mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 10:03:51 +08:00
106 lines
4.2 KiB
Python
106 lines
4.2 KiB
Python
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from dataclasses import dataclass, field
|
|
from typing import Optional
|
|
|
|
from datasets import load_dataset
|
|
from huggingface_hub import ModelCard
|
|
from transformers import HfArgumentParser
|
|
|
|
|
|
@dataclass
|
|
class ScriptArguments:
|
|
r"""
|
|
Arguments for the script.
|
|
|
|
Args:
|
|
push_to_hub (`bool`, *optional*, defaults to `False`):
|
|
Whether to push the dataset to the Hugging Face Hub.
|
|
repo_id (`str`, *optional*, defaults to `"trl-lib/tldr"`):
|
|
Hugging Face repository ID to push the dataset to.
|
|
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`):
|
|
Number of workers to use for dataset processing.
|
|
"""
|
|
|
|
push_to_hub: bool = field(
|
|
default=False,
|
|
metadata={"help": "Whether to push the dataset to the Hugging Face Hub."},
|
|
)
|
|
repo_id: str = field(
|
|
default="trl-lib/tldr",
|
|
metadata={"help": "Hugging Face repository ID to push the dataset to."},
|
|
)
|
|
dataset_num_proc: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "Number of workers to use for dataset processing."},
|
|
)
|
|
|
|
|
|
def to_prompt_completion(example):
|
|
tldr_format_str = "SUBREDDIT: r/{subreddit}\n\nTITLE: {title}\n\nPOST: {post}\n\nTL;DR:"
|
|
prompt = tldr_format_str.format(subreddit=example["subreddit"], title=example["title"], post=example["post"])
|
|
completion = " " + example["summary"] # Add a space to separate the prompt from the completion
|
|
return {"prompt": prompt, "completion": completion}
|
|
|
|
|
|
model_card = ModelCard("""
|
|
---
|
|
tags: [trl]
|
|
---
|
|
|
|
# TL;DR Dataset
|
|
|
|
## Summary
|
|
|
|
The TL;DR dataset is a processed version of Reddit posts, specifically curated to train models using the [TRL library](https://github.com/huggingface/trl) for summarization tasks. It leverages the common practice on Reddit where users append "TL;DR" (Too Long; Didn't Read) summaries to lengthy posts, providing a rich source of paired text data for training summarization models.
|
|
|
|
## Data Structure
|
|
|
|
- **Format**: [Standard](https://huggingface.co/docs/trl/main/dataset_formats#standard)
|
|
- **Type**: [Prompt-completion](https://huggingface.co/docs/trl/main/dataset_formats#prompt-completion)
|
|
|
|
Columns:
|
|
- `"prompt"`: The unabridged Reddit post.
|
|
- `"completion"`: The concise "TL;DR" summary appended by the author.
|
|
|
|
This structure enables models to learn the relationship between detailed content and its abbreviated form, enhancing their summarization capabilities.
|
|
|
|
## Generation script
|
|
|
|
The script used to generate this dataset can be found [here](https://github.com/huggingface/trl/blob/main/examples/datasets/tldr.py).
|
|
""")
|
|
|
|
if __name__ == "__main__":
|
|
parser = HfArgumentParser(ScriptArguments)
|
|
script_args = parser.parse_args_into_dataclasses()[0]
|
|
|
|
# Filtered reddit TL;DR dataset from https://github.com/openai/summarize-from-feedback?tab=readme-ov-file#reddit-tldr-dataset
|
|
data_files = {
|
|
"train": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/train.jsonl",
|
|
"validation": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/valid.jsonl",
|
|
"test": "https://openaipublic.blob.core.windows.net/summarize-from-feedback/datasets/tldr_3_filtered/test.jsonl",
|
|
}
|
|
dataset = load_dataset("json", data_files=data_files)
|
|
|
|
dataset = dataset.map(
|
|
to_prompt_completion,
|
|
num_proc=script_args.dataset_num_proc,
|
|
remove_columns=["id", "subreddit", "title", "post", "summary"],
|
|
)
|
|
|
|
if script_args.push_to_hub:
|
|
dataset.push_to_hub(script_args.repo_id)
|
|
model_card.push_to_hub(script_args.repo_id, repo_type="dataset")
|