mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 18:43:52 +08:00
145 lines
5.3 KiB
Python
145 lines
5.3 KiB
Python
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
pip install pillow
|
|
|
|
# Tested on 8x H100 GPUs
|
|
accelerate launch
|
|
--config_file=examples/accelerate_configs/deepspeed_zero3.yaml \
|
|
sft_vlm_smol_vlm.py \
|
|
--dataset_name HuggingFaceH4/llava-instruct-mix-vsft \
|
|
--model_name_or_path HuggingFaceTB/SmolVLM-Instruct \
|
|
--per_device_train_batch_size 1 \
|
|
--gradient_accumulation_steps 1 \
|
|
--output_dir sft-smol-vlm-hf \
|
|
--bf16 \
|
|
--torch_dtype bfloat16 \
|
|
--gradient_checkpointing \
|
|
--use_peft \
|
|
--lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj
|
|
|
|
For LLaVA-NeXT, use: (requires transformers>=4.45)
|
|
--model_name_or_path llava-hf/llava-v1.6-mistral-7b-hf
|
|
|
|
For meta-llama/Llama-3.2-11B-Vision-Instruct, use: (requires transformers>=4.45.1)
|
|
--model_name_or_path meta-llama/Llama-3.2-11B-Vision-Instruct
|
|
"""
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
from transformers import (
|
|
AutoModelForVision2Seq,
|
|
AutoProcessor,
|
|
Idefics3ForConditionalGeneration,
|
|
LlavaForConditionalGeneration,
|
|
)
|
|
|
|
from trl import (
|
|
ModelConfig,
|
|
ScriptArguments,
|
|
SFTConfig,
|
|
SFTTrainer,
|
|
TrlParser,
|
|
get_kbit_device_map,
|
|
get_peft_config,
|
|
get_quantization_config,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
|
|
script_args, training_args, model_args = parser.parse_args_and_config()
|
|
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
|
training_args.remove_unused_columns = False
|
|
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
|
|
|
|
################
|
|
# Model, Tokenizer & Processor
|
|
################
|
|
torch_dtype = (
|
|
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
|
|
)
|
|
quantization_config = get_quantization_config(model_args)
|
|
model_kwargs = dict(
|
|
revision=model_args.model_revision,
|
|
attn_implementation=model_args.attn_implementation,
|
|
torch_dtype=torch_dtype,
|
|
device_map=get_kbit_device_map() if quantization_config is not None else None,
|
|
quantization_config=quantization_config,
|
|
)
|
|
processor = AutoProcessor.from_pretrained(
|
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
|
|
)
|
|
|
|
model = AutoModelForVision2Seq.from_pretrained(
|
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
|
|
)
|
|
|
|
################
|
|
# Create a data collator to encode text and image pairs
|
|
################
|
|
def collate_fn(examples):
|
|
# Get the texts and images, and apply the chat template
|
|
texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples]
|
|
images = [example["images"] for example in examples]
|
|
if isinstance(model, LlavaForConditionalGeneration):
|
|
# LLava1.5 does not support multiple images
|
|
images = [image[0] for image in images]
|
|
|
|
# Tokenize the texts and process the images
|
|
batch = processor(text=texts, images=images, return_tensors="pt", padding=True)
|
|
|
|
# The labels are the input_ids, and we mask the padding tokens in the loss computation
|
|
labels = batch["input_ids"].clone()
|
|
labels[labels == processor.tokenizer.pad_token_id] = -100 #
|
|
# Ignore the image token index in the loss computation (model specific)
|
|
if isinstance(model, Idefics3ForConditionalGeneration):
|
|
image_token_id = processor.tokenizer.additional_special_tokens_ids[
|
|
processor.tokenizer.additional_special_tokens.index("<image>")
|
|
]
|
|
else:
|
|
image_token_id = processor.tokenizer.convert_tokens_to_ids(processor.image_token)
|
|
labels[labels == image_token_id] = -100
|
|
batch["labels"] = labels
|
|
|
|
return batch
|
|
|
|
################
|
|
# Dataset
|
|
################
|
|
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
|
|
|
|
################
|
|
# Training
|
|
################
|
|
trainer = SFTTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
data_collator=collate_fn,
|
|
train_dataset=dataset[script_args.dataset_train_split],
|
|
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
|
|
processing_class=processor.tokenizer,
|
|
peft_config=get_peft_config(model_args),
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
# Save and push to hub
|
|
trainer.save_model(training_args.output_dir)
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|
|
if trainer.accelerator.is_main_process:
|
|
processor.push_to_hub(training_args.hub_model_id)
|