mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 18:43:52 +08:00
220 lines
7.6 KiB
Python
220 lines
7.6 KiB
Python
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# /// script
|
|
# dependencies = [
|
|
# "trl",
|
|
# "peft",
|
|
# "math-verify",
|
|
# "latex2sympy2_extended",
|
|
# "trackio",
|
|
# "torchvision",
|
|
# "kernels",
|
|
# ]
|
|
# ///
|
|
|
|
"""
|
|
pip install math_verify
|
|
|
|
# For Qwen/Qwen2.5-VL-3B-Instruct
|
|
accelerate launch \
|
|
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
|
|
examples/scripts/online_dpo_vlm.py \
|
|
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
|
|
--reward_model_path Qwen/Qwen2.5-VL-3B-Instruct \
|
|
--output_dir online-dpo-Qwen2.5-VL-3B-Instruct \
|
|
--learning_rate 1e-5 \
|
|
--gradient_checkpointing \
|
|
--dtype bfloat16 \
|
|
--max_length 1536 \
|
|
--max_new_tokens 1024 \
|
|
--use_vllm \
|
|
--vllm_mode server \
|
|
--use_peft \
|
|
--lora_target_modules "q_proj", "v_proj" \
|
|
--per_device_train_batch_size 1 \
|
|
--gradient_accumulation_steps 2
|
|
|
|
# For HuggingFaceTB/SmolVLM2-2.2B-Instruct
|
|
pip install num2words==0.5.14
|
|
|
|
accelerate launch \
|
|
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
|
|
examples/scripts/online_dpo_vlm.py \
|
|
--model_name_or_path HuggingFaceTB/SmolVLM2-2.2B-Instruct \
|
|
--reward_model_path HuggingFaceTB/SmolVLM2-2.2B-Instruct \
|
|
--output_dir online-dpo-SmolVLM2-2.2B-Instruct \
|
|
--learning_rate 1e-5 \
|
|
--dtype bfloat16 \
|
|
--max_length 1536 \
|
|
--max_new_tokens 1024 \
|
|
--use_peft \
|
|
--lora_target_modules "q_proj", "v_proj" \
|
|
--per_device_train_batch_size 1 \
|
|
--gradient_accumulation_steps 2
|
|
|
|
# Single GPU test command:
|
|
python examples/scripts/online_dpo_vlm.py \
|
|
--model_name_or_path HuggingFaceTB/SmolVLM2-2.2B-Instruct \
|
|
--reward_model_path HuggingFaceTB/SmolVLM2-2.2B-Instruct \
|
|
--output_dir online-dpo-SmolVLM2-2.2B-Instruct-test \
|
|
--learning_rate 1e-5 \
|
|
--dtype bfloat16 \
|
|
--max_length 1536 \
|
|
--max_new_tokens 128 \
|
|
--use_peft \
|
|
--lora_target_modules "q_proj", "v_proj" \
|
|
--per_device_train_batch_size 1 \
|
|
--gradient_accumulation_steps 1 \
|
|
--max_steps 2 \
|
|
--logging_steps 1 \
|
|
--trust_remote_code
|
|
"""
|
|
|
|
import os
|
|
|
|
import torch
|
|
import transformers
|
|
from datasets import load_dataset
|
|
from transformers import AutoConfig, AutoProcessor, GenerationConfig
|
|
|
|
from trl import (
|
|
LogCompletionsCallback,
|
|
ModelConfig,
|
|
OnlineDPOConfig,
|
|
OnlineDPOTrainer,
|
|
ScriptArguments,
|
|
TrlParser,
|
|
get_kbit_device_map,
|
|
get_peft_config,
|
|
get_quantization_config,
|
|
)
|
|
from trl.rewards import accuracy_reward, think_format_reward
|
|
|
|
|
|
# Enable logging in a Hugging Face Space
|
|
os.environ.setdefault("TRACKIO_SPACE_ID", "trl-trackio")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = TrlParser((ScriptArguments, OnlineDPOConfig, ModelConfig))
|
|
script_args, training_args, model_args = parser.parse_args_and_config()
|
|
training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}
|
|
|
|
dtype = model_args.dtype if model_args.dtype in ["auto", None] else getattr(torch, model_args.dtype)
|
|
model_kwargs = dict(
|
|
revision=model_args.model_revision,
|
|
attn_implementation=model_args.attn_implementation,
|
|
dtype=dtype,
|
|
use_cache=False if training_args.gradient_checkpointing else True,
|
|
)
|
|
quantization_config = get_quantization_config(model_args)
|
|
if quantization_config is not None:
|
|
# Passing None would not be treated the same as omitting the argument, so we include it only when valid.
|
|
model_kwargs["device_map"] = get_kbit_device_map()
|
|
model_kwargs["quantization_config"] = quantization_config
|
|
|
|
# Load the VLM model using correct architecture (from GRPO pattern)
|
|
config = AutoConfig.from_pretrained(model_args.model_name_or_path)
|
|
architecture = getattr(transformers, config.architectures[0])
|
|
model = architecture.from_pretrained(
|
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
|
|
)
|
|
|
|
# For VLM online DPO, using a reward model is complex because it needs images
|
|
# Instead, we'll use a simple random judge for testing
|
|
# In production, you'd want to use a proper text-only reward model or a custom judge
|
|
reward_model = None
|
|
reward_processor = None
|
|
|
|
# Load processor for main model
|
|
processor = AutoProcessor.from_pretrained(
|
|
model_args.model_name_or_path,
|
|
trust_remote_code=model_args.trust_remote_code,
|
|
)
|
|
if hasattr(processor, "tokenizer"):
|
|
processor.tokenizer.padding_side = "left"
|
|
if processor.tokenizer.pad_token_id is None:
|
|
processor.tokenizer.pad_token = processor.tokenizer.eos_token
|
|
|
|
################
|
|
# Dataset
|
|
################
|
|
dataset = load_dataset("lmms-lab/multimodal-open-r1-8k-verified", split="train")
|
|
dataset = dataset.train_test_split(test_size=100, seed=42)
|
|
|
|
SYSTEM_PROMPT = (
|
|
"A conversation between user and assistant. The user asks a question, and the assistant solves it. The "
|
|
"assistant first thinks about the reasoning process in the mind and then provides the user with the answer. "
|
|
"The reasoning process and answer are enclosed within <think></think> tags, i.e., <think>\nThis is my "
|
|
"reasoning.\n</think>\nThis is my answer."
|
|
)
|
|
|
|
def make_conversation(example):
|
|
# Create conversational format that OnlineDPOTrainer expects
|
|
prompt = [
|
|
{"role": "system", "content": SYSTEM_PROMPT},
|
|
{"role": "user", "content": example["problem"]},
|
|
]
|
|
return {"prompt": prompt, "image": example["image"]}
|
|
|
|
dataset = dataset.map(make_conversation)
|
|
|
|
# Filter big images (from GRPO pattern)
|
|
def filter_big_images(example):
|
|
image = example["image"]
|
|
return image.size[0] < 512 and image.size[1] < 512
|
|
|
|
dataset = dataset.filter(filter_big_images)
|
|
|
|
def convert_to_rgb(example):
|
|
image = example["image"]
|
|
if image.mode != "RGB":
|
|
image = image.convert("RGB")
|
|
example["image"] = image
|
|
return example
|
|
|
|
dataset = dataset.map(convert_to_rgb)
|
|
|
|
train_dataset = dataset["train"]
|
|
eval_dataset = dataset["test"] if training_args.eval_strategy != "no" else None
|
|
|
|
################
|
|
# Training
|
|
################
|
|
trainer = OnlineDPOTrainer(
|
|
model=model,
|
|
reward_funcs=[think_format_reward, accuracy_reward], # Use same reward functions as GRPO VLM
|
|
args=training_args,
|
|
train_dataset=train_dataset,
|
|
eval_dataset=eval_dataset,
|
|
processing_class=processor,
|
|
peft_config=get_peft_config(model_args),
|
|
)
|
|
|
|
# Add completion logging callback (from online DPO pattern)
|
|
if training_args.eval_strategy != "no":
|
|
generation_config = GenerationConfig(
|
|
max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature
|
|
)
|
|
completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8)
|
|
trainer.add_callback(completions_callback)
|
|
|
|
trainer.train()
|
|
|
|
# Save and push to hub
|
|
trainer.save_model(training_args.output_dir)
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(dataset_name="lmms-lab/multimodal-open-r1-8k-verified")
|