Files
trl/tests/test_orpo_trainer.py
2025-10-06 11:14:54 +02:00

180 lines
6.1 KiB
Python

# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, AutoTokenizer
from trl import ORPOConfig, ORPOTrainer
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
from .testing_utils import TrlTestCase, require_peft
class TestORPOTrainer(TrlTestCase):
def setup_method(self):
self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
self.model = AutoModelForCausalLM.from_pretrained(self.model_id)
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.tokenizer.pad_token = self.tokenizer.eos_token
# get t5 as seq2seq example:
model_id = "trl-internal-testing/tiny-T5ForConditionalGeneration"
self.t5_model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
self.t5_tokenizer = AutoTokenizer.from_pretrained(model_id)
self.t5_tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
@parameterized.expand(
[
("qwen", "standard_preference"),
("t5", "standard_implicit_prompt_preference"),
("qwen", "conversational_preference"),
("t5", "conversational_implicit_prompt_preference"),
]
)
def test_orpo_trainer(self, name, config_name):
training_args = ORPOConfig(
output_dir=self.tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=1,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)
if name == "qwen":
model = self.model
tokenizer = self.tokenizer
elif name == "t5":
model = self.t5_model
tokenizer = self.t5_tokenizer
training_args.is_encoder_decoder = True
trainer = ORPOTrainer(
model=model,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
assert not torch.equal(param, new_param)
@parameterized.expand(
[
("standard_preference",),
("standard_implicit_prompt_preference",),
("conversational_preference",),
("conversational_implicit_prompt_preference",),
]
)
@require_peft
def test_orpo_trainer_with_lora(self, config_name):
from peft import LoraConfig
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
training_args = ORPOConfig(
output_dir=self.tmp_dir,
per_device_train_batch_size=2,
max_steps=3,
remove_unused_columns=False,
gradient_accumulation_steps=4,
learning_rate=9e-1,
eval_strategy="steps",
beta=0.1,
report_to="none",
)
dummy_dataset = load_dataset("trl-internal-testing/zen", config_name)
trainer = ORPOTrainer(
model=self.model,
args=training_args,
processing_class=self.tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
peft_config=lora_config,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the parameters have changed
for n, param in previous_trainable_params.items():
if "lora" in n:
new_param = trainer.model.get_parameter(n)
if param.sum() != 0: # ignore 0 biases
assert not torch.equal(param, new_param)
def test_compute_metrics(self):
model = AutoModelForCausalLM.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5")
tokenizer.pad_token = tokenizer.eos_token
dummy_dataset = load_dataset("trl-internal-testing/zen", "standard_preference")
def dummy_compute_metrics(*args, **kwargs):
return {"test": 0.0}
training_args = ORPOConfig(
output_dir=self.tmp_dir,
remove_unused_columns=False,
per_device_train_batch_size=2,
do_eval=True,
eval_strategy="steps",
eval_steps=1,
per_device_eval_batch_size=2,
report_to="none",
)
trainer = ORPOTrainer(
model=model,
args=training_args,
processing_class=tokenizer,
train_dataset=dummy_dataset["train"],
eval_dataset=dummy_dataset["test"],
compute_metrics=dummy_compute_metrics,
)
trainer.train()
assert trainer.state.log_history[-2]["eval_test"] == 0.0