) * 1))
infer_ppo_max_token_len=$(((max_prompt_length + max_response_length) * 3))
use_kl_in_reward=False
kl_coef=0.0
use_kl_loss=True
kl_loss_coef=0.001
# RAY_ADDRESS='auto' ray job submit --working-dir . --
python3 -m verl.trainer.main_ppo --config-path=./config --config-name='ppo_megatron_trainer'\
algorithm.adv_estimator=grpo \
algorithm.use_kl_in_reward=${use_kl_in_reward} \
algorithm.kl_ctrl.kl_coef=${kl_coef} \
data.train_files="$train_files" \
data.val_files="$test_files" \
data.train_batch_size=512 \
@ -62,8 +69,9 @@ python3 -m verl.trainer.main_ppo --config-path=./config --config-name='ppo_megat
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.actor.ppo_mini_batch_size=128 \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=1 \
actor_rollout_ref.actor.use_kl_loss=False \
actor_rollout_ref.actor.use_torch_compile=False \
actor_rollout_ref.actor.use_kl_loss=${use_kl_loss} \
actor_rollout_ref.actor.kl_loss_coef=${kl_loss_coef} \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=1 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.gpu_memory_utilization=0.6 \
@ -72,7 +80,6 @@ python3 -m verl.trainer.main_ppo --config-path=./config --config-name='ppo_megat
actor_rollout_ref.rollout.top_p=1.0 \
actor_rollout_ref.rollout.top_k=-1 \
actor_rollout_ref.rollout.tensor_model_parallel_size=$INFER_TP \
algorithm.use_kl_in_reward=False \
trainer.logger='["console","tensorboard"]' \
trainer.project_name='verl_megatron_gsm8k_examples' \
trainer.experiment_name='dsv3-32nodes' \