# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # /// script # dependencies = [ # "trl", # "Pillow", # "peft", # "math-verify", # "latex2sympy2_extended", # "torchvision", # "trackio", # "kernels", # ] # /// """ pip install math_verify # For Qwen/Qwen2.5-VL-3B-Instruct accelerate launch \ --config_file examples/accelerate_configs/deepspeed_zero3.yaml \ examples/scripts/rloo_vlm.py \ --model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \ --output_dir rloo-Qwen2.5-VL-3B-Instruct \ --learning_rate 1e-5 \ --gradient_checkpointing \ --dtype bfloat16 \ --max_prompt_length 2048 \ --max_completion_length 1024 \ --use_vllm \ --vllm_mode colocate \ --use_peft \ --lora_target_modules "q_proj", "v_proj" \ --log_completions # For HuggingFaceTB/SmolVLM2-2.2B-Instruct pip install num2words==0.5.14 accelerate launch \ --config_file examples/accelerate_configs/deepspeed_zero3.yaml \ examples/scripts/rloo_vlm.py \ --model_name_or_path HuggingFaceTB/SmolVLM2-2.2B-Instruct \ --output_dir rloo-SmolVLM2-2.2B-Instruct \ --learning_rate 1e-5 \ --dtype bfloat16 \ --max_prompt_length 2048 \ --max_completion_length 1024 \ --use_peft \ --lora_target_modules "q_proj", "v_proj" \ --log_completions \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 2 \ --num_generations 2 """ import os import torch from datasets import load_dataset from trl import ( ModelConfig, RLOOConfig, RLOOTrainer, ScriptArguments, TrlParser, get_kbit_device_map, get_peft_config, get_quantization_config, ) from trl.rewards import accuracy_reward, think_format_reward # Enable logging in a Hugging Face Space os.environ.setdefault("TRACKIO_SPACE_ID", "trl-trackio") if __name__ == "__main__": parser = TrlParser((ScriptArguments, RLOOConfig, ModelConfig)) script_args, training_args, model_args = parser.parse_args_and_config() ################ # Model ################ dtype = model_args.dtype if model_args.dtype in ["auto", None] else getattr(torch, model_args.dtype) training_args.model_init_kwargs = dict( revision=model_args.model_revision, attn_implementation=model_args.attn_implementation, dtype=dtype, ) quantization_config = get_quantization_config(model_args) if quantization_config is not None: # Passing None would not be treated the same as omitting the argument, so we include it only when valid. training_args.model_init_kwargs["device_map"] = get_kbit_device_map() training_args.model_init_kwargs["quantization_config"] = quantization_config ################ # Dataset ################ dataset = load_dataset("lmms-lab/multimodal-open-r1-8k-verified", split="train") dataset = dataset.train_test_split(test_size=100, seed=42) SYSTEM_PROMPT = ( "A conversation between user and assistant. The user asks a question, and the assistant solves it. The " "assistant first thinks about the reasoning process in the mind and then provides the user with the answer. " "The reasoning process and answer are enclosed within tags, i.e., \nThis is my " "reasoning.\n\nThis is my answer." ) def make_conversation(example): prompt = [ {"role": "system", "content": SYSTEM_PROMPT}, {"role": "user", "content": example["problem"]}, ] return {"prompt": prompt} dataset = dataset.map(make_conversation) # Filter have big images def filter_big_images(example): image = example["image"] return image.size[0] < 512 and image.size[1] < 512 dataset = dataset.filter(filter_big_images) def convert_to_rgb(example): image = example["image"] if image.mode != "RGB": image = image.convert("RGB") example["image"] = image return example dataset = dataset.map(convert_to_rgb) train_dataset = dataset["train"] eval_dataset = dataset["test"] if training_args.eval_strategy != "no" else None ################ # Training ################ trainer = RLOOTrainer( model=model_args.model_name_or_path, args=training_args, reward_funcs=[think_format_reward, accuracy_reward], train_dataset=train_dataset, eval_dataset=eval_dataset, peft_config=get_peft_config(model_args), ) trainer.train() # Save and push to hub trainer.save_model(training_args.output_dir) if training_args.push_to_hub: trainer.push_to_hub(dataset_name=script_args.dataset_name)