Files
trl/tests/test_trainers_args.py
2025-10-06 11:14:54 +02:00

396 lines
16 KiB
Python

# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from trl import (
BCOConfig,
BCOTrainer,
CPOConfig,
CPOTrainer,
DPOConfig,
DPOTrainer,
FDivergenceType,
KTOConfig,
KTOTrainer,
NashMDConfig,
NashMDTrainer,
OnlineDPOConfig,
OnlineDPOTrainer,
ORPOConfig,
ORPOTrainer,
RewardConfig,
RewardTrainer,
SFTConfig,
SFTTrainer,
XPOConfig,
XPOTrainer,
)
from .testing_utils import TrlTestCase, require_sklearn
class TestTrainerArg(TrlTestCase):
@require_sklearn
def test_bco(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference", split="train")
training_args = BCOConfig(
self.tmp_dir,
max_length=256,
max_prompt_length=64,
max_completion_length=64,
beta=0.5,
label_pad_token_id=-99,
padding_value=-99,
truncation_mode="keep_start",
# generate_during_eval=True, # ignore this one, it requires wandb
is_encoder_decoder=True,
precompute_ref_log_probs=True,
model_init_kwargs={"trust_remote_code": True},
ref_model_init_kwargs={"trust_remote_code": True},
dataset_num_proc=4,
prompt_sample_size=512,
min_density_ratio=0.2,
max_density_ratio=20.0,
)
trainer = BCOTrainer(
model=model_id,
ref_model=model_id,
args=training_args,
train_dataset=dataset,
processing_class=tokenizer,
)
assert trainer.args.max_length == 256
assert trainer.args.max_prompt_length == 64
assert trainer.args.max_completion_length == 64
assert trainer.args.beta == 0.5
assert trainer.args.label_pad_token_id == -99
assert trainer.args.padding_value == -99
assert trainer.args.truncation_mode == "keep_start"
# self.assertEqual(trainer.args.generate_during_eval, True)
assert trainer.args.is_encoder_decoder
assert trainer.args.precompute_ref_log_probs
assert trainer.args.model_init_kwargs == {"trust_remote_code": True}
assert trainer.args.ref_model_init_kwargs == {"trust_remote_code": True}
assert trainer.args.dataset_num_proc == 4
assert trainer.args.prompt_sample_size == 512
assert trainer.args.min_density_ratio == 0.2
assert trainer.args.max_density_ratio == 20.0
def test_cpo(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
training_args = CPOConfig(
self.tmp_dir,
max_length=256,
max_prompt_length=64,
max_completion_length=64,
beta=0.5,
label_smoothing=0.5,
loss_type="hinge",
disable_dropout=False,
cpo_alpha=0.5,
simpo_gamma=0.2,
label_pad_token_id=-99,
padding_value=-99,
truncation_mode="keep_start",
# generate_during_eval=True, # ignore this one, it requires wandb
is_encoder_decoder=True,
model_init_kwargs={"trust_remote_code": True},
dataset_num_proc=4,
)
trainer = CPOTrainer(model=model_id, args=training_args, train_dataset=dataset, processing_class=tokenizer)
assert trainer.args.max_length == 256
assert trainer.args.max_prompt_length == 64
assert trainer.args.max_completion_length == 64
assert trainer.args.beta == 0.5
assert trainer.args.label_smoothing == 0.5
assert trainer.args.loss_type == "hinge"
assert not trainer.args.disable_dropout
assert trainer.args.cpo_alpha == 0.5
assert trainer.args.simpo_gamma == 0.2
assert trainer.args.label_pad_token_id == -99
assert trainer.args.padding_value == -99
assert trainer.args.truncation_mode == "keep_start"
# self.assertEqual(trainer.args.generate_during_eval, True)
assert trainer.args.is_encoder_decoder
assert trainer.args.model_init_kwargs == {"trust_remote_code": True}
assert trainer.args.dataset_num_proc == 4
def test_dpo(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
training_args = DPOConfig(
self.tmp_dir,
beta=0.5,
label_smoothing=0.5,
loss_type="hinge",
label_pad_token_id=-99,
pad_token=".",
truncation_mode="keep_start",
max_length=256,
max_prompt_length=64,
max_completion_length=64,
disable_dropout=False,
# generate_during_eval=True, # ignore this one, it requires wandb
precompute_ref_log_probs=True,
dataset_num_proc=4,
model_init_kwargs={"trust_remote_code": True},
ref_model_init_kwargs={"trust_remote_code": True},
model_adapter_name="dummy_adapter",
ref_adapter_name="dummy_adapter",
reference_free=True,
force_use_ref_model=True,
f_divergence_type="js_divergence",
f_alpha_divergence_coef=0.5,
# sync_ref_model=True, # cannot be True when precompute_ref_log_probs=True. Don't test this.
ref_model_mixup_alpha=0.5,
ref_model_sync_steps=32,
rpo_alpha=0.5,
discopop_tau=0.1,
)
trainer = DPOTrainer(
model=model_id,
ref_model=model_id,
args=training_args,
train_dataset=dataset,
processing_class=tokenizer,
)
assert trainer.args.beta == 0.5
assert trainer.args.label_smoothing == 0.5
assert trainer.args.loss_type == "hinge"
assert trainer.args.label_pad_token_id == -99
assert trainer.args.pad_token == "."
assert trainer.args.truncation_mode == "keep_start"
assert trainer.args.max_length == 256
assert trainer.args.max_prompt_length == 64
assert trainer.args.max_completion_length == 64
assert not trainer.args.disable_dropout
# self.assertEqual(trainer.args.generate_during_eval, True)
assert trainer.args.precompute_ref_log_probs
assert trainer.args.dataset_num_proc == 4
assert trainer.args.model_init_kwargs == {"trust_remote_code": True}
assert trainer.args.ref_model_init_kwargs == {"trust_remote_code": True}
assert trainer.args.model_adapter_name == "dummy_adapter"
assert trainer.args.ref_adapter_name == "dummy_adapter"
assert trainer.args.reference_free
assert trainer.args.force_use_ref_model
assert trainer.args.f_divergence_type == FDivergenceType.JS_DIVERGENCE
assert trainer.args.f_alpha_divergence_coef == 0.5
# self.assertEqual(trainer.args.sync_ref_model, True)
assert trainer.args.ref_model_mixup_alpha == 0.5
assert trainer.args.ref_model_sync_steps == 32
assert trainer.args.rpo_alpha == 0.5
assert trainer.args.discopop_tau == 0.1
def test_kto(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
dataset = load_dataset("trl-internal-testing/zen", "standard_unpaired_preference", split="train")
training_args = KTOConfig(
self.tmp_dir,
max_length=256,
max_prompt_length=64,
max_completion_length=64,
beta=0.5,
desirable_weight=0.5,
undesirable_weight=0.5,
label_pad_token_id=-99,
padding_value=-99,
truncation_mode="keep_start",
# generate_during_eval=True, # ignore this one, it requires wandb
is_encoder_decoder=True,
precompute_ref_log_probs=True,
model_init_kwargs={"trust_remote_code": True},
ref_model_init_kwargs={"trust_remote_code": True},
dataset_num_proc=4,
)
trainer = KTOTrainer(
model=model_id,
ref_model=model_id,
args=training_args,
train_dataset=dataset,
processing_class=tokenizer,
)
assert trainer.args.max_length == 256
assert trainer.args.max_prompt_length == 64
assert trainer.args.max_completion_length == 64
assert trainer.args.beta == 0.5
assert trainer.args.desirable_weight == 0.5
assert trainer.args.undesirable_weight == 0.5
assert trainer.args.label_pad_token_id == -99
assert trainer.args.padding_value == -99
assert trainer.args.truncation_mode == "keep_start"
# self.assertEqual(trainer.args.generate_during_eval, True)
assert trainer.args.is_encoder_decoder
assert trainer.args.precompute_ref_log_probs
assert trainer.args.model_init_kwargs == {"trust_remote_code": True}
assert trainer.args.ref_model_init_kwargs == {"trust_remote_code": True}
assert trainer.args.dataset_num_proc == 4
@parameterized.expand([(False,), (True,)])
def test_nash_md(self, mixtures_coef_list):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
ref_model = AutoModelForCausalLM.from_pretrained(model_id)
reward_model = AutoModelForSequenceClassification.from_pretrained(model_id, num_labels=1)
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = NashMDConfig(
self.tmp_dir,
mixture_coef=0.5 if not mixtures_coef_list else [0.5, 0.6],
)
trainer = NashMDTrainer(
args=training_args,
processing_class=tokenizer,
model=model,
ref_model=ref_model,
reward_funcs=reward_model,
train_dataset=dataset,
)
assert trainer.args.mixture_coef == (0.5 if not mixtures_coef_list else [0.5, 0.6])
@parameterized.expand([(False,), (True,)])
def test_online_dpo(self, beta_list):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
ref_model = AutoModelForCausalLM.from_pretrained(model_id)
reward_model = AutoModelForSequenceClassification.from_pretrained(model_id, num_labels=1)
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = OnlineDPOConfig(
self.tmp_dir,
max_new_tokens=42,
temperature=0.5,
missing_eos_penalty=0.33,
beta=0.6 if not beta_list else [0.6, 0.7],
loss_type="hinge",
)
trainer = OnlineDPOTrainer(
model=model,
ref_model=ref_model,
reward_funcs=reward_model,
args=training_args,
train_dataset=dataset,
processing_class=tokenizer,
reward_processing_classes=tokenizer,
)
assert trainer.args.max_new_tokens == 42
assert trainer.args.temperature == 0.5
assert trainer.args.missing_eos_penalty == 0.33
assert trainer.args.beta == (0.6 if not beta_list else [0.6, 0.7])
assert trainer.args.loss_type == "hinge"
def test_orpo(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
training_args = ORPOConfig(
self.tmp_dir,
max_length=256,
max_prompt_length=64,
max_completion_length=64,
beta=0.5,
disable_dropout=False,
label_pad_token_id=-99,
padding_value=-99,
truncation_mode="keep_start",
# generate_during_eval=True, # ignore this one, it requires wandb
is_encoder_decoder=True,
model_init_kwargs={"trust_remote_code": True},
dataset_num_proc=4,
)
trainer = ORPOTrainer(model=model_id, args=training_args, train_dataset=dataset, processing_class=tokenizer)
assert trainer.args.max_length == 256
assert trainer.args.max_prompt_length == 64
assert trainer.args.max_completion_length == 64
assert trainer.args.beta == 0.5
assert not trainer.args.disable_dropout
assert trainer.args.label_pad_token_id == -99
def test_reward(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
training_args = RewardConfig(
self.tmp_dir,
max_length=256,
dataset_num_proc=4,
center_rewards_coefficient=0.1,
)
trainer = RewardTrainer(
model=model,
args=training_args,
train_dataset=dataset,
processing_class=tokenizer,
)
assert trainer.args.max_length == 256
assert trainer.args.dataset_num_proc == 4
assert trainer.args.center_rewards_coefficient == 0.1
def test_sft(self):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
dataset = load_dataset("trl-internal-testing/zen", "standard_language_modeling", split="train")
training_args = SFTConfig(
self.tmp_dir,
dataset_text_field="dummy_text_field",
packing=True,
max_length=256,
dataset_num_proc=4,
neftune_noise_alpha=0.1,
model_init_kwargs={"trust_remote_code": True},
dataset_kwargs={"append_concat_token": True, "skip_prepare_dataset": True},
eval_packing=True,
)
trainer = SFTTrainer(model_id, args=training_args, train_dataset=dataset)
assert trainer.args.dataset_text_field == "dummy_text_field"
assert trainer.args.packing
assert trainer.args.max_length == 256
assert trainer.args.dataset_num_proc == 4
assert trainer.args.neftune_noise_alpha == 0.1
assert trainer.args.model_init_kwargs == {"trust_remote_code": True}
assert "append_concat_token" in trainer.args.dataset_kwargs
assert trainer.args.dataset_kwargs["append_concat_token"]
assert trainer.args.eval_packing
@parameterized.expand([(False,), (True,)])
def test_xpo(self, alpha_list):
model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)
ref_model = AutoModelForCausalLM.from_pretrained(model_id)
reward_model = AutoModelForSequenceClassification.from_pretrained(model_id, num_labels=1)
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
training_args = XPOConfig(
self.tmp_dir,
alpha=0.5 if not alpha_list else [0.5, 0.6],
)
trainer = XPOTrainer(
args=training_args,
processing_class=tokenizer,
model=model,
ref_model=ref_model,
reward_funcs=reward_model,
train_dataset=dataset,
)
assert trainer.args.alpha == (0.5 if not alpha_list else [0.5, 0.6])