# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile from dataclasses import dataclass from unittest.mock import mock_open, patch import pytest from datasets import DatasetDict, load_dataset from trl import DatasetMixtureConfig, TrlParser, get_dataset from trl.scripts.utils import DatasetConfig from .testing_utils import TrlTestCase @dataclass class MyDataclass: arg1: int arg2: str = "default" @dataclass class InvalidDataclass: config: str # This should raise an error in the TrlParser class TestTrlParser(TrlTestCase): def test_init_without_config_field(self): """Test initialization without 'config' field in the dataclasses.""" parser = TrlParser(dataclass_types=[MyDataclass]) assert isinstance(parser, TrlParser) def test_init_with_config_field(self): """Test initialization with a 'config' field in the dataclass (should raise ValueError).""" with pytest.raises(ValueError, match="has a field named 'config'"): TrlParser(dataclass_types=[InvalidDataclass]) @patch("builtins.open", mock_open(read_data="env:\n VAR1: value1\n VAR2: value2\narg1: 2")) @patch("yaml.safe_load") @patch("os.environ", new_callable=dict) # Mock os.environ as a dictionary def test_parse_args_and_config_with_valid_config(self, mock_environ, mock_yaml_load): """Test parse_args_and_config method with valid arguments and config.""" mock_yaml_load.return_value = {"env": {"VAR1": "value1", "VAR2": "value2"}, "arg1": 2} parser = TrlParser(dataclass_types=[MyDataclass]) args = ["--arg2", "value", "--config", "config.yaml"] # don't set arg1 to test default value # Simulate the config being loaded and environment variables being set result_args = parser.parse_args_and_config(args) # Set the environment variables using the mock mock_environ["VAR1"] = "value1" mock_environ["VAR2"] = "value2" # Ensure that the environment variables were set correctly assert mock_environ.get("VAR1") == "value1" assert mock_environ.get("VAR2") == "value2" # Check the parsed arguments assert len(result_args) == 1 assert isinstance(result_args[0], MyDataclass) assert result_args[0].arg1 == 2 assert result_args[0].arg2 == "value" @patch("builtins.open", mock_open(read_data="arg1: 2")) @patch("yaml.safe_load") def test_parse_args_and_arg_override_config(self, mock_yaml_load): """Test parse_args_and_config method and check that arguments override the config.""" mock_yaml_load.return_value = {"arg1": 2} # this arg is meant to be overridden parser = TrlParser(dataclass_types=[MyDataclass]) args = ["--arg1", "3", "--config", "config.yaml"] # override arg1 default with 3 # Simulate the config being loaded and arguments being passed result_args = parser.parse_args_and_config(args) # Check the parsed arguments assert len(result_args) == 1 assert isinstance(result_args[0], MyDataclass) assert result_args[0].arg1 == 3 @patch("builtins.open", mock_open(read_data="env: not_a_dict")) @patch("yaml.safe_load") def test_parse_args_and_config_with_invalid_env(self, mock_yaml_load): """Test parse_args_and_config method when the 'env' field is not a dictionary.""" mock_yaml_load.return_value = {"env": "not_a_dict"} parser = TrlParser(dataclass_types=[MyDataclass]) args = ["--arg1", "2", "--arg2", "value", "--config", "config.yaml"] with pytest.raises(ValueError, match="`env` field should be a dict in the YAML file."): parser.parse_args_and_config(args) def test_parse_args_and_config_without_config(self): """Test parse_args_and_config without the `--config` argument.""" parser = TrlParser(dataclass_types=[MyDataclass]) args = ["--arg1", "2", "--arg2", "value"] # Simulate no config, just parse args normally result_args = parser.parse_args_and_config(args) # Check that the arguments are parsed as is assert len(result_args) == 1 assert isinstance(result_args[0], MyDataclass) assert result_args[0].arg1 == 2 assert result_args[0].arg2 == "value" def test_set_defaults_with_config(self): """Test set_defaults_with_config updates the defaults.""" parser = TrlParser(dataclass_types=[MyDataclass]) # Update defaults parser.set_defaults_with_config(arg1=42) # Ensure the default value is updated result_args = parser.parse_args_and_config([]) assert len(result_args) == 1 assert isinstance(result_args[0], MyDataclass) assert result_args[0].arg1 == 42 def test_parse_args_and_config_with_remaining_strings(self): parser = TrlParser(dataclass_types=[MyDataclass]) args = ["--arg1", "2", "--arg2", "value", "remaining"] # Simulate no config, just parse args normally result_args = parser.parse_args_and_config(args, return_remaining_strings=True) # Check that the arguments are parsed as is assert len(result_args) == 2 assert isinstance(result_args[0], MyDataclass) assert result_args[0].arg1 == 2 assert result_args[0].arg2 == "value" assert result_args[1] == ["remaining"] @patch("builtins.open", mock_open(read_data="remaining_string_in_config: abc")) @patch("yaml.safe_load") def test_parse_args_and_config_with_remaining_strings_in_config_and_args(self, mock_yaml_load): mock_yaml_load.return_value = {"remaining_string_in_config": "abc"} parser = TrlParser(dataclass_types=[MyDataclass]) args = ["--arg1", "2", "--remaining_string_in_args", "def", "--config", "config.yaml"] # Simulate the config being loaded and arguments being passed result_args = parser.parse_args_and_config(args, return_remaining_strings=True) # Check that the arguments are parsed as is assert len(result_args) == 2 assert isinstance(result_args[0], MyDataclass) assert result_args[0].arg1 == 2 assert result_args[1] == ["--remaining_string_in_config", "abc", "--remaining_string_in_args", "def"] @patch("builtins.open", mock_open(read_data="arg1: 2\narg2: config_value")) @patch("yaml.safe_load") def test_subparsers_with_config_defaults(self, mock_yaml_load): """Test that config defaults are applied to all subparsers.""" mock_yaml_load.return_value = {"arg1": 2, "arg2": "config_value"} # Create the main parser parser = TrlParser() # Add subparsers subparsers = parser.add_subparsers(dest="command", parser_class=TrlParser) # Create a subparser for a specific command subparsers.add_parser("subcommand", dataclass_types=[MyDataclass]) # Parse with config file args = ["subcommand", "--config", "config.yaml"] result_args = parser.parse_args_and_config(args) # Check main parser arguments assert len(result_args) == 1 # Check that config values were applied to the subparser assert result_args[0].arg1 == 2 # Default from config assert result_args[0].arg2 == "config_value" # Default from config @patch("builtins.open", mock_open(read_data="arg1: 2\narg2: config_value")) @patch("yaml.safe_load") def test_subparsers_with_config_defaults_and_arg_override(self, mock_yaml_load): """Test that config defaults are applied to all subparsers.""" mock_yaml_load.return_value = {"arg1": 2, "arg2": "config_value"} # Create the main parser parser = TrlParser() # Add subparsers subparsers = parser.add_subparsers(dest="command", parser_class=TrlParser) # Create a subparser for a specific command subparsers.add_parser("subcommand", dataclass_types=[MyDataclass]) # Test with command line arguments overriding config args = ["subcommand", "--arg1", "3", "--config", "config.yaml"] result_args = parser.parse_args_and_config(args) # Command line arguments should override config assert result_args[0].arg1 == 3 assert result_args[0].arg2 == "config_value" # Still from config @patch("builtins.open", mock_open(read_data="arg1: 2\nthis_arg_does_not_exist: config_value")) @patch("yaml.safe_load") def test_subparsers_with_config_defaults_and_arg_override_wrong_name(self, mock_yaml_load): """Test that config defaults are applied to all subparsers.""" mock_yaml_load.return_value = {"arg1": 2, "this_arg_does_not_exist": "config_value"} # Create the main parser parser = TrlParser() # Add subparsers subparsers = parser.add_subparsers(dest="command", parser_class=TrlParser) # Create a subparser for a specific command subparsers.add_parser("subcommand", dataclass_types=[MyDataclass]) # Test with command line arguments overriding config args = ["subcommand", "--arg1", "3", "--config", "config.yaml"] with pytest.raises(ValueError): parser.parse_args_and_config(args) parser.parse_args_and_config(args, fail_with_unknown_args=False) @patch("builtins.open", mock_open(read_data="arg1: 2\narg2: config_value")) @patch("yaml.safe_load") def test_subparsers_multiple_with_config_defaults(self, mock_yaml_load): """Test that config defaults are applied to all subparsers.""" mock_yaml_load.return_value = {"arg1": 2, "arg2": "config_value"} # Create the main parser parser = TrlParser() # Add subparsers subparsers = parser.add_subparsers(dest="command", parser_class=TrlParser) # Create a subparser for a specific command subparsers.add_parser("subcommand0", dataclass_types=[MyDataclass]) subparsers.add_parser("subcommand1", dataclass_types=[MyDataclass]) for idx in range(2): # Parse with config file args = [f"subcommand{idx}", "--config", "config.yaml"] result_args = parser.parse_args_and_config(args) # Check main parser arguments assert len(result_args) == 1 # Check that config values were applied to the subparser assert result_args[0].arg1 == 2 # Default from config assert result_args[0].arg2 == "config_value" # Default from config class TestGetDataset: def test_single_dataset_with_config(self): mixture_config = DatasetMixtureConfig( datasets=[DatasetConfig(path="trl-internal-testing/zen", name="standard_language_modeling")] ) result = get_dataset(mixture_config) expected = load_dataset("trl-internal-testing/zen", "standard_language_modeling") assert expected["train"][:] == result["train"][:] def test_single_dataset_preference_config(self): mixture_config = DatasetMixtureConfig( datasets=[DatasetConfig(path="trl-internal-testing/zen", name="standard_preference")] ) result = get_dataset(mixture_config) expected = load_dataset("trl-internal-testing/zen", "standard_preference") assert expected["train"][:] == result["train"][:] def test_single_dataset_streaming(self): mixture_config = DatasetMixtureConfig( datasets=[DatasetConfig(path="trl-internal-testing/zen", name="standard_language_modeling")], streaming=True, ) result = get_dataset(mixture_config) expected = load_dataset("trl-internal-testing/zen", "standard_language_modeling") assert expected["train"].to_list() == list(result["train"]) def test_dataset_mixture_basic(self): dataset_config1 = DatasetConfig( path="trl-internal-testing/zen", name="standard_prompt_completion", split="train", columns=["prompt"] ) dataset_config2 = DatasetConfig( path="trl-internal-testing/zen", name="standard_preference", split="train", columns=["prompt"] ) mixture_config = DatasetMixtureConfig(datasets=[dataset_config1, dataset_config2]) result = get_dataset(mixture_config) assert isinstance(result, DatasetDict) assert "train" in result train_dataset = result["train"] assert train_dataset.column_names == ["prompt"] prompts = train_dataset["prompt"] expected_first_half = load_dataset("trl-internal-testing/zen", "standard_preference", split="train") assert prompts[: len(prompts) // 2] == expected_first_half["prompt"] expected_second_half = load_dataset("trl-internal-testing/zen", "standard_prompt_completion", split="train") assert prompts[len(prompts) // 2 :] == expected_second_half["prompt"] def test_dataset_mixture_with_weights(self): dataset_config1 = DatasetConfig( path="trl-internal-testing/zen", name="standard_prompt_completion", split="train[:50%]", columns=["prompt"] ) dataset_config2 = DatasetConfig( path="trl-internal-testing/zen", name="standard_preference", split="train[:50%]", columns=["prompt"] ) mixture_config = DatasetMixtureConfig(datasets=[dataset_config1, dataset_config2]) result = get_dataset(mixture_config) assert isinstance(result, DatasetDict) assert "train" in result train_dataset = result["train"] assert train_dataset.column_names == ["prompt"] prompts = train_dataset["prompt"] expected_first_half = load_dataset("trl-internal-testing/zen", "standard_preference", split="train[:50%]") assert prompts[: len(prompts) // 2] == expected_first_half["prompt"] expected_second_half = load_dataset( "trl-internal-testing/zen", "standard_prompt_completion", split="train[:50%]" ) assert prompts[len(prompts) // 2 :] == expected_second_half["prompt"] def test_dataset_mixture_with_test_split(self): mixture_config = DatasetMixtureConfig( datasets=[DatasetConfig(path="trl-internal-testing/zen", name="standard_language_modeling")], test_split_size=2, ) result = get_dataset(mixture_config) assert isinstance(result, DatasetDict) assert "train" in result assert "test" in result assert len(result["train"]) == 15 assert len(result["test"]) == 2 def test_empty_dataset_mixture_raises_error(self): mixture_config = DatasetMixtureConfig(datasets=[]) with pytest.raises(ValueError, match="No datasets were loaded"): get_dataset(mixture_config) def test_mixture_multiple_different_configs(self): dataset_config1 = DatasetConfig( path="trl-internal-testing/zen", name="conversational_preference", split="train", columns=["prompt"] ) dataset_config2 = DatasetConfig( path="trl-internal-testing/zen", name="conversational_prompt_only", split="test" ) mixture_config = DatasetMixtureConfig(datasets=[dataset_config1, dataset_config2]) result = get_dataset(mixture_config) assert isinstance(result, DatasetDict) assert "train" in result assert len(result["train"]) > 0 def test_trlparser_parses_yaml_config_correctly(self): # Prepare YAML content exactly like your example # docstyle-ignore yaml_content = """ datasets: - path: trl-internal-testing/zen name: standard_prompt_only - path: trl-internal-testing/zen name: standard_preference columns: - prompt """ # Write YAML to a temporary file with tempfile.NamedTemporaryFile("w+", suffix=".yaml") as tmpfile: tmpfile.write(yaml_content) tmpfile.flush() parser = TrlParser((DatasetMixtureConfig,)) args = parser.parse_args_and_config(args=["--config", tmpfile.name])[0] # Assert that we got DatasetMixtureConfig instance assert isinstance(args, DatasetMixtureConfig) # Assert datasets list length assert len(args.datasets) == 2 # Check first dataset dataset_config1 = args.datasets[0] assert isinstance(dataset_config1, DatasetConfig) assert dataset_config1.path == "trl-internal-testing/zen" assert dataset_config1.name == "standard_prompt_only" assert dataset_config1.columns is None # No columns specified # Check second dataset dataset_config2 = args.datasets[1] assert isinstance(dataset_config2, DatasetConfig) assert dataset_config2.path == "trl-internal-testing/zen" assert dataset_config2.name == "standard_preference" assert dataset_config2.columns == ["prompt"] # Columns specified def test_trlparser_parses_yaml_and_loads_dataset(self): # Prepare YAML content exactly like your example # docstyle-ignore yaml_content = """ datasets: - path: trl-internal-testing/zen name: standard_language_modeling """ # Write YAML to a temporary file with tempfile.NamedTemporaryFile("w+", suffix=".yaml") as tmpfile: tmpfile.write(yaml_content) tmpfile.flush() parser = TrlParser((DatasetMixtureConfig,)) args = parser.parse_args_and_config(args=["--config", tmpfile.name])[0] # Load the dataset using get_dataset result = get_dataset(args) expected = load_dataset("trl-internal-testing/zen", "standard_language_modeling") assert expected["train"][:] == result["train"][:]