mirror of
https://github.com/huggingface/trl.git
synced 2025-10-21 02:53:59 +08:00
* uniform dataset_num_proc * num_proc in shuffle * Update examples/datasets/anthropic_hh.py Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> * Update examples/scripts/ppo.py Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> * Update examples/scripts/ppo.py Co-authored-by: lewtun <lewis.c.tunstall@gmail.com> --------- Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co> Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
116 lines
3.8 KiB
Python
116 lines
3.8 KiB
Python
import shutil
|
|
|
|
from datasets import load_dataset
|
|
from transformers import (
|
|
AutoModelForCausalLM,
|
|
AutoModelForSequenceClassification,
|
|
AutoTokenizer,
|
|
HfArgumentParser,
|
|
)
|
|
|
|
from trl import ModelConfig
|
|
from trl.trainer.rloo_trainer import RLOOConfig, RLOOTrainer
|
|
from trl.trainer.utils import SIMPLE_QUERY_CHAT_TEMPLATE
|
|
|
|
|
|
"""
|
|
python -i examples/scripts/rloo/rloo.py \
|
|
--learning_rate 3e-6 \
|
|
--num_ppo_epochs 1 \
|
|
--num_mini_batches 1 \
|
|
--output_dir models/minimal/ppo \
|
|
--per_device_train_batch_size 64 \
|
|
--gradient_accumulation_steps 1 \
|
|
--total_episodes 10000 \
|
|
--model_name_or_path EleutherAI/pythia-1b-deduped \
|
|
--non_eos_penalty \
|
|
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero3.yaml \
|
|
examples/scripts/rloo/rloo.py \
|
|
--output_dir models/minimal/rloo \
|
|
--rloo_k 2 \
|
|
--num_ppo_epochs 1 \
|
|
--num_mini_batches 1 \
|
|
--learning_rate 3e-6 \
|
|
--per_device_train_batch_size 1 \
|
|
--gradient_accumulation_steps 16 \
|
|
--total_episodes 10000 \
|
|
--model_name_or_path EleutherAI/pythia-1b-deduped \
|
|
--sft_model_path EleutherAI/pythia-1b-deduped \
|
|
--reward_model_path EleutherAI/pythia-1b-deduped \
|
|
--local_rollout_forward_batch_size 1 \
|
|
--deepspeed3 \
|
|
--non_eos_penalty \
|
|
"""
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = HfArgumentParser((RLOOConfig, ModelConfig))
|
|
config, model_config = parser.parse_args_into_dataclasses()
|
|
# remove output_dir if exists
|
|
shutil.rmtree(config.output_dir, ignore_errors=True)
|
|
|
|
################
|
|
# Model & Tokenizer
|
|
################
|
|
tokenizer = AutoTokenizer.from_pretrained(
|
|
model_config.model_name_or_path,
|
|
padding_side="left",
|
|
trust_remote_code=model_config.trust_remote_code,
|
|
)
|
|
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
|
if tokenizer.chat_template is None:
|
|
tokenizer.chat_template = SIMPLE_QUERY_CHAT_TEMPLATE
|
|
reward_model = AutoModelForSequenceClassification.from_pretrained(
|
|
config.reward_model_path, trust_remote_code=model_config.trust_remote_code, num_labels=1
|
|
)
|
|
ref_policy = AutoModelForCausalLM.from_pretrained(
|
|
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
|
|
)
|
|
policy = AutoModelForCausalLM.from_pretrained(
|
|
config.sft_model_path, trust_remote_code=model_config.trust_remote_code
|
|
)
|
|
################
|
|
# Dataset
|
|
################
|
|
raw_datasets = load_dataset("trl-internal-testing/descriptiveness-sentiment-trl-style", split="descriptiveness")
|
|
eval_samples = 20
|
|
train_dataset = raw_datasets.select(range(len(raw_datasets) - eval_samples))
|
|
eval_dataset = raw_datasets.select(range(len(raw_datasets) - eval_samples, len(raw_datasets)))
|
|
dataset_text_field = "prompt"
|
|
|
|
def prepare_dataset(dataset, tokenizer):
|
|
"""pre-tokenize the dataset before training; only collate during training"""
|
|
|
|
def tokenize(element):
|
|
outputs = tokenizer(
|
|
element[dataset_text_field],
|
|
padding=False,
|
|
)
|
|
return {"input_ids": outputs["input_ids"]}
|
|
|
|
return dataset.map(
|
|
tokenize,
|
|
batched=True,
|
|
remove_columns=dataset.column_names,
|
|
load_from_cache_file=False,
|
|
num_proc=config.dataset_num_proc,
|
|
)
|
|
|
|
################
|
|
# Training
|
|
################
|
|
trainer = RLOOTrainer(
|
|
config=config,
|
|
tokenizer=tokenizer,
|
|
policy=policy,
|
|
ref_policy=ref_policy,
|
|
reward_model=reward_model,
|
|
train_dataset=prepare_dataset(train_dataset, tokenizer),
|
|
eval_dataset=prepare_dataset(eval_dataset, tokenizer),
|
|
)
|
|
trainer.train()
|
|
trainer.save_model(config.output_dir)
|
|
if config.push_to_hub:
|
|
trainer.push_to_hub()
|
|
trainer.generate_completions()
|