mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 18:43:52 +08:00
Co-authored-by: sergiopaniego <sergiopaniegoblanco@gmail.com> Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
195 lines
6.9 KiB
Python
195 lines
6.9 KiB
Python
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# /// script
|
|
# dependencies = [
|
|
# "trl",
|
|
# "peft",
|
|
# "trackio",
|
|
# "kernels",
|
|
# ]
|
|
# ///
|
|
|
|
import os
|
|
import shutil
|
|
|
|
import torch
|
|
from accelerate import PartialState
|
|
from datasets import load_dataset
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoModelForSequenceClassification,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
)
|
|
|
|
from trl import (
|
|
ModelConfig,
|
|
PPOConfig,
|
|
PPOTrainer,
|
|
ScriptArguments,
|
|
get_kbit_device_map,
|
|
get_peft_config,
|
|
get_quantization_config,
|
|
)
|
|
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
|
|
|
|
|
|
# Enable logging in a Hugging Face Space
|
|
os.environ.setdefault("TRACKIO_SPACE_ID", "trl-trackio")
|
|
|
|
|
|
"""
|
|
python examples/scripts/ppo/ppo_tldr.py \
|
|
--dataset_name trl-internal-testing/tldr-preference-sft-trl-style \
|
|
--dataset_test_split validation \
|
|
--learning_rate 3e-6 \
|
|
--output_dir pythia-1b-deduped-tldr-preference-sft-trl-style-ppo \
|
|
--per_device_train_batch_size 1 \
|
|
--gradient_accumulation_steps 64 \
|
|
--total_episodes 30000 \
|
|
--model_name_or_path EleutherAI/pythia-1b-deduped \
|
|
--sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \
|
|
--reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \
|
|
--missing_eos_penalty 1.0 \
|
|
--stop_token eos \
|
|
--response_length 53 \
|
|
--eval_strategy steps \
|
|
--eval_steps 100
|
|
|
|
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
|
|
examples/scripts/ppo/ppo_tldr.py \
|
|
--dataset_name trl-internal-testing/tldr-preference-sft-trl-style \
|
|
--dataset_test_split validation \
|
|
--output_dir pythia-1b-deduped-tldr-preference-sft-trl-style-ppo \
|
|
--learning_rate 3e-6 \
|
|
--per_device_train_batch_size 16 \
|
|
--gradient_accumulation_steps 4 \
|
|
--total_episodes 1000000 \
|
|
--model_name_or_path EleutherAI/pythia-1b-deduped \
|
|
--sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \
|
|
--reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \
|
|
--local_rollout_forward_batch_size 16 \
|
|
--missing_eos_penalty 1.0 \
|
|
--stop_token eos \
|
|
--eval_strategy steps \
|
|
--eval_steps 100
|
|
"""
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = HfArgumentParser((ScriptArguments, PPOConfig, ModelConfig))
|
|
script_args, training_args, model_args = parser.parse_args_into_dataclasses()
|
|
# remove output_dir if exists
|
|
shutil.rmtree(training_args.output_dir, ignore_errors=True)
|
|
|
|
################
|
|
# Model & Tokenizer
|
|
################
|
|
dtype = model_args.dtype if model_args.dtype in ["auto", None] else getattr(torch, model_args.dtype)
|
|
model_kwargs = dict(
|
|
revision=model_args.model_revision,
|
|
attn_implementation=model_args.attn_implementation,
|
|
dtype=dtype,
|
|
)
|
|
quantization_config = get_quantization_config(model_args)
|
|
if quantization_config is not None:
|
|
# Passing None would not be treated the same as omitting the argument, so we include it only when valid.
|
|
model_kwargs["device_map"] = get_kbit_device_map()
|
|
model_kwargs["quantization_config"] = quantization_config
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_args.model_name_or_path, padding_side="left", trust_remote_code=model_args.trust_remote_code
|
|
)
|
|
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
|
if tokenizer.chat_template is None:
|
|
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
|
|
value_model = AutoModelForSequenceClassification.from_pretrained(
|
|
training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1
|
|
)
|
|
reward_model = AutoModelForSequenceClassification.from_pretrained(
|
|
training_args.reward_model_path, trust_remote_code=model_args.trust_remote_code, num_labels=1
|
|
)
|
|
policy = AutoModelForCausalLM.from_pretrained(
|
|
training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code
|
|
)
|
|
|
|
peft_config = get_peft_config(model_args)
|
|
if peft_config is None:
|
|
ref_policy = AutoModelForCausalLM.from_pretrained(
|
|
training_args.sft_model_path, trust_remote_code=model_args.trust_remote_code
|
|
)
|
|
else:
|
|
ref_policy = None
|
|
|
|
################
|
|
# Dataset
|
|
################
|
|
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
|
|
train_dataset = dataset[script_args.dataset_train_split]
|
|
eval_dataset = dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None
|
|
|
|
def prepare_dataset(dataset, tokenizer):
|
|
"""pre-tokenize the dataset before training; only collate during training"""
|
|
|
|
def tokenize(element):
|
|
input_ids = tokenizer.apply_chat_template(
|
|
element["messages"][:1],
|
|
padding=False,
|
|
add_generation_prompt=True,
|
|
)
|
|
return {"input_ids": input_ids, "lengths": len(input_ids)}
|
|
|
|
return dataset.map(
|
|
tokenize,
|
|
remove_columns=dataset.column_names,
|
|
num_proc=training_args.dataset_num_proc,
|
|
)
|
|
|
|
# Compute that only on the main process for faster data processing.
|
|
# see: https://github.com/huggingface/trl/pull/1255
|
|
with PartialState().local_main_process_first():
|
|
train_dataset = prepare_dataset(train_dataset, tokenizer)
|
|
if eval_dataset is not None:
|
|
eval_dataset = prepare_dataset(eval_dataset, tokenizer)
|
|
# filtering
|
|
train_dataset = train_dataset.filter(lambda x: x["lengths"] <= 512, num_proc=training_args.dataset_num_proc)
|
|
if eval_dataset is not None:
|
|
eval_dataset = eval_dataset.filter(lambda x: x["lengths"] <= 512, num_proc=training_args.dataset_num_proc)
|
|
|
|
assert train_dataset[0]["input_ids"][-1] != tokenizer.eos_token_id, "The last token should not be an EOS token"
|
|
|
|
################
|
|
# Training
|
|
################
|
|
trainer = PPOTrainer(
|
|
args=training_args,
|
|
processing_class=tokenizer,
|
|
model=policy,
|
|
ref_model=ref_policy,
|
|
reward_model=reward_model,
|
|
value_model=value_model,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
peft_config=peft_config,
|
|
)
|
|
trainer.train()
|
|
|
|
# Save and push to hub
|
|
trainer.save_model(training_args.output_dir)
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|
|
|
|
trainer.generate_completions()
|