Files
trl/tests/test_dpo_trainer.py
2025-04-08 15:22:58 -07:00

1358 lines
52 KiB
Python

# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from unittest.mock import MagicMock
import numpy as np
import torch
from datasets import Dataset, features, load_dataset
from parameterized import parameterized
from transformers import (
AutoModelForCausalLM,
AutoModelForSeq2SeqLM,
AutoModelForVision2Seq,
AutoProcessor,
AutoTokenizer,
PreTrainedTokenizerBase,
is_vision_available,
)
from transformers.testing_utils import require_peft, require_torch_gpu_if_bnb_not_multi_backend_enabled, require_vision
from trl import DPOConfig, DPOTrainer, FDivergenceType
from .testing_utils import require_bitsandbytes, require_no_wandb
if is_vision_available():
from PIL import Image
class TestTokenizeRow(unittest.TestCase):
def setUp(self):
# Set up the mock tokenizer with specific behaviors
self.tokenizer = MagicMock(spec=PreTrainedTokenizerBase)
self.tokenizer.bos_token_id = 0
self.tokenizer.eos_token_id = 2
# Define mock return values for the tokenizer's 'input_ids' for the different text inputs
self.tokenizer.return_value = {
"input_ids": {"The sky is": [464, 6766, 318], " blue": [4171], " green": [4077]}
}
# Define tokenizer behavior when called
def mock_tokenizer_call(text, add_special_tokens):
token_map = {
"The sky is": {"input_ids": [464, 6766, 318]},
" blue": {"input_ids": [4171]},
" green": {"input_ids": [4077]},
}
return token_map[text]
self.tokenizer.side_effect = mock_tokenizer_call
def test_tokenize_row_no_truncation_no_special_tokens(self):
# Define the input features
features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"}
# Call the method with no truncation and no special tokens
result = DPOTrainer.tokenize_row(
features=features,
processing_class=self.tokenizer,
max_prompt_length=None,
max_completion_length=None,
add_special_tokens=False,
)
# Assert the correct output without truncation or special tokens
self.assertEqual(
result,
{
"prompt_input_ids": [464, 6766, 318],
"chosen_input_ids": [4171, 2], # eos_token added
"rejected_input_ids": [4077, 2], # eos_token added
},
)
def test_tokenize_row_with_truncation(self):
# Define the input features
features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"}
# Call the method with truncation
result = DPOTrainer.tokenize_row(
features=features,
processing_class=self.tokenizer,
max_prompt_length=2,
max_completion_length=1,
add_special_tokens=False,
)
# Assert the correct output with truncation applied
self.assertEqual(
result,
{
"prompt_input_ids": [6766, 318], # truncated to the last 2 tokens
"chosen_input_ids": [4171], # truncated to 1 token
"rejected_input_ids": [4077], # truncated to 1 token
},
)
def test_tokenize_row_with_special_tokens(self):
# Define the input features
features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"}
# Call the method with special tokens
result = DPOTrainer.tokenize_row(
features=features,
processing_class=self.tokenizer,
max_prompt_length=None,
max_completion_length=None,
add_special_tokens=True,
)
# Assert the correct output with special tokens added
self.assertEqual(
result,
{
"prompt_input_ids": [0, 464, 6766, 318, 2], # bos_token and eos_token added
"chosen_input_ids": [4171, 2], # eos_token added
"rejected_input_ids": [4077, 2], # eos_token added
},
)
def test_tokenize_row_with_truncation_and_special_tokens(self):
# Define the input features
features = {"prompt": "The sky is", "chosen": " blue", "rejected": " green"}
# Call the method with both truncation and special tokens
result = DPOTrainer.tokenize_row(
features=features,
processing_class=self.tokenizer,
max_prompt_length=4,
max_completion_length=1,
add_special_tokens=True,
)
# Assert the correct output with both truncation and special tokens
self.assertEqual(
result,
{
"prompt_input_ids": [464, 6766, 318, 2], # truncated to 4 tokens with bos_token and eos_token
"chosen_input_ids": [4171], # truncated to 1 token
"rejected_input_ids": [4077], # truncated to 1 token
},
)
class DPOTrainerTester(unittest.TestCase):
def setUp(self):
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.model = AutoModelForCausalLM.from_pretrained(self.model_id)
self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.tokenizer.pad_token = self.tokenizer.eos_token
# get t5 as seq2seq example:
model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration"
self.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
self.t5_ref_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
self.t5_tokenizer = AutoTokenizer.from_pretrained(model_id)
def test_train(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
tokenizer = AutoTokenizer.from_pretrained(model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
learning_rate=9e-1,
report_to="none",
)
trainer = DPOTrainer(
model=model_id,
args=training_args,
processing_class=tokenizer,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
@parameterized.expand(
[
("sigmoid",),
("hinge",),
("ipo",),
("exo_pair",),
("nca_pair",),
("robust",),
("bco_pair",),
("sppo_hard",),
("aot",),
("aot_pair",),
("discopop",),
("apo_zero",),
("apo_down",),
]
)
def test_train_loss_types(self, loss_type):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
tokenizer = AutoTokenizer.from_pretrained(model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
learning_rate=9e-1,
loss_type=loss_type,
report_to="none",
)
trainer = DPOTrainer(
model=model_id,
args=training_args,
processing_class=tokenizer,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
def test_dpo_trainer_with_weighting(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
learning_rate=9e-1,
use_weighting=True,
report_to="none",
)
trainer = DPOTrainer(
model=self.model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
@parameterized.expand(
[
(None, "Test when rpo_alpha is set to None"),
(0.5, "Test when rpo_alpha is set to 0.5"),
]
)
def test_dpo_trainer_without_providing_ref_model(self, rpo_alpha, _):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
precompute_ref_log_probs=True,
rpo_alpha=rpo_alpha,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
trainer = DPOTrainer(
model=self.model,
ref_model=None,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.equal(param, new_param))
def test_dpo_trainer_with_ref_model_is_model(self):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
with self.assertRaises(ValueError):
DPOTrainer(
model=self.model,
ref_model=self.model, # ref_model can't be the same as model
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
)
def test_precompute_ref_batch_size(self):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
precompute_ref_log_probs=True,
precompute_ref_batch_size=4,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
trainer = DPOTrainer(
model=self.model,
ref_model=self.ref_model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
@require_peft
def test_dpo_trainer_without_providing_ref_model_with_lora(self):
from peft import LoraConfig
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
precompute_ref_log_probs=True,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
trainer = DPOTrainer(
model=self.model,
ref_model=None,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
if "lora" in n:
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.equal(param, new_param))
def test_dpo_trainer_padding_token_is_none(self):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=1,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
tokenizer.pad_token = None
with self.assertRaisesRegex(
ValueError,
expected_regex=r"`padding_value` is not specified in `DPOConfig`, and `pad_token_id` is missing in "
r"the `processing_class`. Please either set the `padding_value` argument in `DPOConfig`, or set "
r"`tokenizer.pad_token` \(e.g., `tokenizer.pad_token = tokenizer.eos_token`\) before instantiating "
r"the trainer.",
):
trainer = DPOTrainer(
model=self.model,
ref_model=None,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
trainer.train()
def test_dpo_trainer_w_dataset_num_proc(self):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=1,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
dataset_num_proc=2,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
tokenizer = AutoTokenizer.from_pretrained(self.model_id)
trainer = DPOTrainer(
model=self.model,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
trainer.train()
def test_tr_dpo_trainer(self):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
precompute_ref_log_probs=False,
sync_ref_model=True,
ref_model_mixup_alpha=0.5,
ref_model_sync_steps=1,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
trainer = DPOTrainer(
model=self.model,
ref_model=self.ref_model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
# params of the ref model as its the same as the model
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.ref_model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.equal(param, new_param))
@require_no_wandb
def test_dpo_trainer_generate_during_eval_no_wandb(self):
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=1,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
generate_during_eval=True,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
with self.assertRaisesRegex(
ValueError,
expected_regex="`generate_during_eval=True` requires Weights and Biases or Comet to be installed."
" Please install `wandb` or `comet-ml` to resolve.",
):
DPOTrainer(
model=self.model,
ref_model=None,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
@require_peft
def test_dpo_lora_save(self):
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
# lora model
model = AutoModelForCausalLM.from_pretrained(self.model_id)
model_peft = get_peft_model(model, lora_config)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
precompute_ref_log_probs=True,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
# dpo train lora model with a lora config
trainer = DPOTrainer(
model=model_peft,
ref_model=None,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
# train the model
trainer.train()
# save peft adapter
trainer.save_model()
try:
AutoModelForCausalLM.from_pretrained(tmp_dir)
except OSError:
self.fail("Loading the saved peft adapter failed")
@require_peft
@require_torch_gpu_if_bnb_not_multi_backend_enabled
def test_dpo_lora_bf16_autocast_llama(self):
# Note this test only works on compute capability > 7 GPU devices
from peft import LoraConfig
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
# lora model
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
bf16=True,
beta=0.1,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
# dpo train lora model with a lora config
trainer = DPOTrainer(
model=model,
ref_model=None,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
# train the model
trainer.train()
# save peft adapter
trainer.save_model()
@parameterized.expand(
[
("sigmoid", False, False),
("sigmoid", False, True),
("sigmoid", True, False),
("sigmoid", True, True),
("ipo", False, False),
("ipo", False, True),
("ipo", True, False),
("ipo", True, True),
("aot_pair", False, False),
("aot_pair", False, True),
("aot_pair", True, False),
("aot_pair", True, True),
("aot", False, False),
("aot", False, True),
("aot", True, False),
("aot", True, True),
("bco_pair", False, False),
("bco_pair", False, True),
("bco_pair", True, False),
("bco_pair", True, True),
("robust", False, False),
("robust", False, True),
("robust", True, False),
("robust", True, True),
]
)
@require_bitsandbytes
@require_peft
@unittest.skip("You need a GPU with bf16 support in order to run these tests")
def test_dpo_lora_bf16_autocast(self, loss_type, pre_compute, gen_during_eval):
# Note this test only works on compute capability > 7 GPU devices
from peft import LoraConfig
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
# lora model
model = AutoModelForCausalLM.from_pretrained(self.model_id, load_in_4bit=True)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
bf16=True,
beta=0.1,
generate_during_eval=gen_during_eval,
loss_type=loss_type,
precompute_ref_log_probs=pre_compute,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
# dpo train lora model with a lora config
trainer = DPOTrainer(
model=model,
ref_model=None,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
# train the model
trainer.train()
# save peft adapter
trainer.save_model()
@require_peft
def test_dpo_lora_tags(self):
from peft import LoraConfig
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
# lora model
model = AutoModelForCausalLM.from_pretrained(model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
# dpo train lora model with a lora config
trainer = DPOTrainer(
model=model,
ref_model=None,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
for tag in ["dpo", "trl"]:
self.assertIn(tag, trainer.model.model_tags)
@require_peft
def test_dpo_tags(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# lora model
model = AutoModelForCausalLM.from_pretrained(model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
# dpo train lora model with a lora config
trainer = DPOTrainer(
model=model,
ref_model=None,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
for tag in ["dpo", "trl"]:
self.assertIn(tag, trainer.model.model_tags)
@require_peft
def test_dpo_lora_force_use_ref(self):
from peft import LoraConfig, get_peft_model
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
# lora model
model = AutoModelForCausalLM.from_pretrained(self.model_id)
model_peft = get_peft_model(model, lora_config)
ref_model = AutoModelForCausalLM.from_pretrained(self.model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
with self.assertRaises(ValueError):
# passing a peft_model as model and ref_model should error out,
# unless you pass `force_use_ref_model`
trainer = DPOTrainer(
model=model_peft,
ref_model=ref_model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
force_use_ref_model=True,
report_to="none",
)
trainer = DPOTrainer(
model=model_peft,
ref_model=ref_model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
# train the model
trainer.train()
def test_dpo_trainer_torch_dtype(self):
# See https://github.com/huggingface/trl/issues/1751
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=1,
model_init_kwargs={"torch_dtype": "float16"},
ref_model_init_kwargs={"torch_dtype": "float16"},
report_to="none",
)
trainer = DPOTrainer(
model=self.model_id,
ref_model=self.model_id,
processing_class=self.tokenizer,
args=training_args,
train_dataset=dummy_dataset["train"],
)
self.assertEqual(trainer.model.config.torch_dtype, torch.float16)
self.assertEqual(trainer.ref_model.config.torch_dtype, torch.float16)
# Now test when `torch_dtype` is provided but is wrong to either the model or the ref_model
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=1,
model_init_kwargs={"torch_dtype": -1},
report_to="none",
)
with self.assertRaises(ValueError) as context:
_ = DPOTrainer(
model=self.model_id,
processing_class=self.tokenizer,
args=training_args,
train_dataset=dummy_dataset["train"],
)
self.assertIn(
"Invalid `torch_dtype` passed to the DPOConfig. Expected a string with either `torch.dtype` or 'auto', but got -1.",
str(context.exception),
)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=1,
ref_model_init_kwargs={"torch_dtype": -1},
report_to="none",
)
with self.assertRaises(ValueError) as context:
_ = DPOTrainer(
model=self.model_id,
ref_model=self.model_id,
processing_class=self.tokenizer,
args=training_args,
train_dataset=dummy_dataset["train"],
)
self.assertIn(
"Invalid `torch_dtype` passed to the DPOConfig. Expected a string with either `torch.dtype` or 'auto', but got -1.",
str(context.exception),
)
def test_dpo_loss_alpha_div_f(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# lora model
model = AutoModelForCausalLM.from_pretrained(model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
f_divergence_type=FDivergenceType.ALPHA_DIVERGENCE.value,
f_alpha_divergence_coef=0.5,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
# dpo train lora model with a lora config
trainer = DPOTrainer(
model=model,
ref_model=None,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
# Fake chosen and rejected log probs
policy_chosen_logps = torch.FloatTensor([410.0, 0.1])
policy_rejected_logps = torch.FloatTensor([810.5, 0.2])
reference_chosen_logps = torch.FloatTensor([-610.0, -0.1])
reference_rejected_logps = torch.FloatTensor([110.6, 0.5])
losses, _, _ = trainer.dpo_loss(
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
)
self.assertTrue(torch.isfinite(losses).cpu().numpy().all())
def test_dpo_loss_js_div_f(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
# lora model
model = AutoModelForCausalLM.from_pretrained(model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
f_divergence_type=FDivergenceType.JS_DIVERGENCE.value,
f_alpha_divergence_coef=0.5,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
# dpo train lora model with a lora config
trainer = DPOTrainer(
model=model,
ref_model=None,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
# Fake chosen and rejected log probs
policy_chosen_logps = torch.FloatTensor([410.0, 0.1])
policy_rejected_logps = torch.FloatTensor([95.5, 0.2])
reference_chosen_logps = torch.FloatTensor([-610.0, -0.1])
reference_rejected_logps = torch.FloatTensor([5.5, 0.5])
losses, _, _ = trainer.dpo_loss(
policy_chosen_logps, policy_rejected_logps, reference_chosen_logps, reference_rejected_logps
)
self.assertTrue(torch.isfinite(losses).cpu().numpy().all())
def test_dpo_trainer_use_logits_to_keep(self):
model_id = "trl-internal-testing/tiny-LlamaForCausalLM-3.2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=1,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
use_logits_to_keep=True,
rpo_alpha=0.5,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
# dpo train lora model with a lora config
trainer = DPOTrainer(
model=model,
ref_model=None,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
training_args.use_logits_to_keep = False
trainer2 = DPOTrainer(
model=model,
ref_model=None,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
# Fake batch
prompt_input_ids = torch.randint(1, 1000, (2, 10))
chosen_input_ids = torch.randint(1, 1000, (2, 5))
rejected_input_ids = torch.randint(1, 1000, (2, 7))
prompt_attention_mask = torch.ones_like(prompt_input_ids)
chosen_attention_mask = torch.ones_like(chosen_input_ids)
rejected_attention_mask = torch.ones_like(rejected_input_ids)
batch = {
"prompt_input_ids": prompt_input_ids.to(model.device),
"chosen_input_ids": chosen_input_ids.to(model.device),
"rejected_input_ids": rejected_input_ids.to(model.device),
"prompt_attention_mask": prompt_attention_mask.to(model.device),
"chosen_attention_mask": chosen_attention_mask.to(model.device),
"rejected_attention_mask": rejected_attention_mask.to(model.device),
}
output = trainer.concatenated_forward(model, batch)
output2 = trainer2.concatenated_forward(model, batch)
np.testing.assert_allclose(output["nll_loss"].item(), output2["nll_loss"].item(), atol=1e-5)
np.testing.assert_allclose(
output["mean_chosen_logits"].item(), output2["mean_chosen_logits"].item(), atol=1e-5
)
np.testing.assert_allclose(
output["mean_rejected_logits"].item(), output2["mean_rejected_logits"].item(), atol=1e-5
)
for i in range(output["chosen_logps"].shape[0]):
np.testing.assert_allclose(
output["chosen_logps"][i].item(), output2["chosen_logps"][i].item(), atol=1e-5
)
np.testing.assert_allclose(
output["rejected_logps"][i].item(), output2["rejected_logps"][i].item(), atol=1e-5
)
trainer.train()
def test_dpo_trainer_with_tools(self):
model_id = "trl-internal-testing/tiny-LlamaForCausalLM-3.2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_id)
# Define dummy test tools
def get_current_temperature(location: str):
"""
Gets the temperature at a given location.
Args:
location: The location to get the temperature for
"""
return 22.0
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
tools=[get_current_temperature],
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "conversational_preference")
trainer = DPOTrainer(
model=model,
ref_model=None,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
# We don't run the training, but at this stage, the dataset is supposed to be pre-processed. When
# pre-processing, we expect the available tools to be explicitly mentioned in the system prompt. That's
# what we're checking here
self.assertIn("get_current_temperature", tokenizer.decode(trainer.train_dataset["prompt_input_ids"][0]))
def test_padding_free(self):
model_id = "trl-internal-testing/tiny-LlamaForCausalLM-3.2"
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
# Normally, we need `attn_implementation="flash_attention_2"` to that the model returns correct logits.
# Without it, the logits may be incorrect, but that's fine here. This test focuses only on the inner logic
# of padding_free.
model = AutoModelForCausalLM.from_pretrained(model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
learning_rate=9e-1,
per_device_train_batch_size=2,
padding_free=True,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
trainer = DPOTrainer(
model=model,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
def test_compute_metrics(self):
model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
ref_model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
tokenizer.pad_token = tokenizer.eos_token
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
def dummy_compute_metrics(*args, **kwargs):
return {"test": 0.0}
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
do_eval=True,
eval_strategy="steps",
eval_steps=3,
per_device_eval_batch_size=2,
report_to="none",
)
trainer = DPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
compute_metrics=dummy_compute_metrics,
)
trainer.train()
self.assertEqual(trainer.state.log_history[-2]["eval_test"], 0.0)
@require_vision
class DPOVisionTrainerTester(unittest.TestCase):
@parameterized.expand(
[
("trl-internal-testing/tiny-Idefics2ForConditionalGeneration",),
# ("trl-internal-testing/tiny-PaliGemmaForConditionalGeneration",),
("trl-internal-testing/tiny-LlavaForConditionalGeneration",),
("trl-internal-testing/tiny-LlavaNextForConditionalGeneration",),
]
)
def test_vdpo_trainer(self, model_id):
# fmt: off
dataset_dict = {
"prompt": [
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Describe the image in great detail."}]}],
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Is this bus in the USA?"}]}],
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Give a thorough description of the image."}]}],
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Who are the people in the image?"}]}],
[{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "What is written?"}]}],
],
"chosen": [
[{"role": "assistant", "content": [{"type": "text", "text": "The image features a modern, multi-colored train."}]}],
[{"role": "assistant", "content": [{"type": "text", "text": "Yes, it can be assumed that this bus is in the USA."}]}],
[{"role": "assistant", "content": [{"type": "text", "text": "The image features a forest path."}]}],
[{"role": "assistant", "content": [{"type": "text", "text": "There are two individuals, possibly girls or women."}]}],
[{"role": "assistant", "content": [{"type": "text", "text": '"ccpb".'}]}],
],
"rejected": [
[{"role": "assistant", "content": [{"type": "text", "text": "The image features a modern, colorful train."}]}],
[{"role": "assistant", "content": [{"type": "text", "text": "No, it's not in the USA."}]}],
[{"role": "assistant", "content": [{"type": "text", "text": "The image features a forest path surrounded by trees."}]}],
[{"role": "assistant", "content": [{"type": "text", "text": "In the image, there are two individuals."}]}],
[{"role": "assistant", "content": [{"type": "text", "text": '"ccpb".'}]}],
],
"images": [
[Image.fromarray(np.random.randint(0, 255, (92, 33, 3), dtype=np.uint8))],
[Image.fromarray(np.random.randint(0, 255, (64, 48, 3), dtype=np.uint8))],
[Image.fromarray(np.random.randint(0, 255, (80, 152, 3), dtype=np.uint8))],
[Image.fromarray(np.random.randint(0, 255, (57, 24, 3), dtype=np.uint8))],
[Image.fromarray(np.random.randint(0, 255, (102, 48, 3), dtype=np.uint8))],
],
}
# fmt: on
dataset = Dataset.from_dict(dataset_dict)
dataset = dataset.cast_column("images", features.Sequence(features.Image()))
# Instantiate the model and processor
model = AutoModelForVision2Seq.from_pretrained(model_id)
ref_model = AutoModelForVision2Seq.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
with tempfile.TemporaryDirectory() as tmp_dir:
training_args = DPOConfig(
output_dir=tmp_dir,
per_device_train_batch_size=2,
remove_unused_columns=False,
learning_rate=0.01, # increase learning rate to speed up test
max_prompt_length=None, # don't truncate to avoid issues with patch tokens
max_length=None,
report_to="none",
)
trainer = DPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
processing_class=processor,
train_dataset=dataset,
eval_dataset=dataset,
)
# Save the initial weights, so we can check if they have changed after training
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
self.assertIsNotNone(trainer.state.log_history[-1]["train_loss"])
# Check that the trainable params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
if model_id in [
"trl-internal-testing/tiny-LlavaForConditionalGeneration",
"trl-internal-testing/tiny-LlavaNextForConditionalGeneration",
] and (
n.startswith("vision_tower.vision_model.encoder.layers.1")
or n == "vision_tower.vision_model.post_layernorm.weight"
):
# For some reason, these params are not updated. This is probably not related to TRL, but to
# the model itself. We should investigate this further, but for now we just skip these params.
continue
self.assertFalse(torch.allclose(param, new_param, rtol=1e-12, atol=1e-12))
if __name__ == "__main__":
unittest.main()