Files
trl/examples/scripts/sft_gpt_oss.py
2025-10-06 13:07:18 -06:00

100 lines
3.2 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# /// script
# dependencies = [
# "trl",
# "kernels",
# "trackio",
# "kernels",
# ]
# ///
"""
pip install -upgrade kernels
Example:
accelerate launch \
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/sft_gpt_oss.py \
--dtype bfloat16 \
--model_name_or_path openai/gpt-oss-20b \
--packing \
--run_name 20b-full-eager \
--attn_implementation kernels-community/vllm-flash-attn3 \
--dataset_num_proc 12 \
--dataset_name HuggingFaceH4/Multilingual-Thinking \
--gradient_checkpointing \
--max_length 4096 \
--per_device_train_batch_size 2 \
--num_train_epochs 1 \
--logging_steps 1 \
--warmup_ratio 0.03 \
--lr_scheduler_type cosine_with_min_lr \
--lr_scheduler_kwargs '{"min_lr_rate": 0.1}' \
--output_dir gpt-oss-20b-multilingual-reasoner \
--report_to trackio \
--seed 42
"""
import os
from datasets import load_dataset
from transformers import AutoModelForCausalLM, Mxfp4Config
from trl import ModelConfig, ScriptArguments, SFTConfig, SFTTrainer, TrlParser, get_peft_config
# Enable logging in a Hugging Face Space
os.environ.setdefault("TRACKIO_SPACE_ID", "trl-trackio")
def main(script_args, training_args, model_args):
# Load model
quantization_config = Mxfp4Config(dequantize=True)
model_kwargs = dict(
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
dtype=model_args.dtype,
use_cache=False if training_args.gradient_checkpointing else True,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs)
# Load dataset
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
# Train model
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
peft_config=get_peft_config(model_args),
)
trainer.train()
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
script_args, training_args, model_args, _ = parser.parse_args_and_config(return_remaining_strings=True)
main(script_args, training_args, model_args)