# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# /// script
# dependencies = [
# "trl",
# "peft",
# "math-verify",
# "latex2sympy2_extended",
# "trackio",
# "kernels",
# ]
# ///
"""
pip install math_verify
# For Qwen/Qwen3-0.6B
pip install num2words==0.5.14
accelerate launch \
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
examples/scripts/gspo.py \
--model_name_or_path Qwen/Qwen3-0.6B \
--output_dir gspo-Qwen3-0.6B \
--learning_rate 1e-5 \
--dtype bfloat16 \
--max_prompt_length 2048 \
--max_completion_length 1024 \
--use_peft \
--lora_target_modules "q_proj", "v_proj" \
--log_completions \
--per_device_train_batch_size 8 \
--num_generations 8 \
--importance_sampling_level sequence \
--epsilon 3e-4 \
--epsilon_high 4e-4 \
--beta 0.0 \
--loss_type grpo \
--gradient_accumulation_steps 2 \
--steps_per_generation 8
"""
import os
import torch
from datasets import load_dataset
from trl import (
GRPOConfig,
GRPOTrainer,
ModelConfig,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
)
from trl.rewards import accuracy_reward, think_format_reward
# Enable logging in a Hugging Face Space
os.environ.setdefault("TRACKIO_SPACE_ID", "trl-trackio")
if __name__ == "__main__":
parser = TrlParser((ScriptArguments, GRPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
################
# Model & Processor
################
dtype = model_args.dtype if model_args.dtype in ["auto", None] else getattr(torch, model_args.dtype)
training_args.model_init_kwargs = dict(
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
dtype=dtype,
)
quantization_config = get_quantization_config(model_args)
if quantization_config is not None:
# Passing None would not be treated the same as omitting the argument, so we include it only when valid.
training_args.model_init_kwargs["device_map"] = get_kbit_device_map()
training_args.model_init_kwargs["quantization_config"] = quantization_config
################
# Dataset
################
train_dataset, eval_dataset = load_dataset("AI-MO/NuminaMath-TIR", split=["train[:5%]", "test[:5%]"])
SYSTEM_PROMPT = (
"A conversation between user and assistant. The user asks a question, and the assistant solves it. The "
"assistant first thinks about the reasoning process in the mind and then provides the user with the answer. "
"The reasoning process and answer are enclosed within tags, i.e., \nThis is my "
"reasoning.\n\nThis is my answer."
)
def make_conversation(example):
return {
"prompt": [
{"role": "system", "content": SYSTEM_PROMPT},
{"role": "user", "content": example["problem"]},
],
}
train_dataset = train_dataset.map(make_conversation)
eval_dataset = eval_dataset.map(make_conversation)
train_dataset = train_dataset.remove_columns(["messages", "problem"])
eval_dataset = eval_dataset.remove_columns(["messages", "problem"])
################
# Training
################
trainer = GRPOTrainer(
model=model_args.model_name_or_path,
args=training_args,
reward_funcs=[think_format_reward, accuracy_reward],
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=get_peft_config(model_args),
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)