mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 18:43:52 +08:00
196 lines
6.5 KiB
Python
196 lines
6.5 KiB
Python
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
# /// script
|
|
# dependencies = [
|
|
# "trl",
|
|
# "Pillow>=9.4.0",
|
|
# "peft",
|
|
# "trackio",
|
|
# "kernels",
|
|
# ]
|
|
# ///
|
|
|
|
"""
|
|
Train Gemma 3 on the HuggingFaceH4/llava-instruct-mix-vsft dataset (single-image).
|
|
|
|
accelerate launch \
|
|
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
|
|
examples/scripts/sft_vlm_gemma3.py \
|
|
--dataset_name HuggingFaceH4/llava-instruct-mix-vsft \
|
|
--model_name_or_path google/gemma-3-4b-it \
|
|
--per_device_train_batch_size 1 \
|
|
--output_dir Gemma-3-4B-SFT-MMIU \
|
|
--dtype bfloat16 \
|
|
--use_peft \
|
|
--lora_target_modules all-linear \
|
|
--attn_implementation eager
|
|
|
|
Train Gemma 3 on the FanqingM/MMIU-Benchmark dataset (multi-image).
|
|
|
|
accelerate launch \
|
|
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
|
|
examples/scripts/sft_vlm_gemma3.py \
|
|
--dataset_name FanqingM/MMIU-Benchmark \
|
|
--dataset_train_split test \
|
|
--model_name_or_path google/gemma-3-4b-it \
|
|
--per_device_train_batch_size 1 \
|
|
--output_dir Gemma-3-4B-SFT-MMIU \
|
|
--dtype bfloat16 \
|
|
--use_peft \
|
|
--lora_target_modules all-linear \
|
|
--attn_implementation eager
|
|
"""
|
|
|
|
import io
|
|
import os
|
|
import zipfile
|
|
|
|
import torch
|
|
from datasets import DatasetDict, load_dataset
|
|
from huggingface_hub import hf_hub_download, list_repo_files
|
|
from PIL import Image
|
|
from transformers import AutoModelForImageTextToText
|
|
|
|
from trl import (
|
|
ModelConfig,
|
|
ScriptArguments,
|
|
SFTConfig,
|
|
SFTTrainer,
|
|
TrlParser,
|
|
get_kbit_device_map,
|
|
get_peft_config,
|
|
get_quantization_config,
|
|
)
|
|
|
|
|
|
# Enable logging in a Hugging Face Space
|
|
os.environ.setdefault("TRACKIO_SPACE_ID", "trl-trackio")
|
|
|
|
|
|
# For multi-image example
|
|
def process_vision_info(messages: list[dict]) -> list[Image.Image]:
|
|
image_inputs = []
|
|
for msg in messages:
|
|
content = msg.get("content", [])
|
|
if not isinstance(content, list):
|
|
content = [content]
|
|
|
|
for element in content:
|
|
if isinstance(element, dict) and ("image" in element or element.get("type") == "image"):
|
|
if "image" in element:
|
|
image = element["image"]
|
|
else:
|
|
image = element
|
|
if image is not None:
|
|
image = Image.open(io.BytesIO(image["bytes"]))
|
|
image_inputs.append(image.convert("RGB"))
|
|
return image_inputs
|
|
|
|
|
|
def format_data(samples: dict[str, any]) -> dict[str, list]:
|
|
formatted_samples = {"messages": []}
|
|
for cont in range(len(samples["question"])):
|
|
images = []
|
|
for img_path in samples["input_image_path"][cont]:
|
|
try:
|
|
with open(img_path, "rb") as f:
|
|
img_bytes = f.read()
|
|
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
|
images.append({"type": "image", "image": image})
|
|
except Exception as e:
|
|
print(f"Error processing image {img_path}: {e}")
|
|
continue
|
|
|
|
formatted_samples["messages"].append(
|
|
[
|
|
{"role": "system", "content": [{"type": "text", "text": samples["context"][cont]}]},
|
|
{"role": "user", "content": images + [{"type": "text", "text": samples["question"][cont]}]},
|
|
{"role": "assistant", "content": [{"type": "text", "text": samples["output"][cont]}]},
|
|
]
|
|
)
|
|
return formatted_samples
|
|
|
|
|
|
# For multi-image example
|
|
def prepare_dataset(dataset: DatasetDict, dataset_name: str) -> DatasetDict:
|
|
all_files = list_repo_files(dataset_name, repo_type="dataset")
|
|
zip_files = [f for f in all_files if f.endswith(".zip")]
|
|
|
|
for zip_filename in zip_files:
|
|
zip_path = hf_hub_download(repo_id=dataset_name, filename=zip_filename, repo_type="dataset")
|
|
extract_folder = zip_filename.replace(".zip", "")
|
|
os.makedirs(extract_folder, exist_ok=True)
|
|
|
|
with zipfile.ZipFile(zip_path, "r") as zip_ref:
|
|
zip_ref.extractall(extract_folder)
|
|
|
|
dataset = dataset.map(format_data, batched=True, batch_size=4, num_proc=16)
|
|
return dataset
|
|
|
|
|
|
def main():
|
|
parser = TrlParser((ScriptArguments, SFTConfig, ModelConfig))
|
|
script_args, training_args, model_args = parser.parse_args_and_config()
|
|
training_args.gradient_checkpointing_kwargs = dict(use_reentrant=False)
|
|
training_args.max_length = None
|
|
|
|
################
|
|
# Model
|
|
################
|
|
dtype = model_args.dtype if model_args.dtype in ["auto", None] else getattr(torch, model_args.dtype)
|
|
model_kwargs = dict(
|
|
revision=model_args.model_revision,
|
|
attn_implementation=model_args.attn_implementation,
|
|
dtype=dtype,
|
|
)
|
|
quantization_config = get_quantization_config(model_args)
|
|
if quantization_config is not None:
|
|
# Passing None would not be treated the same as omitting the argument, so we include it only when valid.
|
|
model_kwargs["device_map"] = get_kbit_device_map()
|
|
model_kwargs["quantization_config"] = quantization_config
|
|
|
|
model = AutoModelForImageTextToText.from_pretrained(
|
|
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
|
|
)
|
|
|
|
################
|
|
# Dataset
|
|
################
|
|
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
|
|
if script_args.dataset_name == "FanqingM/MMIU-Benchmark":
|
|
dataset = prepare_dataset(dataset, script_args.dataset_name)
|
|
|
|
################
|
|
# Training
|
|
################
|
|
trainer = SFTTrainer(
|
|
model=model,
|
|
args=training_args,
|
|
train_dataset=dataset[script_args.dataset_train_split],
|
|
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
|
|
peft_config=get_peft_config(model_args),
|
|
)
|
|
|
|
trainer.train()
|
|
|
|
# Save and push to hub
|
|
trainer.save_model(training_args.output_dir)
|
|
if training_args.push_to_hub:
|
|
trainer.push_to_hub(dataset_name=script_args.dataset_name)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|