mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 18:43:52 +08:00
215 lines
7.7 KiB
Python
215 lines
7.7 KiB
Python
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
from datasets import load_dataset
|
|
from parameterized import parameterized
|
|
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
|
|
from transformers.utils import is_peft_available
|
|
|
|
from trl import XPOConfig, XPOTrainer
|
|
|
|
from .testing_utils import RandomPairwiseJudge, TrlTestCase, require_llm_blender, require_peft
|
|
|
|
|
|
if is_peft_available():
|
|
from peft import LoraConfig, get_peft_model
|
|
|
|
|
|
class TestXPOTrainer(TrlTestCase):
|
|
def setup_method(self):
|
|
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
|
|
self.model = AutoModelForCausalLM.from_pretrained(self.model_id)
|
|
self.ref_model = AutoModelForCausalLM.from_pretrained(self.model_id)
|
|
self.reward_model = AutoModelForSequenceClassification.from_pretrained(self.model_id, num_labels=1)
|
|
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
|
|
self.tokenizer.pad_token = self.tokenizer.eos_token
|
|
|
|
@parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)])
|
|
def test_xpo_trainer_training(self, config_name):
|
|
training_args = XPOConfig(
|
|
output_dir=self.tmp_dir,
|
|
per_device_train_batch_size=2,
|
|
max_steps=3,
|
|
remove_unused_columns=False,
|
|
gradient_accumulation_steps=1,
|
|
learning_rate=9e-1,
|
|
eval_strategy="steps",
|
|
report_to="none",
|
|
)
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)
|
|
|
|
trainer = XPOTrainer(
|
|
model=self.model,
|
|
ref_model=self.ref_model,
|
|
reward_funcs=self.reward_model,
|
|
args=training_args,
|
|
processing_class=self.tokenizer,
|
|
train_dataset=dummy_dataset["train"],
|
|
eval_dataset=dummy_dataset["test"],
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
# Check if training loss is available
|
|
assert "train_loss" in trainer.state.log_history[-1]
|
|
|
|
@require_peft
|
|
def test_training_with_peft(self):
|
|
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM")
|
|
training_args = XPOConfig(
|
|
output_dir=self.tmp_dir,
|
|
per_device_train_batch_size=2,
|
|
max_steps=3,
|
|
learning_rate=5.0e-7,
|
|
eval_strategy="steps",
|
|
report_to="none",
|
|
)
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")
|
|
|
|
trainer = XPOTrainer(
|
|
model=self.model,
|
|
reward_funcs=self.reward_model,
|
|
args=training_args,
|
|
processing_class=self.tokenizer,
|
|
train_dataset=dummy_dataset["train"],
|
|
eval_dataset=dummy_dataset["test"],
|
|
peft_config=lora_config,
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
# Check if training loss is available
|
|
assert "train_loss" in trainer.state.log_history[-1]
|
|
|
|
@require_peft
|
|
def test_training_with_peft_and_ref_model(self):
|
|
lora_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM")
|
|
training_args = XPOConfig(
|
|
output_dir=self.tmp_dir,
|
|
per_device_train_batch_size=2,
|
|
max_steps=3,
|
|
learning_rate=5.0e-7,
|
|
eval_strategy="steps",
|
|
report_to="none",
|
|
)
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")
|
|
|
|
trainer = XPOTrainer(
|
|
model=self.model,
|
|
ref_model=self.ref_model,
|
|
reward_funcs=self.reward_model,
|
|
args=training_args,
|
|
processing_class=self.tokenizer,
|
|
train_dataset=dummy_dataset["train"],
|
|
eval_dataset=dummy_dataset["test"],
|
|
peft_config=lora_config,
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
# Check if training loss is available
|
|
assert "train_loss" in trainer.state.log_history[-1]
|
|
|
|
@require_peft
|
|
def test_training_with_peft_model_and_peft_config(self):
|
|
model_lora_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM")
|
|
model = get_peft_model(self.model, model_lora_config)
|
|
# we want only the "train adapter" to be trained
|
|
lora_train_config = LoraConfig(r=16, lora_alpha=32, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM")
|
|
training_args = XPOConfig(
|
|
output_dir=self.tmp_dir,
|
|
per_device_train_batch_size=2,
|
|
max_steps=3,
|
|
learning_rate=5.0e-7,
|
|
eval_strategy="steps",
|
|
report_to="none",
|
|
)
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")
|
|
|
|
trainer = XPOTrainer(
|
|
model=model,
|
|
reward_funcs=self.reward_model,
|
|
args=training_args,
|
|
processing_class=self.tokenizer,
|
|
train_dataset=dummy_dataset["train"],
|
|
eval_dataset=dummy_dataset["test"],
|
|
peft_config=lora_train_config,
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
# Check if training loss is available
|
|
assert "train_loss" in trainer.state.log_history[-1]
|
|
|
|
@require_peft
|
|
def test_training_pre_pefted_model_implicit_ref(self):
|
|
lora_config = LoraConfig(r=8, lora_alpha=16, lora_dropout=0.1, bias="none", task_type="CAUSAL_LM")
|
|
peft_model_instance = get_peft_model(self.model, lora_config)
|
|
|
|
training_args = XPOConfig(
|
|
output_dir=self.tmp_dir,
|
|
per_device_train_batch_size=1,
|
|
max_steps=2,
|
|
learning_rate=5.0e-7,
|
|
eval_strategy="no",
|
|
report_to="none",
|
|
remove_unused_columns=False,
|
|
)
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only")["train"]
|
|
|
|
trainer = XPOTrainer(
|
|
model=peft_model_instance,
|
|
ref_model=None,
|
|
reward_funcs=self.reward_model, # Using reward_model to ensure _generate_completions is used as expected
|
|
args=training_args,
|
|
processing_class=self.tokenizer,
|
|
train_dataset=dummy_dataset,
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
assert "train_loss" in trainer.state.log_history[-1]
|
|
|
|
@parameterized.expand([("standard_prompt_only",), ("conversational_prompt_only",)])
|
|
@require_llm_blender
|
|
def test_xpo_trainer_judge_training(self, config_name):
|
|
training_args = XPOConfig(
|
|
output_dir=self.tmp_dir,
|
|
per_device_train_batch_size=2,
|
|
max_steps=3,
|
|
remove_unused_columns=False,
|
|
gradient_accumulation_steps=1,
|
|
learning_rate=9e-1,
|
|
eval_strategy="steps",
|
|
report_to="none",
|
|
)
|
|
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)
|
|
judge = RandomPairwiseJudge()
|
|
|
|
trainer = XPOTrainer(
|
|
model=self.model,
|
|
ref_model=self.ref_model,
|
|
judge=judge,
|
|
args=training_args,
|
|
processing_class=self.tokenizer,
|
|
train_dataset=dummy_dataset["train"],
|
|
eval_dataset=dummy_dataset["test"],
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
# Check if training loss is available
|
|
assert "train_loss" in trainer.state.log_history[-1]
|