mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 10:03:51 +08:00
220 lines
8.2 KiB
Python
220 lines
8.2 KiB
Python
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
Train Gemma-3 on the HuggingFaceH4/llava-instruct-mix-vsft dataset (single-image).
|
|
|
|
accelerate launch \
|
|
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
|
|
examples/scripts/sft_vlm_gemma3.py \
|
|
--dataset_name HuggingFaceH4/llava-instruct-mix-vsft \
|
|
--model_name_or_path google/gemma-3-4b-it \
|
|
--per_device_train_batch_size 1 \
|
|
--gradient_accumulation_steps 1 \
|
|
--output_dir gemma-3-4b-it-trl-sft-ChartQA \
|
|
--bf16 \
|
|
--torch_dtype bfloat16 \
|
|
--use_peft \
|
|
--lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj
|
|
|
|
Train Gemma-3 on the FanqingM/MMIU-Benchmark dataset (multi-image).
|
|
|
|
accelerate launch \
|
|
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
|
|
examples/scripts/sft_vlm_gemma3.py \
|
|
--dataset_name FanqingM/MMIU-Benchmark \
|
|
--dataset_train_split test \
|
|
--model_name_or_path google/gemma-3-4b-it \
|
|
--per_device_train_batch_size 1 \
|
|
--gradient_accumulation_steps 1 \
|
|
--output_dir gemma-3-4b-it-trl-sft-MMIU-Benchmark \
|
|
--bf16 \
|
|
--torch_dtype bfloat16 \
|
|
--use_peft \
|
|
--lora_target_modules down_proj, o_proj, k_proj, q_proj, gate_proj, up_proj, v_proj
|
|
"""
|
|
|
|
import io
|
|
import os
|
|
import zipfile
|
|
|
|
import torch
|
|
from datasets import DatasetDict, load_dataset
|
|
from huggingface_hub import hf_hub_download, list_repo_files
|
|
from PIL import Image
|
|
from transformers import AutoModelForImageTextToText, AutoProcessor
|
|
|
|
from trl import (
|
|
ModelConfig,
|
|
ScriptArguments,
|
|
SFTConfig,
|
|
SFTTrainer,
|
|
TrlParser,
|
|
get_kbit_device_map,
|
|
get_peft_config,
|
|
get_quantization_config,
|
|
)
|
|
|
|
|
|
# For multi-image example
|
|
def process_vision_info(messages: list[dict]) -> list[Image.Image]:
|
|
image_inputs = []
|
|
for msg in messages:
|
|
content = msg.get("content", [])
|
|
if not isinstance(content, list):
|
|
content = [content]
|
|
|
|
for element in content:
|
|
if isinstance(element, dict) and ("image" in element or element.get("type") == "image"):
|
|
if "image" in element:
|
|
image = element["image"]
|
|
else:
|
|
image = element
|
|
if image is not None:
|
|
image = Image.open(io.BytesIO(image["bytes"]))
|
|
image_inputs.append(image.convert("RGB"))
|
|
return image_inputs
|
|
|
|
|
|
def format_data(samples: dict[str, any]) -> dict[str, list]:
|
|
formatted_samples = {"messages": []}
|
|
for cont in range(len(samples["question"])):
|
|
images = []
|
|
for img_path in samples["input_image_path"][cont]:
|
|
try:
|
|
with open(img_path, "rb") as f:
|
|
img_bytes = f.read()
|
|
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
|
images.append({"type": "image", "image": image})
|
|
except Exception as e:
|
|
print(f"Error processing image {img_path}: {e}")
|
|
continue
|
|
|
|
formatted_samples["messages"].append(
|
|
[
|
|
{"role": "system", "content": [{"type": "text", "text": samples["context"][cont]}]},
|
|
{"role": "user", "content": images + [{"type": "text", "text": samples["question"][cont]}]},
|
|
{"role": "assistant", "content": [{"type": "text", "text": samples["output"][cont]}]},
|
|
]
|
|
)
|
|
return formatted_samples
|
|
|
|
|
|
# For multi-image example
|
|
def prepare_dataset(dataset: DatasetDict, dataset_name: str, dataset_train_split: str) -> DatasetDict:
|
|
all_files = list_repo_files(dataset_name, repo_type="dataset")
|
|
zip_files = [f for f in all_files if f.endswith(".zip")]
|
|
|
|
for zip_filename in zip_files:
|
|
zip_path = hf_hub_download(repo_id=dataset_name, filename=zip_filename, repo_type="dataset")
|
|
extract_folder = zip_filename.replace(".zip", "")
|
|
os.makedirs(extract_folder, exist_ok=True)
|
|
|
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
|
zip_ref.extractall(extract_folder)
|
|
|
|
dataset = dataset.map(format_data, batched=True, batch_size=4, num_proc=16)
|
|
return dataset
|
|
|
|
|
|
def main():
|
|
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
|
|
script_args, training_args, model_args = parser.parse_args_and_config()
|
|
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
|
training_args.remove_unused_columns = False
|
|
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
|
|
|
|
################
|
|
# Model, Tokenizer & Processor
|
|
################
|
|
torch_dtype = (
|
|
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
|
|
)
|
|
quantization_config = get_quantization_config(model_args)
|
|
model_kwargs = dict(
|
|
revision=model_args.model_revision,
|
|
attn_implementation=model_args.attn_implementation,
|
|
torch_dtype=torch_dtype,
|
|
device_map=get_kbit_device_map() if quantization_config is not None else None,
|
|
quantization_config=quantization_config,
|
|
)
|
|
processor = AutoProcessor.from_pretrained(
|
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
|
|
)
|
|
|
|
model = AutoModelForImageTextToText.from_pretrained(
|
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
|
|
)
|
|
|
|
def collate_fn(examples):
|
|
texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples]
|
|
if "images" in examples[0]: # single-image
|
|
images = [
|
|
img.convert("RGB") if img.mode == "RGBA" else img for example in examples for img in example["images"]
|
|
]
|
|
else: # multi-image
|
|
images = [process_vision_info(example["messages"]) for example in examples]
|
|
|
|
# Tokenize the texts and process the images
|
|
batch = processor(
|
|
text=texts, images=images, return_tensors="pt", padding=True
|
|
) # Encode texts and images into tensors
|
|
|
|
# The labels are the input_ids, and we mask the padding tokens in the loss computation
|
|
labels = batch["input_ids"].clone() # Clone input IDs for labels
|
|
# Mask image tokens
|
|
image_token_id = [
|
|
processor.tokenizer.convert_tokens_to_ids(processor.tokenizer.special_tokens_map["boi_token"])
|
|
]
|
|
# Mask tokens for not being used in the loss computation
|
|
labels[labels == processor.tokenizer.pad_token_id] = -100
|
|
labels[labels == image_token_id] = -100
|
|
labels[labels == 262144] = -100
|
|
|
|
batch["labels"] = labels
|
|
return batch # Return the prepared batch
|
|
|
|
################
|
|
# Dataset
|
|
################
|
|
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
|
|
if script_args.dataset_name == "FanqingM/MMIU-Benchmark":
|
|
dataset = prepare_dataset(dataset, script_args.dataset_name, script_args.dataset_train_split)
|
|
|
|
################
|
|
# Training
|
|
################
|
|
trainer = SFTTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
data_collator=collate_fn,
|
|
train_dataset=dataset[script_args.dataset_train_split],
|
|
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
|
|
processing_class=processor.tokenizer,
|
|
peft_config=get_peft_config(model_args),
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
# Save and push to hub
|
|
trainer.save_model(training_args.output_dir)
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|
|
if trainer.accelerator.is_main_process:
|
|
processor.push_to_hub(training_args.hub_model_id)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|