mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 18:43:52 +08:00
124 lines
4.9 KiB
Python
124 lines
4.9 KiB
Python
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
accelerate launch examples/scripts/dpo_vlm.py \
|
|
--dataset_name HuggingFaceH4/rlaif-v_formatted \
|
|
--model_name_or_path HuggingFaceM4/idefics2-8b \
|
|
--per_device_train_batch_size 2 \
|
|
--gradient_accumulation_steps 32 \
|
|
--dataset_num_proc 32 \
|
|
--output_dir dpo_idefics_rlaif-v \
|
|
--bf16 \
|
|
--torch_dtype bfloat16 \
|
|
--gradient_checkpointing \
|
|
--use_peft \
|
|
--lora_target_modules=all-linear
|
|
"""
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
from transformers import AutoModelForVision2Seq, AutoProcessor
|
|
|
|
from trl import (
|
|
DPOConfig,
|
|
DPOTrainer,
|
|
ModelConfig,
|
|
ScriptArguments,
|
|
TrlParser,
|
|
get_kbit_device_map,
|
|
get_peft_config,
|
|
get_quantization_config,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig))
|
|
script_args, training_args, model_args = parser.parse_args_and_config()
|
|
|
|
################
|
|
# Model & Tokenizer
|
|
################
|
|
torch_dtype = (
|
|
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
|
|
)
|
|
quantization_config = get_quantization_config(model_args)
|
|
|
|
model_kwargs = dict(
|
|
revision=model_args.model_revision,
|
|
attn_implementation=model_args.attn_implementation,
|
|
torch_dtype=torch_dtype,
|
|
device_map=get_kbit_device_map() if quantization_config is not None else None,
|
|
quantization_config=quantization_config,
|
|
)
|
|
model = AutoModelForVision2Seq.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
**model_kwargs,
|
|
)
|
|
peft_config = get_peft_config(model_args)
|
|
if peft_config is None:
|
|
ref_model = AutoModelForVision2Seq.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
**model_kwargs,
|
|
)
|
|
else:
|
|
ref_model = None
|
|
processor = AutoProcessor.from_pretrained(
|
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, do_image_splitting=False
|
|
)
|
|
tokenizer = processor.tokenizer
|
|
|
|
# Set up the chat template
|
|
if model.config.model_type == "idefics2":
|
|
pass # the processor already has a valid chat template
|
|
elif model.config.model_type == "paligemma":
|
|
processor.chat_template = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}<|im_start|>{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] if item['type'] == 'text' %}{{ item['text'] }}<|im_end|>{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}"""
|
|
elif model.config.model_type == "llava":
|
|
processor.chat_template = """{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% for message in messages %}{% if message['role'] == 'user' %}USER: {% else %}ASSISTANT: {% endif %}{% for item in message['content'] %}{% if item['type'] == 'text' %}{{ item['text'] }}{% elif item['type'] == 'image' %}<image>{% endif %}{% endfor %}{% if message['role'] == 'user' %} {% else %}{{eos_token}}{% endif %}{% endfor %}{% if add_generation_prompt %}ASSISTANT: {% endif %}"""
|
|
|
|
if tokenizer.pad_token is None:
|
|
tokenizer.pad_token = tokenizer.eos_token
|
|
if script_args.ignore_bias_buffers:
|
|
# torch distributed hack
|
|
model._ddp_params_and_buffers_to_ignore = [
|
|
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
|
|
]
|
|
|
|
################
|
|
# Dataset
|
|
################
|
|
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
|
|
|
|
################
|
|
# Training
|
|
################
|
|
trainer = DPOTrainer(
|
|
model,
|
|
ref_model,
|
|
args=training_args,
|
|
train_dataset=dataset[script_args.dataset_train_split],
|
|
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
|
|
processing_class=processor,
|
|
peft_config=peft_config,
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
# Save and push to hub
|
|
trainer.save_model(training_args.output_dir)
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|