mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 10:03:51 +08:00
Co-authored-by: behroozazarkhalili <ermiaazarkhalili> Co-authored-by: Behrooz Azarkhalili <80390531+behroozazarkhalili@users.noreply.github.com>
142 lines
5.8 KiB
Python
142 lines
5.8 KiB
Python
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import warnings
|
|
from typing import Any, Callable, Optional, Union
|
|
|
|
import torch
|
|
from transformers import GenerationConfig, PreTrainedTokenizer, PreTrainedTokenizerFast, set_seed
|
|
|
|
from ..models import SUPPORTED_ARCHITECTURES, PreTrainedModelWrapper
|
|
|
|
|
|
class BestOfNSampler:
|
|
"""
|
|
Sampler for best-of-n generation.
|
|
|
|
Args:
|
|
model ([`PreTrainedModelWrapper`]):
|
|
The pretrained model to use for generation.
|
|
tokenizer ([`~transformers.PreTrainedTokenizer`] or [`~transformers.PreTrainedTokenizerFast`]):
|
|
Tokenizer associated with the pretrained model.
|
|
queries_to_scores (`Callable[[list[str]], list[float]]`):
|
|
Callable that takes a list of generated texts and returns the associated reward scores.
|
|
length_sampler (`Any`):
|
|
Sampler used to sample the length of the generated text.
|
|
sample_size (`int`, *optional*, defaults to `4`):
|
|
Number of samples to generate for each query.
|
|
seed (`int`, *optional*):
|
|
Random seed used to control generation.
|
|
n_candidates (`int`, *optional*, defaults to `1`):
|
|
Number of candidates to return for each query.
|
|
generation_config ([`~transformers.GenerationConfig`], *optional*):
|
|
Generation config passed to the underlying model's `generate` method. See
|
|
[`~transformers.GenerationConfig`] for more details.
|
|
|
|
<Deprecated version="0.24.0">
|
|
|
|
`BestOfNSampler` is deprecated and will be removed in version 0.25.
|
|
|
|
</Deprecated>
|
|
"""
|
|
|
|
warnings.warn("`BestOfNSampler` is deprecated and will be removed in TRL 0.25.", FutureWarning, stacklevel=2)
|
|
|
|
def __init__(
|
|
self,
|
|
model: PreTrainedModelWrapper,
|
|
tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
|
|
queries_to_scores: Callable[[list[str]], list[float]],
|
|
length_sampler: Any,
|
|
sample_size: int = 4,
|
|
seed: Optional[int] = None,
|
|
n_candidates: int = 1,
|
|
generation_config: Optional[GenerationConfig] = None,
|
|
) -> None:
|
|
if seed is not None:
|
|
set_seed(seed)
|
|
|
|
if not isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)):
|
|
raise ValueError(
|
|
f"tokenizer must be a PreTrainedTokenizer or PreTrainedTokenizerFast, got {type(tokenizer)}"
|
|
)
|
|
if not isinstance(model, (SUPPORTED_ARCHITECTURES)):
|
|
raise ValueError(
|
|
f"model must be a PreTrainedModelWrapper, got {type(model)} - supported architectures are: {SUPPORTED_ARCHITECTURES}"
|
|
)
|
|
|
|
self.model = model
|
|
self.tokenizer = tokenizer
|
|
|
|
self.queries_to_scores = queries_to_scores
|
|
self.length_sampler = length_sampler
|
|
self.gen_config = generation_config
|
|
self.sample_size = sample_size
|
|
self.n_candidates = n_candidates
|
|
|
|
def generate(
|
|
self,
|
|
tokenized_query: Union[list[int], torch.Tensor, list[torch.Tensor], list[list[int]]],
|
|
skip_special_tokens: bool = True,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
**generation_kwargs,
|
|
) -> list[list[str]]:
|
|
"""
|
|
Generate the best of n samples for input queries.
|
|
|
|
Args:
|
|
tokenized_query (`list[int]` or `torch.Tensor` or `list[torch.Tensor]` or `list[list[int]]`):
|
|
Either a single tokenized query (a single tensor or a list of integers) or a batch of tokenized queries
|
|
(a list of tensors or a list of lists of integers).
|
|
skip_special_tokens (`bool`, *optional*, defaults to `True`):
|
|
Whether to remove the special tokens from the output.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device on which the model will be loaded.
|
|
**generation_kwargs:
|
|
Additional keyword arguments passed along to the underlying model's `generate` method. This is used to
|
|
override generation config.
|
|
|
|
Returns:
|
|
`list[list[str]]`: A list of lists of generated texts.
|
|
"""
|
|
queries = None
|
|
|
|
if isinstance(tokenized_query, torch.Tensor) and tokenized_query.ndim == 1:
|
|
queries = tokenized_query.unsqueeze(0)
|
|
elif isinstance(tokenized_query, list):
|
|
element_type = type(tokenized_query[0])
|
|
if element_type is int:
|
|
queries = torch.tensor(tokenized_query).unsqueeze(0)
|
|
elif element_type is torch.Tensor:
|
|
queries = [tensor.reshape((1, -1)) for tensor in tokenized_query]
|
|
else:
|
|
queries = [torch.tensor(query).reshape((1, -1)) for query in tokenized_query]
|
|
|
|
result = []
|
|
|
|
for query in queries:
|
|
queries = query.repeat((self.sample_size, 1))
|
|
output = self.model.generate(
|
|
queries.to(device),
|
|
max_new_tokens=self.length_sampler(),
|
|
generation_config=self.gen_config,
|
|
**generation_kwargs,
|
|
).squeeze()
|
|
output = self.tokenizer.batch_decode(output, skip_special_tokens=skip_special_tokens)
|
|
scores = torch.tensor(self.queries_to_scores(output))
|
|
output = [output[i] for i in scores.topk(self.n_candidates).indices]
|
|
result.append(output)
|
|
|
|
return result
|