Files
trl/tests/test_rloo_trainer.py

1374 lines
63 KiB
Python

# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import patch
import pytest
import torch
from datasets import load_dataset
from parameterized import parameterized
from transformers import (
AutoModelForCausalLM,
AutoModelForImageTextToText,
AutoModelForSequenceClassification,
AutoTokenizer,
)
from transformers.utils import is_peft_available
from trl import RLOOConfig, RLOOTrainer
from .testing_utils import TrlTestCase, require_peft, require_vision, require_vllm
if is_peft_available():
from peft import LoraConfig, PeftModel
class TestRLOOTrainer(TrlTestCase):
def test_init_minimal(self):
# Test that RLOOTrainer can be instantiated with only model, reward_model and train_dataset
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
train_dataset=dataset,
)
@parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)])
def test_training(self, config_name):
dataset = load_dataset("trl-internal-testing/zen", config_name, split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_with_eval(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
per_device_eval_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
eval_strategy="steps",
eval_steps=2,
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
)
trainer.train()
def test_training_multiple_iterations(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
num_iterations=2,
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@require_peft
def test_training_peft(self):
model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
base_param_names = [f"base_model.model.{n}" for n, _ in model.named_parameters()]
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model=model,
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
peft_config=LoraConfig(),
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the peft params have changed and the base model params have not changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if n in base_param_names: # We expect the base model params to be the same
assert torch.allclose(param, new_param), f"Parameter {n} has changed."
elif "base_layer" not in n: # We expect the peft params to be different (except for the base layer)
assert not torch.allclose(param, new_param), f"Parameter {n} has not changed."
@require_peft
def test_training_peft_with_gradient_checkpointing(self):
"""Test that training works with PEFT and gradient checkpointing enabled."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
model = AutoModelForCausalLM.from_pretrained(
"trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
dtype=torch.float32, # Use float32 for testing to avoid precision issues
)
lora_config = LoraConfig(
r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], lora_dropout=0.05, bias="none"
)
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1,
per_device_train_batch_size=3,
num_generations=3,
max_completion_length=8,
gradient_checkpointing=True, # Enable gradient checkpointing
report_to="none",
)
trainer = RLOOTrainer(
model=model,
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
peft_config=lora_config,
)
# Verify gradient checkpointing is enabled
assert isinstance(trainer.model, PeftModel)
# Store initial parameters to check which ones change
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that only LoRA parameters have changed, base model parameters remain unchanged
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if "lora" in n.lower(): # LoRA parameters should change
assert not torch.equal(param, new_param), f"LoRA parameter {n} has not changed."
else: # Base model parameters should not change
assert torch.equal(param, new_param), f"Base parameter {n} has changed."
def test_training_different_reward_model(self):
# Use a reward model different from the model: different chat template, tokenization, etc.
dataset = load_dataset("trl-internal-testing/zen", "conversational_prompt_only", split="train")
reward_model_id = "trl-internal-testing/tiny-LlamaForSequenceClassification-3.2"
reward_model = AutoModelForSequenceClassification.from_pretrained(reward_model_id)
reward_tokenizer = AutoTokenizer.from_pretrained(reward_model_id)
# By default, the trainer uses the eos token as the padding token. However, for Llama models, the eos token
# appears in the chat template. Using it as a pad token disrupts the reward calculation, as the calculation
# considers the score of the last token before the first pad token. To ensure correct reward calculations,
# we use a separate pad token instead.
reward_tokenizer.pad_token = "<|finetune_right_pad_id|>"
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_model,
args=training_args,
train_dataset=dataset,
reward_processing_classes=reward_tokenizer,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_reward_func_standard(self):
# Test if trainer can handle reward function with standard format
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_reward_func_conversational(self):
# Test if trainer can handle reward function with conversational format
dataset = load_dataset("trl-internal-testing/zen", "conversational_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that gives higher scores to longer completion content."""
completion_contents = [completion[0]["content"] for completion in completions]
return [float(len(content)) for content in completion_contents]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_multiple_reward_funcs(self):
# Test that RLOOTrainer can be instantiated with multiple reward functions
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def reward_func1(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
def reward_func2(completions, **kwargs):
"""Reward function that rewards completions with more unique letters."""
return [float(len(set(completion))) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=[reward_func1, reward_func2],
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_multiple_reward_funcs_with_None_output(self):
"""Test that a valid math reward function is processed correctly while the code reward function returns None."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def applicable_reward_func(completions, **kwargs):
"""A reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
def non_applicable_reward_func(completions, **kwargs):
"""A reward function that returns None for all inputs, as it is not applicable to this sample."""
return [None] * len(completions)
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1,
per_device_train_batch_size=3,
num_generations=3,
max_completion_length=8,
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=[
applicable_reward_func,
non_applicable_reward_func,
], # One applicable, one non applicable
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {
n: param.clone() for n, param in trainer.model.named_parameters() if param.requires_grad
}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_multiple_reward_funcs_with_weights(self):
"""Test that RLOOTrainer can handle multiple reward functions with weights."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def reward_func1(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
def reward_func2(completions, **kwargs):
"""Reward function that rewards completions with more unique letters."""
return [float(len(set(completion))) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
reward_weights=[0.7, 0.3], # weight of reward_func1 and reward_func2 respectively
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=[reward_func1, reward_func2],
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
# Check that training logs contain both reward metrics
assert trainer.state.log_history[-1]["train_loss"] is not None
assert "rewards/reward_func1/mean" in trainer.state.log_history[-1]
assert "rewards/reward_func1/std" in trainer.state.log_history[-1]
assert "rewards/reward_func2/mean" in trainer.state.log_history[-1]
assert "rewards/reward_func2/std" in trainer.state.log_history[-1]
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_multiple_mixed_reward_funcs(self):
# Test if the trainer can handle a mix of reward functions and reward models
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion)) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=[reward_func, "trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5"],
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_reward_func_additional_column(self):
# Test if trainer can handle reward function that rely on additional columns in the dataset
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
# Add a column to the dataset (dummy example, the column could be anything)
some_values = list(range(len(dataset)))
dataset = dataset.add_column("some_values", some_values)
def reward_func(completions, some_values, **kwargs):
"""Reward function that rewards completions with lengths closer to the values in some_values."""
return [float(abs(len(completion) - value)) for completion, value in zip(completions, some_values)]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_with_sync_ref_model(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
sync_ref_model=True,
ref_model_sync_steps=2, # reduce sync steps to ensure a sync happens
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_beta_zero(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
beta=0.0, # set beta to zero value to test the case where the reference model is not used
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@require_peft
@require_vllm
@pytest.mark.skip(reason="We should add a mock for the vLLM server.")
def test_training_vllm_and_peft(self):
"""Test that training works with vLLM for generation."""
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct") # tiny model is too small for vLLM
base_param_names = [f"base_model.model.{n}" for n, _ in model.named_parameters()]
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
use_vllm=True,
)
lora_config = LoraConfig(
target_modules="all-linear",
# test with non-default modules as it adds extra keys in state_dict that we need to handle
modules_to_save=["embed_tokens", "lm_head"],
)
trainer = RLOOTrainer(
model=model,
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
peft_config=lora_config,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the peft params have changed and the base model params have not changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if n in base_param_names: # We expect the base model params to be the same
assert torch.allclose(param, new_param), f"Parameter {n} has changed."
elif "base_layer" not in n and "original_module" not in n:
# We expect the peft params to be different (except for the base layer)
assert not torch.allclose(param, new_param), f"Parameter {n} has not changed."
@require_vllm
@pytest.mark.skip(reason="We should add a mock for the vLLM server.")
def test_training_vllm_guided_decoding(self):
"""Test that training works with vLLM for generation with guided decoding."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
use_vllm=True,
vllm_guided_decoding_regex=r"<reasoning>\n.*\n</reasoning>\n<answer>\n.*\n</answer>",
)
trainer = RLOOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # tiny model is too small for vLLM
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_with_additional_generation_kwargs(self):
"""Test that training works with additional generation kwargs."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
top_p=0.9,
top_k=10,
min_p=0.01,
repetition_penalty=1.1,
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@require_vllm
@pytest.mark.skip(reason="We should add a mock for the vLLM server.")
def test_training_vllm_with_additional_generation_kwargs(self):
"""Test that training works with vLLM and additional generation kwargs."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
use_vllm=True,
top_p=0.9,
top_k=10,
min_p=0.01,
repetition_penalty=1.1,
)
trainer = RLOOTrainer(
model="Qwen/Qwen2.5-0.5B-Instruct", # tiny model is too small for vLLM
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_with_normalized_advantages(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
normalize_advantages=True,
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_with_clipped_rewards(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
reward_clip_range=(-1, 1),
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@patch("transformers.generation.utils.GenerationMixin.generate")
def test_training_with_mask_truncated_completions(self, mock_generate):
"""Test that training works with mask_truncated_completions=True parameter."""
# We mock the generate method because the model's random weights make it extremely unlikely to produce a
# sequence containing the EOS token within the allowed max_completion_length. As a result, all tokens are
# masked in the loss, the model doesn't update, and the final check (which verifies the update) fails.
def fake_generate(input_ids, **kwargs):
# pad_token_id = 151643; eos_token_id = 151645
completions_ids = torch.tensor(
[
[1, 2, 3, 4, 5, 6, 7, 8], # this one is truncated
[9, 10, 11, 151645, 151643, 151643, 151643, 151643], # this one contains eos
[12, 13, 14, 15, 16, 17, 18, 151645], # particular case, eos is generated just within the limit
],
device=input_ids.device,
)
return torch.cat([input_ids, completions_ids], dim=1)
mock_generate.side_effect = fake_generate
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
mask_truncated_completions=True, # Enable masking of truncated completions
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_with_mask_truncated_completions_all_masked(self):
"""
Test that when all generated completions are truncated (i.e., none contain an EOS token), and
mask_truncated_completions=True, the model receives no effective learning signal and therefore does not update
its parameters.
Here, we don't mock the generate method, be we rely on the fact that the model the probability of generating
the EOS token is extremely low, so all generated completions are truncated.
"""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
mask_truncated_completions=True, # Enable masking of truncated completions
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert torch.equal(param, new_param), f"Parameter {n} has changed."
def test_warning_raised_all_rewards_none(self, caplog):
"""Test that a proper warning is raised when all rewards are None."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def always_none_reward_func(completions, **kwargs):
"""Reward function that always returns None."""
return [None] * len(completions)
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=always_none_reward_func,
args=training_args,
train_dataset=dataset,
)
with caplog.at_level("WARNING", logger="trl.trainer.rloo_trainer"):
trainer.train()
expected_warning = "All reward functions returned None for the following kwargs:"
assert expected_warning in caplog.text
def test_training_num_generations_larger_than_batch_size(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
num_generations=6, # the number of generations is larger than the batch size, but
gradient_accumulation_steps=2, # gradient accumulation should allow that
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_multiple_dataloader_workers(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
dataloader_num_workers=2, # use multiple dataloader workers
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_with_generation_kwargs(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
generation_kwargs={"do_sample": True, "top_k": 50, "length_penalty": -0.1}, # Add some gen kwargs
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_training_with_reward_func_accessing_trainer_state(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
def reward_func(completions, **kwargs):
trainer_state = kwargs.get("trainer_state")
assert trainer_state is not None
# transformers.TrainerState instance should have a `global_step` property.
assert hasattr(trainer_state, "global_step")
return [float(len(set(completion))) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
per_device_train_batch_size=2,
num_generations=2,
max_completion_length=8,
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
trainer.train()
def test_prepare_input_called_with_correct_data(self):
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
max_completion_length=8, # reduce the completion length to reduce memory usage
gradient_accumulation_steps=3, # can be anything in this test
# steps_per_generation*per_device_train_batch_size=24 is divisible by num_generations=4
steps_per_generation=4,
num_generations=4,
per_device_train_batch_size=6, # reduce the batch size to reduce memory usage
num_iterations=2,
shuffle_dataset=False,
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs="trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
args=training_args,
train_dataset=dataset,
)
# steps_per_generation=4, per_device_train_batch_size=6 and num_generations=4, so we expect a
# generation batch of 24 samples (steps_per_generation * per_device_train_batch_size), containing 6
# different prompts (steps_per_generation * per_device_train_batch_size // num_generations), each repeated
# 4 times (num_generations).
expected_first_generation_batch = (
[{"prompt": "Beautiful is better than"}] * 4
+ [{"prompt": "Explicit is"}] * 4
+ [{"prompt": "Simple is better"}] * 4
+ [{"prompt": "Complex"}] * 4
+ [{"prompt": "Flat is better than"}] * 4
+ [{"prompt": "Sparse is better"}] * 4
)
expected_second_generation_batch = (
[{"prompt": "Readability"}] * 4
+ [{"prompt": "Special cases aren't special"}] * 4
+ [{"prompt": "Although practicality beats"}] * 4
+ [{"prompt": "Errors should never"}] * 4
+ [{"prompt": "Unless explicitly"}] * 4
+ [{"prompt": "In the face of ambiguity, refuse"}] * 4
)
with patch.object(RLOOTrainer, "training_step", wraps=trainer.training_step) as mock_prepare:
trainer.train()
# 3 epochs * 2 iterations * 2 generation batches to cover the dataset * 4 steps_per_generation
assert mock_prepare.call_count == 48
for i in range(0, 8): # Generation batch repeated 8 times (steps_per_generation*num_iterations)
assert mock_prepare.call_args_list[i].args[1] == expected_first_generation_batch
for i in range(8, 16):
assert mock_prepare.call_args_list[i].args[1] == expected_second_generation_batch
@parameterized.expand(
[
("trl-internal-testing/tiny-Gemma3ForConditionalGeneration",),
("trl-internal-testing/tiny-LlavaNextForConditionalGeneration",),
("trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",),
("trl-internal-testing/tiny-Qwen2VLForConditionalGeneration",),
# ("trl-internal-testing/tiny-SmolVLMForConditionalGeneration",), seems not to support bf16 properly
]
)
@require_vision
def test_training_vlm(self, model_id):
dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion[0]["content"])) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
max_prompt_length=None, # disable prompt truncation, because usually, models don't support it
report_to="none",
)
trainer = RLOOTrainer(
model=model_id,
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
# Because of the way the tiny models are initialized, the gradient does not flow properly through the
# vision parts of the model, so we skip them. Ideally, we should fix the init of these models.
params_to_skip = (
"model.vision_tower.",
"model.multi_modal_projector.",
"model.visual.",
"model.image_newline",
)
for n, param in previous_trainable_params.items():
if n.startswith(params_to_skip):
continue
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@require_vision
def test_training_vlm_beta_non_zero(self):
dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion[0]["content"])) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
beta=0.1, # set beta to non-zero value to test the case where the reference model is used
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
# Because of the way the tiny models are initialized, the gradient does not flow properly through the
# vision parts of the model, so we skip them. Ideally, we should fix the init of these models.
params_to_skip = ("model.visual.",)
for n, param in previous_trainable_params.items():
if n.startswith(params_to_skip):
continue
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@require_vision
@require_peft
def test_training_vlm_peft(self):
model = AutoModelForImageTextToText.from_pretrained(
"trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration"
)
base_param_names = [f"base_model.model.{n}" for n, _ in model.named_parameters()]
dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion[0]["content"])) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
report_to="none",
)
trainer = RLOOTrainer(
model=model,
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
peft_config=LoraConfig(target_modules=["q_proj", "v_proj"]),
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the peft params have changed and the base model params have not changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if n in base_param_names: # We expect the base model params to be the same
assert torch.allclose(param, new_param), f"Parameter {n} has changed."
elif "base_layer" not in n: # We expect the peft params to be different (except for the base layer)
assert not torch.allclose(param, new_param), f"Parameter {n} has not changed."
@parameterized.expand(
[
("trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",),
("trl-internal-testing/tiny-Gemma3ForConditionalGeneration",),
]
)
@require_vision
@require_vllm
@pytest.mark.skip(reason="We should add a mock for the vLLM server.")
def test_training_vlm_and_vllm(self, model_id) -> None:
dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion[0]["content"])) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1,
per_device_train_batch_size=3,
num_generations=3,
max_completion_length=8,
max_prompt_length=18,
report_to="none",
use_vllm=True,
vllm_mode="server",
)
trainer = RLOOTrainer(
model=model_id,
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@require_vision
def test_training_vlm_multi_image(self):
dataset = load_dataset("trl-internal-testing/zen-multi-image", "conversational_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion[0]["content"])) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
max_prompt_length=None, # disable prompt truncation, because usually, models don't support it
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
def test_mismatched_reward_processing_classes_length(self):
"""Test that mismatched length between reward_funcs and reward_processing_classes raises error."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
# Use two reward models
reward_models = [
"trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
"trl-internal-testing/tiny-Qwen3ForSequenceClassification",
]
# Create a single processing class (tokenizer)
single_processing_class = AutoTokenizer.from_pretrained(
"trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5"
)
training_args = RLOOConfig(output_dir=self.tmp_dir, report_to="none")
with pytest.raises(ValueError, match="must match"):
RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_models,
reward_processing_classes=single_processing_class, # only one, but need two
args=training_args,
train_dataset=dataset,
)
def test_correct_reward_processing_classes_list(self):
"""Test that correct list of reward_processing_classes works properly."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
# Use two reward models
reward_models = [
"trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5",
"trl-internal-testing/tiny-Qwen3ForSequenceClassification",
]
# Create processing classes
processing_class1 = AutoTokenizer.from_pretrained(
"trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5"
)
processing_class2 = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen3ForSequenceClassification")
training_args = RLOOConfig(output_dir=self.tmp_dir, report_to="none")
# Correct list length should work
correct_processing_classes = [processing_class1, processing_class2]
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_models,
reward_processing_classes=correct_processing_classes,
args=training_args,
train_dataset=dataset,
)
assert len(trainer.reward_processing_classes) == len(reward_models)
def test_single_reward_model_with_single_processing_class(self):
"""Test that single reward model with single processing class works."""
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
# Use single reward model
reward_model = "trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5"
# Create a single processing class (tokenizer)
single_processing_class = AutoTokenizer.from_pretrained(
"trl-internal-testing/tiny-Qwen2ForSequenceClassification-2.5"
)
training_args = RLOOConfig(output_dir=self.tmp_dir, report_to="none")
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5",
reward_funcs=reward_model,
reward_processing_classes=single_processing_class, # single object for single reward model
args=training_args,
train_dataset=dataset,
)
assert len(trainer.reward_processing_classes) == 1
assert trainer.reward_processing_classes[0] == single_processing_class