# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# /// script
# dependencies = [
# "trl",
# "Pillow",
# "peft",
# "math-verify",
# "latex2sympy2_extended",
# "torchvision",
# "trackio",
# "kernels",
# ]
# ///
"""
pip install math_verify
# For Qwen/Qwen2.5-VL-3B-Instruct
accelerate launch \
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/rloo_vlm.py \
--model_name_or_path Qwen/Qwen2.5-VL-3B-Instruct \
--output_dir rloo-Qwen2.5-VL-3B-Instruct \
--learning_rate 1e-5 \
--gradient_checkpointing \
--dtype bfloat16 \
--max_prompt_length 2048 \
--max_completion_length 1024 \
--use_vllm \
--vllm_mode colocate \
--use_peft \
--lora_target_modules "q_proj", "v_proj" \
--log_completions
# For HuggingFaceTB/SmolVLM2-2.2B-Instruct
pip install num2words==0.5.14
accelerate launch \
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/rloo_vlm.py \
--model_name_or_path HuggingFaceTB/SmolVLM2-2.2B-Instruct \
--output_dir rloo-SmolVLM2-2.2B-Instruct \
--learning_rate 1e-5 \
--dtype bfloat16 \
--max_prompt_length 2048 \
--max_completion_length 1024 \
--use_peft \
--lora_target_modules "q_proj", "v_proj" \
--log_completions \
--per_device_train_batch_size 1 \
--gradient_accumulation_steps 2 \
--num_generations 2
"""
import os
import torch
from datasets import load_dataset
from trl import (
ModelConfig,
RLOOConfig,
RLOOTrainer,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
from trl.rewards import accuracy_reward, think_format_reward
# Enable logging in a Hugging Face Space
os.environ.setdefault("TRACKIO_SPACE_ID", "trl-trackio")
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, RLOOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
################
# Model
################
dtype = model_args.dtype if model_args.dtype in ["auto", None] else getattr(torch, model_args.dtype)
training_args.model_init_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
dtype=dtype,
)
quantization_config = get_quantization_config(model_args)
if quantization_config is not None:
# Passing None would not be treated the same as omitting the argument, so we include it only when valid.
training_args.model_init_kwargs["device_map"] = get_kbit_device_map()
training_args.model_init_kwargs["quantization_config"] = quantization_config
################
# Dataset
################
dataset = load_dataset("lmms-lab/multimodal-open-r1-8k-verified", split="train")
dataset = dataset.train_test_split(test_size=100, seed=42)
SYSTEM_PROMPT = (
"A conversation between user and assistant. The user asks a question, and the assistant solves it. The "
"assistant first thinks about the reasoning process in the mind and then provides the user with the answer. "
"The reasoning process and answer are enclosed within tags, i.e., \nThis is my "
"reasoning.\n\nThis is my answer."
)
def make_conversation(example):
prompt = [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": example["problem"]},
]
return {"prompt": prompt}
dataset = dataset.map(make_conversation)
# Filter have big images
def filter_big_images(example):
image = example["image"]
return image.size[0] < 512 and image.size[1] < 512
dataset = dataset.filter(filter_big_images)
def convert_to_rgb(example):
image = example["image"]
if image.mode != "RGB":
image = image.convert("RGB")
example["image"] = image
return example
dataset = dataset.map(convert_to_rgb)
train_dataset = dataset["train"]
eval_dataset = dataset["test"] if training_args.eval_strategy != "no" else None
################
# Training
################
trainer = RLOOTrainer(
model=model_args.model_name_or_path,
args=training_args,
reward_funcs=[think_format_reward, accuracy_reward],
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=get_peft_config(model_args),
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)