# Copyright 2020-2025 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import textwrap from io import StringIO from unittest.mock import patch import numpy as np import pytest import torch from datasets import load_dataset from parameterized import parameterized from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig from transformers.utils import is_peft_available from trl import ModelConfig from trl.trainer import compute_accuracy from trl.trainer.utils import ( DataCollatorForChatML, RepeatSampler, batch_generation, decode_and_strip_padding, entropy_from_logits, flush_left, flush_right, generate_model_card, get_peft_config, pad, print_prompt_completions_sample, selective_log_softmax, shuffle_sequence_dict, split_pixel_values_by_grid, split_tensor_dict, unsplit_pixel_values_by_grid, ) from .testing_utils import TrlTestCase, require_peft, require_rich if is_peft_available(): from peft import LoraConfig class TestPad(TrlTestCase): def test_pad_1_dim_left(self): x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5]) output = pad((x, y), padding_value=0, padding_side="left") expected = torch.tensor([[1, 2, 3], [0, 4, 5]]) assert torch.equal(output, expected) def test_pad_1_dim_right(self): x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5]) output = pad((x, y), padding_value=0, padding_side="right") expected = torch.tensor([[1, 2, 3], [4, 5, 0]]) assert torch.equal(output, expected) def test_pad_2_dim_left(self): x = torch.tensor([[1, 2], [3, 4]]) y = torch.tensor([[5, 6]]) output = pad((x, y), padding_value=0, padding_side="left") expected = torch.tensor( [ [[1, 2], [3, 4]], [[0, 0], [5, 6]], ] ) assert torch.equal(output, expected) def test_pad_2_dim_right(self): x = torch.tensor([[1, 2], [3, 4]]) y = torch.tensor([[5, 6]]) output = pad((x, y), padding_value=0, padding_side="right") expected = torch.tensor( [ [[1, 2], [3, 4]], [[5, 6], [0, 0]], ] ) assert torch.equal(output, expected) def test_pad_2_dim_right_multidim(self): x = torch.tensor([[1, 2], [3, 4]]) y = torch.tensor([[5]]) output = pad((x, y), padding_value=0, padding_side="right") expected = torch.tensor( [ [[1, 2], [3, 4]], [[5, 0], [0, 0]], ] ) assert torch.equal(output, expected) def test_pad_to_multiple_of_1(self): x = torch.tensor([1, 2, 3]) y = torch.tensor([4, 5]) # Max length is 3, pad to multiple of 4 output = pad((x, y), padding_value=0, padding_side="right", pad_to_multiple_of=4) expected = torch.tensor([[1, 2, 3, 0], [4, 5, 0, 0]]) assert torch.equal(output, expected) def test_pad_to_multiple_of_2(self): x = torch.tensor([1, 2, 3, 4, 5]) y = torch.tensor([6, 7, 8]) # Max length is 3, pad to multiple of 4 output = pad((x, y), padding_value=0, padding_side="right", pad_to_multiple_of=4) expected = torch.tensor([[1, 2, 3, 4, 5, 0, 0, 0], [6, 7, 8, 0, 0, 0, 0, 0]]) assert torch.equal(output, expected) def test_pad_to_multiple_of_side_left(self): x = torch.tensor([1, 2, 3, 4, 5]) y = torch.tensor([6, 7, 8]) # Max length is 3, pad to multiple of 4 output = pad((x, y), padding_value=0, padding_side="left", pad_to_multiple_of=4) expected = torch.tensor([[0, 0, 0, 1, 2, 3, 4, 5], [0, 0, 0, 0, 0, 6, 7, 8]]) assert torch.equal(output, expected) def test_pad_to_multiple_of_no_extra_padding(self): x = torch.tensor([1, 2, 3, 4]) y = torch.tensor([5, 6, 7, 8]) # Already multiple of 4 output = pad((x, y), padding_value=0, padding_side="left", pad_to_multiple_of=4) expected = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]]) assert torch.equal(output, expected) @require_peft class TestGetPEFTConfig(TrlTestCase): def test_create_peft_config_use_peft_false(self): """Test that when use_peft is False, the function returns None.""" model_args = ModelConfig(use_peft=False) peft_config = get_peft_config(model_args) assert peft_config is None def test_create_peft_config_use_peft_true(self): """Test that when use_peft is True, the function returns a LoraConfig object.""" # Provide non-default values to the model config for testing peft_kwargs = { "lora_r": 8, "lora_alpha": 16, "lora_dropout": 0.1, "lora_task_type": "SEQ_CLS", "use_rslora": True, "lora_target_modules": ["up_proj", "down_proj"], "lora_modules_to_save": ["up_proj"], } model_args = ModelConfig(use_peft=True, **peft_kwargs) peft_config = get_peft_config(model_args) assert isinstance(peft_config, LoraConfig) for arg, value in peft_kwargs.items(): # Test that lists of modules are converted to sets if arg == "lora_target_modules": value = set(value) # Rename the argument to match the LoraConfig attribute name if arg in ["lora_r", "lora_task_type", "lora_target_modules", "lora_modules_to_save"]: arg = arg[len("lora_") :] if arg.startswith("lora_") else arg assert getattr(peft_config, arg) == value class TestDecodeAndStripPadding(TrlTestCase): def setup_method(self): self.tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") def test_example_with_padding(self): inputs = self.tokenizer(["Hello world", "Hello"], padding=True, return_tensors="pt") decoded = decode_and_strip_padding(inputs["input_ids"], self.tokenizer) assert decoded == ["Hello world", "Hello"] def test_example_without_padding(self): inputs = self.tokenizer(["Hello", "Hello"], padding=False, return_tensors="pt") decoded = decode_and_strip_padding(inputs["input_ids"], self.tokenizer) assert decoded == ["Hello", "Hello"] class TestGenerateModelCard(TrlTestCase): def test_full(self): model_card = generate_model_card( base_model="username/my_base_model", model_name="my_model", hub_model_id="username/my_hub_model", dataset_name="username/my_dataset", tags=["trl", "trainer-tag"], wandb_url="https://wandb.ai/username/project_id/runs/abcd1234", comet_url="https://www.comet.com/username/project_id/experiment_id", trainer_name="My Trainer", trainer_citation="@article{my_trainer, ...}", paper_title="My Paper", paper_id="1234.56789", ) card_text = str(model_card) assert "[username/my_base_model](https://huggingface.co/username/my_base_model)" in card_text assert "my_model" in card_text assert 'pipeline("text-generation", model="username/my_hub_model", device="cuda")' in card_text assert "datasets: username/my_dataset" in card_text assert "](https://wandb.ai/username/project_id/runs/abcd1234)" in card_text assert "](https://www.comet.com/username/project_id/experiment_id" in card_text assert "My Trainer" in card_text assert "```bibtex\n@article{my_trainer, ...}\n```" in card_text assert "[My Paper](https://huggingface.co/papers/1234.56789)" in card_text def test_val_none(self): model_card = generate_model_card( base_model=None, model_name="my_model", hub_model_id="username/my_hub_model", dataset_name=None, tags=[], wandb_url=None, comet_url=None, trainer_name="My Trainer", trainer_citation=None, paper_title=None, paper_id=None, ) card_text = str(model_card) assert "my_model" in card_text assert 'pipeline("text-generation", model="username/my_hub_model", device="cuda")' in card_text assert "My Trainer" in card_text class TestDataCollatorForChatML(TrlTestCase): def setup_method(self): # Initialize the tokenizer self.tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen2ForCausalLM-2.5") if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token # Define token IDs self.bos_token_id = self.tokenizer.bos_token_id if self.tokenizer.bos_token_id is not None else 1 self.eos_token_id = self.tokenizer.eos_token_id if self.tokenizer.eos_token_id is not None else 2 # Token ID for "true", the last assistant's response in the example: self.ignore_index = -100 self.max_length = 1024 self.messages_key = "messages" # Example input dataset = load_dataset("trl-internal-testing/zen", "conversational_language_modeling", split="train") self.examples = dataset.to_list() # Initialize the data collator self.collator = DataCollatorForChatML( tokenizer=self.tokenizer, max_length=self.max_length, ignore_index=self.ignore_index, ) def test_data_collator_for_chatml(self): # Process the data data = self.collator(self.examples) # Verify basic shapes and types assert "input_ids" in data assert "attention_mask" in data assert "labels" in data assert "prompts" in data assert "prompt_attention_mask" in data # Decode input_ids and labels for verification input_ids = data["input_ids"][0].tolist() labels = data["labels"][0].tolist() prompt_only = data["prompts"][0].tolist() # Get the last assistant's response for comparison last_message = self.examples[0][self.messages_key][-1] assert last_message["role"] == "assistant", "Last message should be from assistant" last_assistant_response = last_message["content"] # Verify that input_ids contain both prompt and response decoded_input = self.tokenizer.decode(input_ids) assert last_assistant_response in decoded_input, "Input should contain assistant's response" # Verify that prompts only contain the conversation up to the last response decoded_prompt = self.tokenizer.decode(prompt_only) assert last_assistant_response not in decoded_prompt, "Prompt should not contain assistant's response" # Verify labels are -100 for non-assistant parts prompt_length = len(prompt_only) assert all(label == self.ignore_index for label in labels[:prompt_length]), ( "Labels should be ignore_index for prompt tokens" ) # Verify labels match assistant response after prompt # Add a filter to remove any trailing tokens after the first <|im_end|> last_assistant_response_with_end = last_assistant_response + self.tokenizer.eos_token last_assistant_response_tokens = self.tokenizer.encode( last_assistant_response_with_end, add_special_tokens=False ) response_labels = [] for label in labels[prompt_length:]: if label == self.ignore_index: continue response_labels.append(label) if label == self.tokenizer.convert_tokens_to_ids("<|im_end|>"): break assert response_labels == last_assistant_response_tokens, "Labels should match assistant response tokens" # Verify there isn't a generation prompt at the end generation_prompt = "<|im_start|>assistant" assert not decoded_input.strip().endswith(generation_prompt), ( f"Input should not end with generation prompt '{generation_prompt}'" ) assert response_labels == last_assistant_response_tokens, "Labels should match assistant response tokens" class TestBatchGeneration(TrlTestCase): def setup_method(self): # Initialize the tokenizer self.model_id = "trl-internal-testing/tiny-Qwen2ForCausalLM-2.5" self.device = "cuda" if torch.cuda.is_available() else "cpu" self.model = AutoModelForCausalLM.from_pretrained(self.model_id).to(self.device) self.tokenizer = AutoTokenizer.from_pretrained(self.model_id) self.generation_config = GenerationConfig( max_new_tokens=128, temperature=0.5, do_sample=True, top_k=0, pad_token_id=self.tokenizer.pad_token_id, ) # Example input dataset = load_dataset("trl-internal-testing/zen", "conversational_language_modeling", split="train") self.examples = dataset["messages"] self.mini_batch_size = 3 def test_mini_batch_generation(self): batch = [ self.tokenizer.apply_chat_template(example[:-1], add_generation_prompt=True, tokenize=False) for example in self.examples ] queries = self.tokenizer(batch, padding=True, return_tensors="pt")["input_ids"].to(self.device) bs, context_length = queries.shape query_responses, logits = batch_generation( self.model, queries, self.mini_batch_size, self.tokenizer.pad_token_id, self.generation_config ) max_length_query = query_responses.shape[1] max_length_logits = max_length_query - context_length assert max_length_query > context_length assert query_responses.shape == (bs, max_length_query) assert logits.shape == (bs, max_length_logits, self.model.config.vocab_size) def test_single_batch_generation(self): batch = [ self.tokenizer.apply_chat_template(example[:-1], add_generation_prompt=True, tokenize=False) for example in self.examples ] queries = self.tokenizer(batch, padding=True, return_tensors="pt")["input_ids"].to(self.device) bs, context_length = queries.shape query_responses, logits = batch_generation( self.model, queries, bs, self.tokenizer.pad_token_id, self.generation_config ) max_length_query = query_responses.shape[1] max_length_logits = max_length_query - context_length assert max_length_query > context_length assert query_responses.shape == (bs, max_length_query) assert logits.shape == (bs, max_length_logits, self.model.config.vocab_size) class TestComputeAccuracy(TrlTestCase): def test_token_classification_task(self): eval_pred = ( np.array( [ [[0.1, 0.9], [0.8, 0.2]], # Batch 1 [[0.3, 0.7], [0.6, 0.4]], # Batch 2 ] ), np.array([[0, 1], [1, 0]]), ) expected_accuracy = 0.5 # 2 matches, 2 mismatches result = compute_accuracy(eval_pred) assert round(abs(result["accuracy"] - expected_accuracy), 7) == 0 def test_token_classification_task_with_ignored_tokens_0(self): eval_pred = ( np.array( [ [[0.1, 0.9], [0.8, 0.2]], # Batch 1 [[0.3, 0.7], [0.6, 0.4]], # Batch 2 ] ), np.array([[1, 0], [1, -100]]), ) expected_accuracy = 1.0 # All non-ignored tokens match result = compute_accuracy(eval_pred) assert round(abs(result["accuracy"] - expected_accuracy), 7) == 0 def test_token_classification_task_with_ignored_tokens_1(self): eval_pred = ( np.array( [ [[0.1, 0.9], [0.8, 0.2]], # Batch 1 [[0.3, 0.7], [0.6, 0.4]], # Batch 2 ] ), np.array([[1, 1], [0, -100]]), ) expected_accuracy = 1 / 3 # 1 match, 2 mismatch, 1 ignored result = compute_accuracy(eval_pred) assert round(abs(result["accuracy"] - expected_accuracy), 7) == 0 def test_rewards_comparison_task(self, caplog): eval_pred = ( np.array( [ [0.9, 0.1], # Batch 1 [0.6, 0.4], # Batch 2 [0.5, 0.5], # Batch 3 (equal) ] ), np.array([0, 1, 1]), ) expected_accuracy = 0.5 # 1 match, 1 mismatch, 1 equal (ignored) with caplog.at_level("WARNING", logger="trl.trainer.utils"): result = compute_accuracy(eval_pred) assert round(abs(result["accuracy"] - expected_accuracy), 7) == 0 expected_warning = ( "There are 1 out of 3 instances where the predictions for both options are equal. " "These instances are ignored in the accuracy computation." ) assert expected_warning in caplog.text class TestFlushLeft(TrlTestCase): def test_basic_case(self): mask = torch.tensor([[0, 0, 1, 1, 1], [0, 1, 1, 0, 0]]) tensor1 = torch.tensor([[0, 0, 2, 3, 4], [0, 5, 6, 0, 0]]) tensor2 = torch.tensor([[0, 0, 7, 8, 9], [0, 10, 11, 0, 0]]) new_mask, new_tensor1, new_tensor2 = flush_left(mask, tensor1, tensor2) expected_mask = torch.tensor([[1, 1, 1], [1, 1, 0]]) expected_tensor1 = torch.tensor([[2, 3, 4], [5, 6, 0]]) expected_tensor2 = torch.tensor([[7, 8, 9], [10, 11, 0]]) assert torch.equal(new_mask, expected_mask) assert torch.equal(new_tensor1, expected_tensor1) assert torch.equal(new_tensor2, expected_tensor2) def test_single_row(self): mask = torch.tensor([[0, 0, 1, 1]]) tensor1 = torch.tensor([[0, 0, 2, 3]]) new_mask, new_tensor1 = flush_left(mask, tensor1) expected_mask = torch.tensor([[1, 1]]) expected_tensor1 = torch.tensor([[2, 3]]) assert torch.equal(new_mask, expected_mask) assert torch.equal(new_tensor1, expected_tensor1) def test_no_shift_needed(self): mask = torch.tensor([[1, 1, 0, 0], [1, 0, 0, 0]]) tensor1 = torch.tensor([[5, 6, 0, 0], [7, 0, 0, 0]]) new_mask, new_tensor1 = flush_left(mask, tensor1) expected_mask = torch.tensor([[1, 1], [1, 0]]) expected_tensor1 = torch.tensor([[5, 6], [7, 0]]) assert torch.equal(new_mask, expected_mask) assert torch.equal(new_tensor1, expected_tensor1) def test_no_tensors(self): mask = torch.tensor([[0, 0, 1, 1, 1], [0, 1, 1, 0, 0]]) new_mask = flush_left(mask) expected_mask = torch.tensor([[1, 1, 1], [1, 1, 0]]) assert torch.equal(new_mask, expected_mask) class TestFlushRight(TrlTestCase): def test_basic_case(self): mask = torch.tensor([[1, 1, 1, 0, 0], [0, 0, 1, 1, 0]]) tensor1 = torch.tensor([[2, 3, 4, 0, 0], [0, 0, 5, 6, 0]]) tensor2 = torch.tensor([[7, 8, 9, 0, 0], [0, 0, 10, 11, 0]]) new_mask, new_tensor1, new_tensor2 = flush_right(mask, tensor1, tensor2) expected_mask = torch.tensor([[1, 1, 1], [0, 1, 1]]) expected_tensor1 = torch.tensor([[2, 3, 4], [0, 5, 6]]) expected_tensor2 = torch.tensor([[7, 8, 9], [0, 10, 11]]) assert torch.equal(new_mask, expected_mask) assert torch.equal(new_tensor1, expected_tensor1) assert torch.equal(new_tensor2, expected_tensor2) def test_single_row(self): mask = torch.tensor([[1, 1, 0, 0]]) tensor1 = torch.tensor([[2, 3, 0, 0]]) new_mask, new_tensor1 = flush_right(mask, tensor1) expected_mask = torch.tensor([[1, 1]]) expected_tensor1 = torch.tensor([[2, 3]]) assert torch.equal(new_mask, expected_mask) assert torch.equal(new_tensor1, expected_tensor1) def test_no_shift_needed(self): mask = torch.tensor([[0, 0, 1, 1], [0, 0, 0, 1]]) tensor1 = torch.tensor([[0, 0, 5, 6], [0, 0, 0, 7]]) new_mask, new_tensor1 = flush_right(mask, tensor1) expected_mask = torch.tensor([[1, 1], [0, 1]]) expected_tensor1 = torch.tensor([[5, 6], [0, 7]]) assert torch.equal(new_mask, expected_mask) assert torch.equal(new_tensor1, expected_tensor1) def test_no_tensors(self): mask = torch.tensor([[1, 1, 1, 0, 0], [0, 0, 1, 1, 0]]) new_mask = flush_right(mask) expected_mask = torch.tensor([[1, 1, 1], [0, 1, 1]]) assert torch.equal(new_mask, expected_mask) class TestRepeatRandomSampler(TrlTestCase): def test_sampler(self): dataset = ["a", "b", "c", "d", "e", "f", "g"] sampler = RepeatSampler(dataset, mini_repeat_count=2) # Should output something like [4, 4, 3, 3, 0, 0, 1, 1, 2, 2, 6, 6, 5, 5] sampled = list(sampler) # Check that the length is doubled assert len(sampled) == 2 * len(dataset) # Check that all indexes are present assert set(sampled) == set(range(len(dataset))) # Check that each element is repeated twice assert all(sampled[i] == sampled[i + 1] for i in range(0, len(sampled), 2)) def test_sampler_no_shuffle(self): dataset = ["a", "b", "c", "d", "e", "f", "g"] sampler = RepeatSampler(dataset, mini_repeat_count=2, shuffle=False) sampled = list(sampler) expected = [0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6] assert sampled == expected def test_sampler_no_repeat(self): dataset = ["a", "b", "c", "d", "e", "f", "g"] sampler = RepeatSampler(dataset, mini_repeat_count=1) # Should output something like [4, 3, 0, 1, 2, 6, 5] sampled = list(sampler) # Check that the length is the same assert len(sampled) == len(dataset) # Check that all indexes are present assert set(sampled) == set(range(len(dataset))) def test_sampler_with_batch_size(self): dataset = ["a", "b", "c", "d", "e", "f", "g", "h"] sampler = RepeatSampler(dataset, mini_repeat_count=1, batch_size=2, repeat_count=2) # Should output something like [4, 3, 4, 3, 0, 1, 0, 1, 2, 6, 2, 6, 5, 7, 5, 7] sampled = list(sampler) # Check that the length is doubled assert len(sampled) == 2 * len(dataset) # Check that all indexes are present assert set(sampled) == set(range(len(dataset))) # Check that each element is repeated as expected assert all(sampled[i : i + 1] == sampled[i + 2 : i + 3] for i in range(0, len(sampled), 4)) def test_sampler_with_batch_size_and_drop(self): dataset = ["a", "b", "c", "d", "e", "f", "g"] sampler = RepeatSampler(dataset, mini_repeat_count=1, batch_size=2, repeat_count=2) # Should output something like [4, 3, 4, 3, 0, 1, 0, 1, 2, 6, 2, 6] sampled = list(sampler) # Check that the length is doubled assert len(sampled) == 2 * ( len(dataset) - 1 ) # one element is dropped, because it's not enough to form a batch assert len(sampler) == len(sampled) # the length should be the same as the sampled length # Check that the sampled indexes are a subset of the dataset indexes assert set(sampled).issubset(set(range(len(dataset)))) # Check that each element is repeated as expected assert all(sampled[i : i + 1] == sampled[i + 2 : i + 3] for i in range(0, len(sampled), 4)) def test_sampler_with_mini_repeat_count_and_batch_size_1(self): dataset = ["a", "b", "c", "d", "e", "f", "g"] sampler = RepeatSampler(dataset, mini_repeat_count=2, batch_size=3, repeat_count=2) # Should output something like [4, 4, 3, 3, 0, 0, 4, 4, 3, 3, 0, 0, # 1, 1, 2, 2, 6, 6, 1, 1, 2, 2, 6, 6] sampled = list(sampler) # Check that the length is quadrupled assert len(sampled) == 4 * (len(dataset) - 1) # 1 element is dropped, because it's not enough to form a batch assert len(sampler) == len(sampled) # the length should be the same as the sampled length # Check that the sampled indexes are a subset of the dataset indexes assert set(sampled).issubset(set(range(len(dataset)))) # Check that each element is repeated as expected assert all(sampled[i] == sampled[i + 1] for i in range(0, len(sampled), 2)) # Check that the batch is repeated as expected assert sampled[0:6] == sampled[6:12] assert sampled[12:18] == sampled[18:24] def test_sampler_with_mini_repeat_count_and_batch_size_2(self): dataset = ["a", "b", "c", "d", "e", "f", "g"] sampler = RepeatSampler(dataset, mini_repeat_count=3, batch_size=2, repeat_count=2) # Should output something like [4, 4, 4, 3, 3, 3, 4, 4, 4, 3, 3, 3, # 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, # 2, 2, 2, 6, 6, 6, 2, 2, 2, 6, 6, 6] sampled = list(sampler) # Check that the length is sextupled assert len(sampled) == 6 * (len(dataset) - 1) # 1 element is dropped, because it's not enough to form a batch assert len(sampler) == len(sampled) # the length should be the same as the sampled length # Check that the sampled indexes are a subset of the dataset indexes assert set(sampled).issubset(set(range(len(dataset)))) # Check that each element is repeated as expected assert all(sampled[i] == sampled[i + 1] == sampled[i + 2] for i in range(0, len(sampled), 3)) # Check that the batch is repeated as expected assert sampled[0:6] == sampled[6:12] assert sampled[12:18] == sampled[18:24] assert sampled[24:30] == sampled[30:36] def test_sampler_with_mini_repeat_count_and_batch_size_3(self): dataset = ["a", "b", "c", "d", "e", "f", "g"] sampler = RepeatSampler(dataset, mini_repeat_count=2, batch_size=2, repeat_count=3) # Should output something like [4, 4, 3, 3, 4, 4, 3, 3, 4, 4, 3, 3, # 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, # 2, 2, 6, 6, 2, 2, 6, 6, 2, 2, 6, 6] sampled = list(sampler) # Check that the length is sextupled assert len(sampled) == 6 * (len(dataset) - 1) # 1 element is dropped, because it's not enough to form a batch # Check that the sampled indexes are a subset of the dataset indexes assert set(sampled).issubset(set(range(len(dataset)))) # Check that each element is repeated as expected assert all(sampled[i] == sampled[i + 1] for i in range(0, len(sampled), 2)) # Check that the batch is repeated as expected assert sampled[0:4] == sampled[4:8] == sampled[8:12] assert sampled[12:16] == sampled[16:20] == sampled[20:24] assert sampled[24:28] == sampled[28:32] == sampled[32:36] class TestEntropyFromLogits(TrlTestCase): @parameterized.expand( [ (dtype, chunk_size, shape) for dtype in (torch.float64, torch.float32, torch.float16, torch.bfloat16) for chunk_size in (1, 16) for shape in [(768,), (32, 768), (8, 16, 768), (2, 4, 8, 768)] ] ) def test_entropy_from_logits_2_dims(self, dtype, chunk_size, shape): logits = torch.randn(*shape, dtype=dtype) if dtype in (torch.float64, torch.float32): p = logits.softmax(-1) entropy = -torch.sum(p * p.log(), dim=-1) else: logps = logits.log_softmax(dim=-1) entropy = -(torch.exp(logps) * logps).sum(-1) predicted_entropy = entropy_from_logits(logits, chunk_size=chunk_size) torch.testing.assert_close(predicted_entropy, entropy, rtol=1e-5, atol=1e-5) @require_rich class TestPrintPromptCompletionsSample(TrlTestCase): @patch("sys.stdout", new_callable=StringIO) def test_print_output(self, mock_stdout): prompts = ["The sky is", "The sun is"] completions = [" blue.", " in the sky."] rewards = {"Correctness": [0.123, 0.456], "Format": [0.789, 0.101]} advantages = [0.987, 0.654] step = 42 print_prompt_completions_sample(prompts, completions, rewards, advantages, step) output = mock_stdout.getvalue() # docstyle-ignore expected_output = textwrap.dedent("""\ ╭──────────────────────────── Step 42 ─────────────────────────────╮ │ ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━┓ │ │ ┃ Prompt ┃ Completion ┃ Correctness ┃ Format ┃ Advantage ┃ │ │ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━┩ │ │ │ The sky is │ blue. │ 0.12 │ 0.79 │ 0.99 │ │ │ ├────────────┼──────────────┼─────────────┼────────┼───────────┤ │ │ │ The sun is │ in the sky. │ 0.46 │ 0.10 │ 0.65 │ │ │ └────────────┴──────────────┴─────────────┴────────┴───────────┘ │ ╰──────────────────────────────────────────────────────────────────╯ """) assert output == expected_output @patch("sys.stdout", new_callable=StringIO) def test_num_samples(self, mock_stdout): prompts = ["A", "B"] completions = ["1", "2"] rewards = {"Score": [0.1, 0.2]} advantages = [0.3, 0.4] step = 10 print_prompt_completions_sample(prompts, completions, rewards, advantages, step, num_samples=1) output = mock_stdout.getvalue() # docstyle-ignore possible_outputs = [ textwrap.dedent("""\ ╭────────────────── Step 10 ──────────────────╮ │ ┏━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━┓ │ │ ┃ Prompt ┃ Completion ┃ Score ┃ Advantage ┃ │ │ ┡━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━┩ │ │ │ A │ 1 │ 0.10 │ 0.30 │ │ │ └────────┴────────────┴───────┴───────────┘ │ ╰─────────────────────────────────────────────╯ """), # docstyle-ignore textwrap.dedent("""\ ╭────────────────── Step 10 ──────────────────╮ │ ┏━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━┳━━━━━━━━━━━┓ │ │ ┃ Prompt ┃ Completion ┃ Score ┃ Advantage ┃ │ │ ┡━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━╇━━━━━━━━━━━┩ │ │ │ B │ 2 │ 0.20 │ 0.40 │ │ │ └────────┴────────────┴───────┴───────────┘ │ ╰─────────────────────────────────────────────╯ """), ] assert output in possible_outputs @patch("sys.stdout", new_callable=StringIO) def test_print_messages(self, mock_stdout): prompts = [ [ {"role": "system", "content": "You are an helpful assistant."}, {"role": "user", "content": "What color is the sky?"}, ], [ {"role": "system", "content": "You are an helpful assistant."}, {"role": "user", "content": "Where is the sun?"}, ], ] completions = [ [{"role": "assistant", "content": "It is blue."}], [{"role": "assistant", "content": "In the sky."}], ] rewards = {"Correctness": [0.123, 0.456], "Format": [0.789, 0.101]} advantages = [0.987, 0.654] step = 42 print_prompt_completions_sample(prompts, completions, rewards, advantages, step) output = mock_stdout.getvalue() # docstyle-ignore expected_output = textwrap.dedent("""\ ╭────────────────────────────────── Step 42 ───────────────────────────────────╮ │ ┏━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━┓ │ │ ┃ Prompt ┃ Completion ┃ Correctness ┃ Format ┃ Advantage ┃ │ │ ┡━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━┩ │ │ │ SYSTEM │ ASSISTANT │ 0.12 │ 0.79 │ 0.99 │ │ │ │ You are an helpful │ It is blue. │ │ │ │ │ │ │ assistant. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ USER │ │ │ │ │ │ │ │ What color is the sky? │ │ │ │ │ │ │ ├─────────────────────────┼─────────────┼─────────────┼────────┼───────────┤ │ │ │ SYSTEM │ ASSISTANT │ 0.46 │ 0.10 │ 0.65 │ │ │ │ You are an helpful │ In the sky. │ │ │ │ │ │ │ assistant. │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ │ USER │ │ │ │ │ │ │ │ Where is the sun? │ │ │ │ │ │ │ └─────────────────────────┴─────────────┴─────────────┴────────┴───────────┘ │ ╰──────────────────────────────────────────────────────────────────────────────╯ """) assert output == expected_output @patch("sys.stdout", new_callable=StringIO) def test_print_messages_with_tools(self, mock_stdout): prompts = [ [{"role": "user", "content": "What is the temperature in Paris?"}], [{"role": "user", "content": "What is the weather in London?"}], ] completions = [ [{"role": "tool", "name": "get_temperature", "args": {"location": "Paris"}}], [{"role": "tool", "name": "get_weather", "args": {"location": "London"}}], ] rewards = {"Correctness": [0.123, 0.456], "Format": [0.789, 0.101]} advantages = [0.987, 0.654] step = 42 print_prompt_completions_sample(prompts, completions, rewards, advantages, step) output = mock_stdout.getvalue() # docstyle-ignore expected_output = textwrap.dedent("""\ ╭────────────────────────────────── Step 42 ───────────────────────────────────╮ │ ┏━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━┳━━━━━━━━━━━┓ │ │ ┃ Prompt ┃ Completion ┃ Correctness ┃ Format ┃ Advantage ┃ │ │ ┡━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━╇━━━━━━━━━━━┩ │ │ │ USER │ TOOL │ 0.12 │ 0.79 │ 0.99 │ │ │ │ What is the │ get_temperature(… │ │ │ │ │ │ │ temperature in │ 'Paris'}) │ │ │ │ │ │ │ Paris? │ │ │ │ │ │ │ ├───────────────────┼───────────────────┼─────────────┼────────┼───────────┤ │ │ │ USER │ TOOL │ 0.46 │ 0.10 │ 0.65 │ │ │ │ What is the │ get_weather({'lo… │ │ │ │ │ │ │ weather in │ 'London'}) │ │ │ │ │ │ │ London? │ │ │ │ │ │ │ └───────────────────┴───────────────────┴─────────────┴────────┴───────────┘ │ ╰──────────────────────────────────────────────────────────────────────────────╯ """) assert output == expected_output class TestSelectiveLogSoftmax(TrlTestCase): @parameterized.expand([(torch.float64,), (torch.float32,), (torch.float16,), (torch.bfloat16,)]) def test_selective_log_softmax(self, dtype): """Test selective_log_softmax with logits of different dtypes""" vocab_size = 1024 batch_size = 4 seq_len = 32 input_ids = torch.randint(low=0, high=vocab_size, size=(batch_size, seq_len)) logits = torch.randn(batch_size, seq_len, vocab_size, dtype=dtype) expected_output = torch.gather(logits.log_softmax(-1), dim=-1, index=input_ids.unsqueeze(-1)).squeeze(-1) actual_output = selective_log_softmax(logits, input_ids) if dtype in [torch.float16, torch.bfloat16]: # half-precision dtypes fall back to an exact method assert torch.equal(actual_output, expected_output) else: torch.testing.assert_close(actual_output, expected_output, rtol=1e-5, atol=1e-5) class TestShuffleSequenceDict(TrlTestCase): def test_shuffle_preserves_shape(self): x = torch.arange(6).reshape(3, 2) y = torch.arange(3).reshape(3, 1) tensor_dict = {"x": x.clone(), "y": y.clone()} shuffled = shuffle_sequence_dict(tensor_dict) assert shuffled["x"].shape == x.shape assert shuffled["y"].shape == y.shape def test_shuffle_consistent_across_tensors(self): # Use known patterns to check alignment x = torch.tensor([[10, 11], [20, 21], [30, 31]]) y = torch.tensor([[1], [2], [3]]) tensor_dict = {"x": x.clone(), "y": y.clone()} shuffled = shuffle_sequence_dict(tensor_dict) # Build a reverse map from shuffled x rows to y values for i in range(3): x_row = shuffled["x"][i] y_val = shuffled["y"][i].item() if torch.equal(x_row, torch.tensor([10, 11])): assert y_val == 1 elif torch.equal(x_row, torch.tensor([20, 21])): assert y_val == 2 elif torch.equal(x_row, torch.tensor([30, 31])): assert y_val == 3 else: pytest.fail("Unexpected x row in shuffled output.") def test_none_tensor_remains_none(self): x = torch.arange(6).reshape(3, 2) tensor_dict = {"x": x.clone(), "y": None} shuffled = shuffle_sequence_dict(tensor_dict) assert shuffled["y"] is None assert shuffled["x"].shape == x.shape def test_shuffle_with_list(self): x = torch.tensor([[10, 11], [20, 21], [30, 31]]) y = ["a", "b", "c"] sequence_dict = {"x": x.clone(), "y": y} shuffled = shuffle_sequence_dict(sequence_dict) # Check that the list y is shuffled in the same order as x for i in range(3): x_row = shuffled["x"][i] y_val = shuffled["y"][i] if torch.equal(x_row, torch.tensor([10, 11])): assert y_val == "a" elif torch.equal(x_row, torch.tensor([20, 21])): assert y_val == "b" elif torch.equal(x_row, torch.tensor([30, 31])): assert y_val == "c" else: pytest.fail("Unexpected x row in shuffled output.") class TestSplitTensorDict(TrlTestCase): def test_split_equal_chunks(self): x = torch.arange(12).reshape(6, 2) y = torch.arange(6).reshape(6, 1) tensor_dict = {"x": x, "y": y} result = split_tensor_dict(tensor_dict, 3) expected_x_chunks = torch.chunk(x, 3, dim=0) expected_y_chunks = torch.chunk(y, 3, dim=0) assert len(result) == 3 for i in range(3): assert torch.equal(result[i]["x"], expected_x_chunks[i]) assert torch.equal(result[i]["y"], expected_y_chunks[i]) def test_with_none_tensor(self): x = torch.arange(12).reshape(6, 2) tensor_dict = {"x": x, "y": None} result = split_tensor_dict(tensor_dict, 2) expected_x_chunks = torch.chunk(x, 2, dim=0) assert len(result) == 2 for i in range(2): assert torch.equal(result[i]["x"], expected_x_chunks[i]) assert result[i]["y"] is None def test_with_scalar(self): x = torch.arange(12).reshape(6, 2) tensor_dict = {"x": x, "y": torch.tensor(1)} result = split_tensor_dict(tensor_dict, 2) expected_x_chunks = torch.chunk(x, 2, dim=0) assert len(result) == 2 for i in range(2): assert torch.equal(result[i]["x"], expected_x_chunks[i]) assert torch.equal(result[i]["y"], torch.tensor(1)) class TestSplitPixelValuesByGrid(TrlTestCase): def test_split_correctly_0(self): batch = { "image_grid_thw": torch.tensor([[1, 2, 2], [1, 2, 2]]), "num_images": [1, 1], "pixel_values": torch.arange(8 * 3).reshape(8, 3), # Shape: [8, 3] } result = split_pixel_values_by_grid(batch) assert isinstance(result["pixel_values"], list) assert len(result["pixel_values"]) == 2 assert torch.equal(result["pixel_values"][0], batch["pixel_values"][:4]) assert torch.equal(result["pixel_values"][1], batch["pixel_values"][4:]) assert isinstance(result["image_grid_thw"], list) assert len(result["image_grid_thw"]) == 2 assert torch.equal(result["image_grid_thw"][0], torch.tensor([[1, 2, 2]])) assert torch.equal(result["image_grid_thw"][1], torch.tensor([[1, 2, 2]])) def test_split_correctly_1(self): batch = { "image_grid_thw": torch.tensor([[1, 2, 2], [1, 2, 4]]), "num_images": [1, 1], "pixel_values": torch.arange(12 * 3).reshape(12, 3), # Shape: [12, 3] } result = split_pixel_values_by_grid(batch) assert isinstance(result["pixel_values"], list) assert len(result["pixel_values"]) == 2 assert torch.equal(result["pixel_values"][0], batch["pixel_values"][:4]) assert torch.equal(result["pixel_values"][1], batch["pixel_values"][4:12]) assert isinstance(result["image_grid_thw"], list) assert len(result["image_grid_thw"]) == 2 assert torch.equal(result["image_grid_thw"][0], torch.tensor([[1, 2, 2]])) assert torch.equal(result["image_grid_thw"][1], torch.tensor([[1, 2, 4]])) def test_missing_keys(self): batch = {"pixel_values": torch.tensor([1.0])} result = split_pixel_values_by_grid(batch) assert result == batch def test_mismatched_length(self): batch = { "image_grid_thw": torch.tensor([[1, 1, 2], [1, 2, 1]]), # Total = 8 "num_images": [1, 1], "pixel_values": torch.randn(3, 5), # Only 3 rows } with pytest.raises(ValueError): split_pixel_values_by_grid(batch) def test_multi_images(self): batch = { "image_grid_thw": torch.tensor([[1, 1, 2], [1, 2, 2], [1, 2, 1]]), # Total = 8 "num_images": [1, 2], "pixel_values": torch.arange(8 * 3).reshape(8, 3), # Shape: [8, 3] } result = split_pixel_values_by_grid(batch) assert isinstance(result["pixel_values"], list) assert len(result["pixel_values"]) == 2 assert torch.equal(result["pixel_values"][0], batch["pixel_values"][:2]) assert torch.equal(result["pixel_values"][1], batch["pixel_values"][2:]) assert isinstance(result["image_grid_thw"], list) assert len(result["image_grid_thw"]) == 2 assert torch.equal(result["image_grid_thw"][0], torch.tensor([[1, 1, 2]])) assert torch.equal(result["image_grid_thw"][1], torch.tensor([[1, 2, 2], [1, 2, 1]])) class TestUnsplitPixelValuesByGrid(TrlTestCase): def test_unsplit_correctly(self): pixel_values = [torch.randn(4, 5), torch.randn(2, 5)] pixel_values_merged = torch.cat(pixel_values, dim=0) image_grid_thw = [torch.tensor([[1, 2, 2]]), torch.tensor([[1, 2, 1]])] image_grid_thw_merged = torch.cat(image_grid_thw, dim=0) batch = {"pixel_values": pixel_values, "image_grid_thw": image_grid_thw, "other_key": torch.tensor([1])} result = unsplit_pixel_values_by_grid(batch) assert isinstance(result["pixel_values"], torch.Tensor) assert torch.allclose(result["pixel_values"], pixel_values_merged) assert isinstance(result["image_grid_thw"], torch.Tensor) assert torch.equal(result["image_grid_thw"], image_grid_thw_merged) assert "other_key" in result def test_no_op_if_not_list(self): original = torch.randn(5, 3) batch = {"pixel_values": original} result = unsplit_pixel_values_by_grid(batch) assert torch.equal(result["pixel_values"], original)