mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 18:43:52 +08:00
* refactor * Remove tyro in `ppo.py` * quick update * update default args * quick push * precommit * refactor * quick change * remove tyro * quick change * precommit * quick change * fix hello_world * remove docstring diffences * add `module load cuda/12.1` * push changes * precommit * make dpo runnable * fix circular import * quick fix * refactor * quick update * path change * update plots * fix docs * quick change * Update trl/trainer/model_config.py Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> * Update trl/trainer/model_config.py Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> * Update trl/trainer/utils.py Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> * Update examples/scripts/dpo.py Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> * address comments. use attn_implementation * precommit * remove duplicate code * update peft.py * fix test no op dep * Update trl/trainer/utils.py Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> * Apply suggestions from code review Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com> * precommit * add docs --------- Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> Co-authored-by: Younes Belkada <49240599+younesbelkada@users.noreply.github.com>
119 lines
4.2 KiB
Python
119 lines
4.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
python examples/scripts/reward_modeling.py \
|
|
--model_name_or_path=facebook/opt-350m \
|
|
--output_dir="reward_modeling_anthropic_hh" \
|
|
--per_device_train_batch_size=64 \
|
|
--num_train_epochs=1 \
|
|
--gradient_accumulation_steps=16 \
|
|
--gradient_checkpointing=True \
|
|
--learning_rate=1.41e-5 \
|
|
--report_to="wandb" \
|
|
--remove_unused_columns=False \
|
|
--optim="adamw_torch" \
|
|
--logging_steps=10 \
|
|
--evaluation_strategy="steps" \
|
|
--max_length=512 \
|
|
"""
|
|
|
|
import torch
|
|
from datasets import load_dataset
|
|
from tqdm import tqdm
|
|
from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser
|
|
|
|
from trl import ModelConfig, RewardConfig, RewardTrainer, get_kbit_device_map, get_peft_config, get_quantization_config
|
|
|
|
|
|
tqdm.pandas()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = HfArgumentParser((RewardConfig, ModelConfig))
|
|
reward_config, model_config = parser.parse_args_into_dataclasses()
|
|
reward_config.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
|
|
|
################
|
|
# Model & Tokenizer
|
|
################
|
|
torch_dtype = (
|
|
model_config.torch_dtype
|
|
if model_config.torch_dtype in ["auto", None]
|
|
else getattr(torch, model_config.torch_dtype)
|
|
)
|
|
quantization_config = get_quantization_config(model_config)
|
|
model_kwargs = dict(
|
|
revision=model_config.model_revision,
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
device_map=get_kbit_device_map() if quantization_config is not None else None,
|
|
quantization_config=quantization_config,
|
|
)
|
|
tokenizer = AutoTokenizer.from_pretrained(model_config.model_name_or_path, use_fast=True)
|
|
model = AutoModelForSequenceClassification.from_pretrained(
|
|
model_config.model_name_or_path, num_labels=1, **model_kwargs
|
|
)
|
|
|
|
################
|
|
# Dataset
|
|
################
|
|
raw_datasets = load_dataset("Anthropic/hh-rlhf")
|
|
# Tokenize chosen/rejected pairs of inputs
|
|
# Adapt this section to your needs for custom datasets
|
|
|
|
def preprocess_function(examples):
|
|
new_examples = {
|
|
"input_ids_chosen": [],
|
|
"attention_mask_chosen": [],
|
|
"input_ids_rejected": [],
|
|
"attention_mask_rejected": [],
|
|
}
|
|
for chosen, rejected in zip(examples["chosen"], examples["rejected"]):
|
|
tokenized_chosen = tokenizer(chosen)
|
|
tokenized_rejected = tokenizer(rejected)
|
|
|
|
new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
|
|
new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
|
|
new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
|
|
new_examples["attention_mask_rejected"].append(tokenized_rejected["attention_mask"])
|
|
|
|
return new_examples
|
|
|
|
# Preprocess the dataset and filter out examples that are longer than args.max_length
|
|
raw_datasets = raw_datasets.map(
|
|
preprocess_function,
|
|
batched=True,
|
|
num_proc=4,
|
|
)
|
|
raw_datasets = raw_datasets.filter(
|
|
lambda x: len(x["input_ids_chosen"]) <= reward_config.max_length
|
|
and len(x["input_ids_rejected"]) <= reward_config.max_length
|
|
)
|
|
train_dataset = raw_datasets["train"]
|
|
eval_dataset = raw_datasets["test"]
|
|
|
|
################
|
|
# Training
|
|
################
|
|
trainer = RewardTrainer(
|
|
model=model,
|
|
tokenizer=tokenizer,
|
|
args=reward_config,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
peft_config=get_peft_config(model_config),
|
|
)
|
|
trainer.train()
|
|
trainer.save_model(reward_config.output_dir)
|