Files
trl/tests/test_cli_utils.py
2025-10-06 11:14:54 +02:00

427 lines
18 KiB
Python

# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
from dataclasses import dataclass
from unittest.mock import mock_open, patch
import pytest
from datasets import DatasetDict, load_dataset
from trl import DatasetMixtureConfig, TrlParser, get_dataset
from trl.scripts.utils import DatasetConfig
from .testing_utils import TrlTestCase
@dataclass
class MyDataclass:
arg1: int
arg2: str = "default"
@dataclass
class InvalidDataclass:
config: str # This should raise an error in the TrlParser
class TestTrlParser(TrlTestCase):
def test_init_without_config_field(self):
"""Test initialization without 'config' field in the dataclasses."""
parser = TrlParser(dataclass_types=[MyDataclass])
assert isinstance(parser, TrlParser)
def test_init_with_config_field(self):
"""Test initialization with a 'config' field in the dataclass (should raise ValueError)."""
with pytest.raises(ValueError, match="has a field named 'config'"):
TrlParser(dataclass_types=[InvalidDataclass])
@patch("builtins.open", mock_open(read_data="env:\n VAR1: value1\n VAR2: value2\narg1: 2"))
@patch("yaml.safe_load")
@patch("os.environ", new_callable=dict) # Mock os.environ as a dictionary
def test_parse_args_and_config_with_valid_config(self, mock_environ, mock_yaml_load):
"""Test parse_args_and_config method with valid arguments and config."""
mock_yaml_load.return_value = {"env": {"VAR1": "value1", "VAR2": "value2"}, "arg1": 2}
parser = TrlParser(dataclass_types=[MyDataclass])
args = ["--arg2", "value", "--config", "config.yaml"] # don't set arg1 to test default value
# Simulate the config being loaded and environment variables being set
result_args = parser.parse_args_and_config(args)
# Set the environment variables using the mock
mock_environ["VAR1"] = "value1"
mock_environ["VAR2"] = "value2"
# Ensure that the environment variables were set correctly
assert mock_environ.get("VAR1") == "value1"
assert mock_environ.get("VAR2") == "value2"
# Check the parsed arguments
assert len(result_args) == 1
assert isinstance(result_args[0], MyDataclass)
assert result_args[0].arg1 == 2
assert result_args[0].arg2 == "value"
@patch("builtins.open", mock_open(read_data="arg1: 2"))
@patch("yaml.safe_load")
def test_parse_args_and_arg_override_config(self, mock_yaml_load):
"""Test parse_args_and_config method and check that arguments override the config."""
mock_yaml_load.return_value = {"arg1": 2} # this arg is meant to be overridden
parser = TrlParser(dataclass_types=[MyDataclass])
args = ["--arg1", "3", "--config", "config.yaml"] # override arg1 default with 3
# Simulate the config being loaded and arguments being passed
result_args = parser.parse_args_and_config(args)
# Check the parsed arguments
assert len(result_args) == 1
assert isinstance(result_args[0], MyDataclass)
assert result_args[0].arg1 == 3
@patch("builtins.open", mock_open(read_data="env: not_a_dict"))
@patch("yaml.safe_load")
def test_parse_args_and_config_with_invalid_env(self, mock_yaml_load):
"""Test parse_args_and_config method when the 'env' field is not a dictionary."""
mock_yaml_load.return_value = {"env": "not_a_dict"}
parser = TrlParser(dataclass_types=[MyDataclass])
args = ["--arg1", "2", "--arg2", "value", "--config", "config.yaml"]
with pytest.raises(ValueError, match="`env` field should be a dict in the YAML file."):
parser.parse_args_and_config(args)
def test_parse_args_and_config_without_config(self):
"""Test parse_args_and_config without the `--config` argument."""
parser = TrlParser(dataclass_types=[MyDataclass])
args = ["--arg1", "2", "--arg2", "value"]
# Simulate no config, just parse args normally
result_args = parser.parse_args_and_config(args)
# Check that the arguments are parsed as is
assert len(result_args) == 1
assert isinstance(result_args[0], MyDataclass)
assert result_args[0].arg1 == 2
assert result_args[0].arg2 == "value"
def test_set_defaults_with_config(self):
"""Test set_defaults_with_config updates the defaults."""
parser = TrlParser(dataclass_types=[MyDataclass])
# Update defaults
parser.set_defaults_with_config(arg1=42)
# Ensure the default value is updated
result_args = parser.parse_args_and_config([])
assert len(result_args) == 1
assert isinstance(result_args[0], MyDataclass)
assert result_args[0].arg1 == 42
def test_parse_args_and_config_with_remaining_strings(self):
parser = TrlParser(dataclass_types=[MyDataclass])
args = ["--arg1", "2", "--arg2", "value", "remaining"]
# Simulate no config, just parse args normally
result_args = parser.parse_args_and_config(args, return_remaining_strings=True)
# Check that the arguments are parsed as is
assert len(result_args) == 2
assert isinstance(result_args[0], MyDataclass)
assert result_args[0].arg1 == 2
assert result_args[0].arg2 == "value"
assert result_args[1] == ["remaining"]
@patch("builtins.open", mock_open(read_data="remaining_string_in_config: abc"))
@patch("yaml.safe_load")
def test_parse_args_and_config_with_remaining_strings_in_config_and_args(self, mock_yaml_load):
mock_yaml_load.return_value = {"remaining_string_in_config": "abc"}
parser = TrlParser(dataclass_types=[MyDataclass])
args = ["--arg1", "2", "--remaining_string_in_args", "def", "--config", "config.yaml"]
# Simulate the config being loaded and arguments being passed
result_args = parser.parse_args_and_config(args, return_remaining_strings=True)
# Check that the arguments are parsed as is
assert len(result_args) == 2
assert isinstance(result_args[0], MyDataclass)
assert result_args[0].arg1 == 2
assert result_args[1] == ["--remaining_string_in_config", "abc", "--remaining_string_in_args", "def"]
@patch("builtins.open", mock_open(read_data="arg1: 2\narg2: config_value"))
@patch("yaml.safe_load")
def test_subparsers_with_config_defaults(self, mock_yaml_load):
"""Test that config defaults are applied to all subparsers."""
mock_yaml_load.return_value = {"arg1": 2, "arg2": "config_value"}
# Create the main parser
parser = TrlParser()
# Add subparsers
subparsers = parser.add_subparsers(dest="command", parser_class=TrlParser)
# Create a subparser for a specific command
subparsers.add_parser("subcommand", dataclass_types=[MyDataclass])
# Parse with config file
args = ["subcommand", "--config", "config.yaml"]
result_args = parser.parse_args_and_config(args)
# Check main parser arguments
assert len(result_args) == 1
# Check that config values were applied to the subparser
assert result_args[0].arg1 == 2 # Default from config
assert result_args[0].arg2 == "config_value" # Default from config
@patch("builtins.open", mock_open(read_data="arg1: 2\narg2: config_value"))
@patch("yaml.safe_load")
def test_subparsers_with_config_defaults_and_arg_override(self, mock_yaml_load):
"""Test that config defaults are applied to all subparsers."""
mock_yaml_load.return_value = {"arg1": 2, "arg2": "config_value"}
# Create the main parser
parser = TrlParser()
# Add subparsers
subparsers = parser.add_subparsers(dest="command", parser_class=TrlParser)
# Create a subparser for a specific command
subparsers.add_parser("subcommand", dataclass_types=[MyDataclass])
# Test with command line arguments overriding config
args = ["subcommand", "--arg1", "3", "--config", "config.yaml"]
result_args = parser.parse_args_and_config(args)
# Command line arguments should override config
assert result_args[0].arg1 == 3
assert result_args[0].arg2 == "config_value" # Still from config
@patch("builtins.open", mock_open(read_data="arg1: 2\nthis_arg_does_not_exist: config_value"))
@patch("yaml.safe_load")
def test_subparsers_with_config_defaults_and_arg_override_wrong_name(self, mock_yaml_load):
"""Test that config defaults are applied to all subparsers."""
mock_yaml_load.return_value = {"arg1": 2, "this_arg_does_not_exist": "config_value"}
# Create the main parser
parser = TrlParser()
# Add subparsers
subparsers = parser.add_subparsers(dest="command", parser_class=TrlParser)
# Create a subparser for a specific command
subparsers.add_parser("subcommand", dataclass_types=[MyDataclass])
# Test with command line arguments overriding config
args = ["subcommand", "--arg1", "3", "--config", "config.yaml"]
with pytest.raises(ValueError):
parser.parse_args_and_config(args)
parser.parse_args_and_config(args, fail_with_unknown_args=False)
@patch("builtins.open", mock_open(read_data="arg1: 2\narg2: config_value"))
@patch("yaml.safe_load")
def test_subparsers_multiple_with_config_defaults(self, mock_yaml_load):
"""Test that config defaults are applied to all subparsers."""
mock_yaml_load.return_value = {"arg1": 2, "arg2": "config_value"}
# Create the main parser
parser = TrlParser()
# Add subparsers
subparsers = parser.add_subparsers(dest="command", parser_class=TrlParser)
# Create a subparser for a specific command
subparsers.add_parser("subcommand0", dataclass_types=[MyDataclass])
subparsers.add_parser("subcommand1", dataclass_types=[MyDataclass])
for idx in range(2):
# Parse with config file
args = [f"subcommand{idx}", "--config", "config.yaml"]
result_args = parser.parse_args_and_config(args)
# Check main parser arguments
assert len(result_args) == 1
# Check that config values were applied to the subparser
assert result_args[0].arg1 == 2 # Default from config
assert result_args[0].arg2 == "config_value" # Default from config
class TestGetDataset:
def test_single_dataset_with_config(self):
mixture_config = DatasetMixtureConfig(
datasets=[DatasetConfig(path="trl-internal-testing/zen", name="standard_language_modeling")]
)
result = get_dataset(mixture_config)
expected = load_dataset("trl-internal-testing/zen", "standard_language_modeling")
assert expected["train"][:] == result["train"][:]
def test_single_dataset_preference_config(self):
mixture_config = DatasetMixtureConfig(
datasets=[DatasetConfig(path="trl-internal-testing/zen", name="standard_preference")]
)
result = get_dataset(mixture_config)
expected = load_dataset("trl-internal-testing/zen", "standard_preference")
assert expected["train"][:] == result["train"][:]
def test_single_dataset_streaming(self):
mixture_config = DatasetMixtureConfig(
datasets=[DatasetConfig(path="trl-internal-testing/zen", name="standard_language_modeling")],
streaming=True,
)
result = get_dataset(mixture_config)
expected = load_dataset("trl-internal-testing/zen", "standard_language_modeling")
assert expected["train"].to_list() == list(result["train"])
def test_dataset_mixture_basic(self):
dataset_config1 = DatasetConfig(
path="trl-internal-testing/zen", name="standard_prompt_completion", split="train", columns=["prompt"]
)
dataset_config2 = DatasetConfig(
path="trl-internal-testing/zen", name="standard_preference", split="train", columns=["prompt"]
)
mixture_config = DatasetMixtureConfig(datasets=[dataset_config1, dataset_config2])
result = get_dataset(mixture_config)
assert isinstance(result, DatasetDict)
assert "train" in result
train_dataset = result["train"]
assert train_dataset.column_names == ["prompt"]
prompts = train_dataset["prompt"]
expected_first_half = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
assert prompts[: len(prompts) // 2] == expected_first_half["prompt"]
expected_second_half = load_dataset("trl-internal-testing/zen", "standard_prompt_completion", split="train")
assert prompts[len(prompts) // 2 :] == expected_second_half["prompt"]
def test_dataset_mixture_with_weights(self):
dataset_config1 = DatasetConfig(
path="trl-internal-testing/zen", name="standard_prompt_completion", split="train[:50%]", columns=["prompt"]
)
dataset_config2 = DatasetConfig(
path="trl-internal-testing/zen", name="standard_preference", split="train[:50%]", columns=["prompt"]
)
mixture_config = DatasetMixtureConfig(datasets=[dataset_config1, dataset_config2])
result = get_dataset(mixture_config)
assert isinstance(result, DatasetDict)
assert "train" in result
train_dataset = result["train"]
assert train_dataset.column_names == ["prompt"]
prompts = train_dataset["prompt"]
expected_first_half = load_dataset("trl-internal-testing/zen", "standard_preference", split="train[:50%]")
assert prompts[: len(prompts) // 2] == expected_first_half["prompt"]
expected_second_half = load_dataset(
"trl-internal-testing/zen", "standard_prompt_completion", split="train[:50%]"
)
assert prompts[len(prompts) // 2 :] == expected_second_half["prompt"]
def test_dataset_mixture_with_test_split(self):
mixture_config = DatasetMixtureConfig(
datasets=[DatasetConfig(path="trl-internal-testing/zen", name="standard_language_modeling")],
test_split_size=2,
)
result = get_dataset(mixture_config)
assert isinstance(result, DatasetDict)
assert "train" in result
assert "test" in result
assert len(result["train"]) == 15
assert len(result["test"]) == 2
def test_empty_dataset_mixture_raises_error(self):
mixture_config = DatasetMixtureConfig(datasets=[])
with pytest.raises(ValueError, match="No datasets were loaded"):
get_dataset(mixture_config)
def test_mixture_multiple_different_configs(self):
dataset_config1 = DatasetConfig(
path="trl-internal-testing/zen", name="conversational_preference", split="train", columns=["prompt"]
)
dataset_config2 = DatasetConfig(
path="trl-internal-testing/zen", name="conversational_prompt_only", split="test"
)
mixture_config = DatasetMixtureConfig(datasets=[dataset_config1, dataset_config2])
result = get_dataset(mixture_config)
assert isinstance(result, DatasetDict)
assert "train" in result
assert len(result["train"]) > 0
def test_trlparser_parses_yaml_config_correctly(self):
# Prepare YAML content exactly like your example
# docstyle-ignore
yaml_content = """
datasets:
- path: trl-internal-testing/zen
name: standard_prompt_only
- path: trl-internal-testing/zen
name: standard_preference
columns:
- prompt
"""
# Write YAML to a temporary file
with tempfile.NamedTemporaryFile("w+", suffix=".yaml") as tmpfile:
tmpfile.write(yaml_content)
tmpfile.flush()
parser = TrlParser((DatasetMixtureConfig,))
args = parser.parse_args_and_config(args=["--config", tmpfile.name])[0]
# Assert that we got DatasetMixtureConfig instance
assert isinstance(args, DatasetMixtureConfig)
# Assert datasets list length
assert len(args.datasets) == 2
# Check first dataset
dataset_config1 = args.datasets[0]
assert isinstance(dataset_config1, DatasetConfig)
assert dataset_config1.path == "trl-internal-testing/zen"
assert dataset_config1.name == "standard_prompt_only"
assert dataset_config1.columns is None # No columns specified
# Check second dataset
dataset_config2 = args.datasets[1]
assert isinstance(dataset_config2, DatasetConfig)
assert dataset_config2.path == "trl-internal-testing/zen"
assert dataset_config2.name == "standard_preference"
assert dataset_config2.columns == ["prompt"] # Columns specified
def test_trlparser_parses_yaml_and_loads_dataset(self):
# Prepare YAML content exactly like your example
# docstyle-ignore
yaml_content = """
datasets:
- path: trl-internal-testing/zen
name: standard_language_modeling
"""
# Write YAML to a temporary file
with tempfile.NamedTemporaryFile("w+", suffix=".yaml") as tmpfile:
tmpfile.write(yaml_content)
tmpfile.flush()
parser = TrlParser((DatasetMixtureConfig,))
args = parser.parse_args_and_config(args=["--config", tmpfile.name])[0]
# Load the dataset using get_dataset
result = get_dataset(args)
expected = load_dataset("trl-internal-testing/zen", "standard_language_modeling")
assert expected["train"][:] == result["train"][:]