Files
trl/tests/test_peft_models.py
Quentin Gallouédec 453db5cd79 🤏 New models for tests (#2287)
* first commit

* uncomment

* other tests adaptations

* Remove unused variable in test_setup_chat_format

* Remove unused import statement

* style

* Add Bart model

* Update BCOTrainerTester class in test_bco_trainer.py

* Update model IDs and tokenizers in test files

* Add new models and processors

* Update model IDs in test files

* Fix formatting issue in test_dataset_formatting.py

* Refactor dataset formatting in test_dataset_formatting.py

* Fix dataset sequence length in SFTTrainerTester

* Remove tokenizer

* Remove print statement

* Add reward_model_path and sft_model_path to PPO trainer

* Fix tokenizer padding issue

* Add chat template for testing purposes in PaliGemma model

* Update PaliGemma model and chat template

* Increase learning rate to speed up test

* Update model names in run_dpo.sh and run_sft.sh scripts

* Update model and dataset names

* Fix formatting issue in test_dataset_formatting.py

* Fix formatting issue in test_dataset_formatting.py

* Remove unused chat template

* Update model generation script

* additional models

* Update model references in test files

* Remove unused imports in test_online_dpo_trainer.py

* Add is_llm_blender_available import and update reward_tokenizer

* Refactor test_online_dpo_trainer.py: Move skipped test case decorator

* remove models without chat templates

* Update model names in scripts and tests

* Update model_id in test_modeling_value_head.py

* Update model versions in test files

* Fix formatting issue in test_dataset_formatting.py

* Update embedding model ID in BCOTrainerTester

* Update test_online_dpo_trainer.py with reward model changes

* Update expected formatted text in test_dataset_formatting.py

* Add reward_tokenizer to TestOnlineDPOTrainer

* fix tests

* Add SIMPLE_CHAT_TEMPLATE to T5 tokenizer

* Fix dummy_text format in test_rloo_trainer.py

* Skip outdated test for chatML data collator

* Add new vision language models

* Commented out unused model IDs in test_vdpo_trainer

* Update model and vision configurations in generate_tiny_models.py and test_dpo_trainer.py

* Update model and tokenizer references

* Don't push if it already exists

* Add comment explaining test skip

* Fix model_exists function call and add new models

* Update LlavaForConditionalGeneration model and processor

* `qgallouedec` -> `trl-internal-testing`
2024-11-25 16:31:56 +01:00

205 lines
9.3 KiB
Python

# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tempfile
import unittest
import torch
from transformers import AutoModelForCausalLM
from transformers.testing_utils import (
require_peft,
require_torch_gpu_if_bnb_not_multi_backend_enabled,
)
from transformers.utils import is_peft_available
from trl import AutoModelForCausalLMWithValueHead
if is_peft_available():
from peft import LoraConfig, get_peft_model
@require_peft
class PeftModelTester(unittest.TestCase):
def setUp(self):
self.causal_lm_model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
def test_create_peft_model(self):
r"""
Simply creates a peft model and checks that it can be loaded.
"""
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
pretrained_model = get_peft_model(causal_lm_model, self.lora_config)
_ = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model)
def test_peft_requires_grad(self):
r"""
Check that the value head of the returned model has requires_grad=True.
"""
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
pretrained_model = get_peft_model(causal_lm_model, self.lora_config)
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model)
# Check that the value head has requires_grad=True
self.assertTrue(model.v_head.summary.weight.requires_grad)
def test_check_peft_model_nb_trainable_params(self):
r"""
Check that the number of trainable parameters is correct.
"""
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
pretrained_model = get_peft_model(causal_lm_model, self.lora_config)
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model)
# Check that the number of trainable parameters is correct
nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
self.assertEqual(nb_trainable_params, 905)
# Check that the number of trainable param for the non-peft model is correct
non_peft_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.causal_lm_model_id)
nb_trainable_params = sum(p.numel() for p in non_peft_model.parameters() if p.requires_grad)
self.assertEqual(nb_trainable_params, 2428641)
def test_create_peft_model_from_config(self):
r"""
Simply creates a peft model and checks that it can be loaded.
"""
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(
self.causal_lm_model_id, peft_config=self.lora_config
)
# Check that the number of trainable parameters is correct
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad)
self.assertEqual(nb_trainable_params, 905)
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config)
# Check that the number of trainable parameters is correct
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad)
self.assertEqual(nb_trainable_params, 905)
@require_torch_gpu_if_bnb_not_multi_backend_enabled
def test_create_bnb_peft_model_from_config(self):
r"""
Simply creates a peft model and checks that it can be loaded.
"""
from bitsandbytes.nn import Linear8bitLt
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(
self.causal_lm_model_id, peft_config=self.lora_config, load_in_8bit=True
)
# Check that the number of trainable parameters is correct
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad)
self.assertEqual(nb_trainable_params, 905)
self.assertEqual(trl_model.pretrained_model.model.gpt_neox.layers[0].mlp.dense_h_to_4h.__class__, Linear8bitLt)
causal_lm_model = AutoModelForCausalLM.from_pretrained(
self.causal_lm_model_id, load_in_8bit=True, device_map="auto"
)
trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(causal_lm_model, peft_config=self.lora_config)
# Check that the number of trainable parameters is correct
nb_trainable_params = sum(p.numel() for p in trl_model.parameters() if p.requires_grad)
self.assertEqual(nb_trainable_params, 905)
self.assertEqual(trl_model.pretrained_model.model.gpt_neox.layers[0].mlp.dense_h_to_4h.__class__, Linear8bitLt)
def test_save_pretrained_peft(self):
r"""
Check that the model can be saved and loaded properly.
"""
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
pretrained_model = get_peft_model(causal_lm_model, self.lora_config)
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(tmp_dir)
# check that the files `adapter_model.safetensors` and `adapter_config.json` are in the directory
self.assertTrue(
os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"),
f"{tmp_dir}/adapter_model.safetensors does not exist",
)
self.assertTrue(
os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist"
)
# check also for `pytorch_model.bin` and make sure it only contains `v_head` weights
self.assertTrue(
os.path.exists(f"{tmp_dir}/pytorch_model.bin"), f"{tmp_dir}/pytorch_model.bin does not exist"
)
# check that only keys that starts with `v_head` are in the dict
maybe_v_head = torch.load(f"{tmp_dir}/pytorch_model.bin", weights_only=True)
self.assertTrue(
all(k.startswith("v_head") for k in maybe_v_head.keys()),
f"keys in {tmp_dir}/pytorch_model.bin do not start with `v_head`",
)
model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir)
# check all the weights are the same
for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()):
self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}")
def test_load_pretrained_peft(self):
r"""
Check that the model saved with peft class interface can be loaded properly.
"""
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
pretrained_model = get_peft_model(causal_lm_model, self.lora_config)
model = AutoModelForCausalLMWithValueHead.from_pretrained(pretrained_model)
with tempfile.TemporaryDirectory() as tmp_dir:
pretrained_model.save_pretrained(tmp_dir)
model_from_pretrained = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir)
# check that the files `adapter_model.safetensors` and `adapter_config.json` are in the directory
self.assertTrue(
os.path.isfile(f"{tmp_dir}/adapter_model.safetensors"),
f"{tmp_dir}/adapter_model.safetensors does not exist",
)
self.assertTrue(
os.path.exists(f"{tmp_dir}/adapter_config.json"), f"{tmp_dir}/adapter_config.json does not exist"
)
# check all the weights are the same
for p1, p2 in zip(model.named_parameters(), model_from_pretrained.named_parameters()):
if p1[0] not in ["v_head.summary.weight", "v_head.summary.bias"]:
self.assertTrue(torch.allclose(p1[1], p2[1]), f"{p1[0]} != {p2[0]}")
def test_continue_training_peft_model(self):
r"""
Load peft and checks that it can continue training.
"""
causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
pretrained_model = get_peft_model(causal_lm_model, self.lora_config)
with tempfile.TemporaryDirectory() as tmp_dir:
pretrained_model.save_pretrained(tmp_dir)
# set is_trainable to True
model = AutoModelForCausalLMWithValueHead.from_pretrained(tmp_dir, is_trainable=True)
# Check that the number of trainable parameters is correct
nb_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
self.assertEqual(nb_trainable_params, 905)