mirror of
https://github.com/huggingface/trl.git
synced 2025-10-20 18:43:52 +08:00
Compare commits
793 Commits
Author | SHA1 | Date | |
---|---|---|---|
0f9d948f7e | |||
cdb3f42332 | |||
fb11366ef0 | |||
ab46f07f9b | |||
64aa06499b | |||
be93a0c30c | |||
f9fbd91ea9 | |||
ff920d36d8 | |||
ddda41661b | |||
a108b9def9 | |||
54d4f6b13a | |||
05bc43e960 | |||
d3dc8ff654 | |||
21738c3732 | |||
eab175d434 | |||
4da4dc9117 | |||
6b3a02385d | |||
abbbb93d6a | |||
cafa663c84 | |||
fd04a5461a | |||
56e5766205 | |||
89d44caece | |||
adfa7fd59a | |||
cf5183db7f | |||
1954c02d86 | |||
45f4c58832 | |||
cc044e35b2 | |||
999acd53ec | |||
8606b1ad09 | |||
a673da5773 | |||
00b8e311aa | |||
c163cf5081 | |||
bc9c019c43 | |||
18596cf232 | |||
280d35301b | |||
13fa8402a3 | |||
09b669fbf7 | |||
01d0be15cb | |||
3a42af1c78 | |||
aaf39604ba | |||
2bf48478e8 | |||
a8cfca6d01 | |||
1bca49515e | |||
39e96394a9 | |||
8e6ed93dfd | |||
29c5e05e3a | |||
a9b27f82d6 | |||
cd6b3de356 | |||
36685c8bba | |||
89556c8cbf | |||
f3e8c23044 | |||
9ee6c3aa56 | |||
ef05331752 | |||
05e2ba6e01 | |||
1b4f189e09 | |||
1faa7f9b36 | |||
66e6eab9bb | |||
27af0aaf4a | |||
b4ffda769e | |||
0dad4eb7ca | |||
c82f626f94 | |||
33add19161 | |||
294f35bf3c | |||
9874b3aa04 | |||
1e61f6cc5a | |||
27adc30162 | |||
df737f99c1 | |||
c04e84c454 | |||
d625c5533a | |||
6cdd24a360 | |||
8b38570258 | |||
95b1a9f612 | |||
5c1511423b | |||
5e2e9cb442 | |||
227df8271e | |||
ae1581474e | |||
47b9515fb1 | |||
c4891dcfee | |||
055cee255a | |||
73a2fb0554 | |||
982ba08092 | |||
e03e7acc5c | |||
9df19e8a75 | |||
1d7b8c4f70 | |||
7e170612a4 | |||
559724ee2c | |||
a5a46725c8 | |||
b6bcafb8bb | |||
4bfb8eb0d1 | |||
4d66bad208 | |||
e90117b3e1 | |||
31b54a6237 | |||
17e33cdaa0 | |||
5a0cebc786 | |||
65308cfd84 | |||
1755e03f6f | |||
793735a698 | |||
e70a0efeca | |||
7eaca76ed1 | |||
657f9ce6ee | |||
485852c942 | |||
9f3702f6be | |||
e751a16df5 | |||
582bc5684b | |||
c5ba70d4fc | |||
5b586da3cc | |||
488025cd87 | |||
2594cb39de | |||
2fe2337067 | |||
f6b4d6e569 | |||
26d86757a7 | |||
9771f259ed | |||
7bdedd4075 | |||
a069a2f19c | |||
ea45f513f3 | |||
a91023990a | |||
1a9387b922 | |||
1884ff1bb8 | |||
bfe2075608 | |||
6067e2a669 | |||
dee37342a8 | |||
8037f18cdf | |||
a0a53171cc | |||
23a635ed61 | |||
9b38b0b5ee | |||
0f26049ea2 | |||
7511aa4e36 | |||
f713f614e9 | |||
a34987956c | |||
0f88c179e3 | |||
beda4328cc | |||
07cfe1677e | |||
9f7755d8ed | |||
4e3f569eb8 | |||
979fda1548 | |||
f6fb6a88a9 | |||
6cbf8fbc9f | |||
5cb390cd30 | |||
b3c391e628 | |||
1b85ca6147 | |||
e7a1290b0a | |||
3822edd67b | |||
230455cab0 | |||
08f014d559 | |||
10740333bd | |||
058a733c30 | |||
3f193972d8 | |||
b575596b89 | |||
118c43f0e0 | |||
40b1c33edf | |||
1a2e74cc5a | |||
80f7dcb16d | |||
4404ccd24a | |||
39f77ca2d8 | |||
52085dd96b | |||
c7a1c95017 | |||
3003058418 | |||
a759cee2e0 | |||
0a3bad44f0 | |||
bb5b96a823 | |||
8466c7273e | |||
a871ec8e91 | |||
f7572221db | |||
8ec2e42833 | |||
218d493d11 | |||
1a9f78eb3a | |||
a10978ebdf | |||
87fbb831d3 | |||
52f39d6a24 | |||
931f7a14d2 | |||
9951105a90 | |||
5a6e23aac9 | |||
d9104c8b0d | |||
d5a5840307 | |||
f3cbd41e2c | |||
d41a32f619 | |||
fc4dae256d | |||
e4e5671e80 | |||
7c76f103da | |||
aad18ef52a | |||
b55d9f0412 | |||
4871c82b0c | |||
fd9e5a7cab | |||
5463e49a55 | |||
22759c8208 | |||
2ee6fd369f | |||
844a9c665f | |||
04f6597377 | |||
e3244d2d09 | |||
6a02c69789 | |||
a1c58aa42a | |||
3f0695a4ca | |||
a72b50b772 | |||
ea1d9be2a7 | |||
402187baab | |||
5858ceab7e | |||
7442d42c21 | |||
98de0e7c62 | |||
491921c1a4 | |||
ad6a35bdd5 | |||
7bc9858a8f | |||
b882f57d93 | |||
ac7bde5832 | |||
3d94e4e25c | |||
1a303cca8e | |||
ac327d5e84 | |||
c0854c32c9 | |||
aa18ecfde7 | |||
6849c050b9 | |||
27a6f2201b | |||
f074dcdc86 | |||
0caff61600 | |||
019fc6dbaa | |||
69ad852e56 | |||
45ccdefac4 | |||
703484a8c2 | |||
9b76d5f2e9 | |||
cbe0681ba1 | |||
4e0cf01aef | |||
5c05913196 | |||
caba04da42 | |||
be5a088337 | |||
38861475e6 | |||
f69707dab4 | |||
76f00fc394 | |||
8453017622 | |||
3608709529 | |||
21f0055893 | |||
013d360b8f | |||
e5ae703d35 | |||
a92e00e810 | |||
9b3c5bf64f | |||
15fec312d5 | |||
be1e34003c | |||
6aaf379a82 | |||
49adf74833 | |||
6c54f023ae | |||
963243a7d1 | |||
aafd8cbea5 | |||
822653824b | |||
ba036576d4 | |||
293b620950 | |||
ae3bd0d07a | |||
6d9fc11fd6 | |||
ffcb9f4aee | |||
00e5889380 | |||
5c9cf2003d | |||
8830786a23 | |||
b0f513c13d | |||
81221661c6 | |||
7347c292c3 | |||
2106b31298 | |||
9b67eea473 | |||
e752fc6c2e | |||
674bb75f59 | |||
b9df81045b | |||
55e680e142 | |||
09eefa73ab | |||
7fdb69aa7d | |||
5b9236d1e8 | |||
82d12eb751 | |||
84d73fd00b | |||
2241f17914 | |||
cf97133d51 | |||
724acb9716 | |||
7134a1e73f | |||
bf6e7edea5 | |||
e95f9fb74a | |||
a85768f120 | |||
78c5ce23fd | |||
af4ad47035 | |||
b2ae99925d | |||
bd946f93c1 | |||
f42e34e613 | |||
338fbd546b | |||
32f8fa8aad | |||
1a2276402f | |||
1f344c9377 | |||
85121fc300 | |||
bbdd6db17c | |||
6e088d165c | |||
a325a0eec5 | |||
0ec1ccd990 | |||
1c35a48b50 | |||
2ce36ae889 | |||
bf6919117e | |||
265663af6a | |||
5ab15d3fef | |||
fecaa991de | |||
ab30a01baf | |||
6dc278a042 | |||
67441bb432 | |||
62685fbf20 | |||
4197956395 | |||
9ac8d9773b | |||
094d51b599 | |||
df8f619ec5 | |||
56880ba73d | |||
801582ec24 | |||
ed14ed9043 | |||
4659ad916f | |||
1123bd0f51 | |||
55a329e9f0 | |||
4720656654 | |||
807046b7d7 | |||
317d2d477b | |||
aeb03cf1a9 | |||
2578e95023 | |||
6f99f42f72 | |||
d14f7f3eb2 | |||
8e65825d4c | |||
5e4d7be0e1 | |||
f34b70a32e | |||
0e216f7411 | |||
59c201433c | |||
40c238395e | |||
a1d2955116 | |||
887c1f3fa3 | |||
949db2357e | |||
fe4b5efe4e | |||
a9b54a852e | |||
d4222a1e08 | |||
a5c88d6c75 | |||
b6a084c46e | |||
d9f056862f | |||
3d2c1e49b1 | |||
5fd78367ae | |||
0f5ffad26e | |||
88514d51e3 | |||
76837e82b9 | |||
35553930da | |||
fd4b283b82 | |||
1b1140aa69 | |||
4c7eb6fe29 | |||
564fc86759 | |||
3215a1c586 | |||
cdc16f3ac6 | |||
2ecd53ad77 | |||
5877786b5a | |||
57d9a97394 | |||
751fb1d84b | |||
edabe0a2d8 | |||
abfffc510b | |||
ed7de87dc7 | |||
beb892bfe0 | |||
f2d42fa0c2 | |||
d6a7e9d6f5 | |||
451677203d | |||
2f25f54ab9 | |||
a50124dd3a | |||
1d23ecc36f | |||
52d213173f | |||
d9ee2fd202 | |||
763738f457 | |||
aed5da580e | |||
99451b421a | |||
5239b9462d | |||
8fb267ff1e | |||
2e1adbb6ff | |||
b668048fe1 | |||
8c49ea39ec | |||
88ad1a099c | |||
9908dda6d9 | |||
5e204e1eaa | |||
82cfeb8930 | |||
0fe73a8af5 | |||
33fb9efc43 | |||
f68d11f9f9 | |||
aeca63774f | |||
117c6d4b52 | |||
6d4ed070f1 | |||
cd7156fb34 | |||
ca850be0a2 | |||
179ba53671 | |||
e3e171a26b | |||
b3aff441ff | |||
efc687db62 | |||
f2e362656c | |||
c9c4f18039 | |||
460e780265 | |||
7ba118a229 | |||
6a05feff02 | |||
2f72f47191 | |||
9410874787 | |||
9c5388b69e | |||
b02189aaa5 | |||
52201d3c18 | |||
9ff79a65e3 | |||
9001a8682c | |||
f6f42651e2 | |||
148b592313 | |||
d6a8f2c2f6 | |||
8d9cfaafeb | |||
94e4135a17 | |||
ac267781ec | |||
2c6e0d9705 | |||
e1d781353b | |||
a34e9bf84f | |||
c10cc8995b | |||
9368dccef6 | |||
43df3a485a | |||
baee06f2e8 | |||
bbd8cbb720 | |||
4f937c7629 | |||
16fa13ce72 | |||
453db5cd79 | |||
ee3cbe1946 | |||
17e8060984 | |||
163695e85c | |||
672c96546d | |||
bdeb117320 | |||
6578fdc101 | |||
a0066f47f8 | |||
5626806aef | |||
bb0afc2459 | |||
066fc37bd3 | |||
b80c1a6fb8 | |||
b5eabbeb07 | |||
cbf9abcd07 | |||
6f8fe59aeb | |||
1293f37c5f | |||
e7870dd5d6 | |||
21d5baf338 | |||
76dbb1a576 | |||
b8c9d9c7bc | |||
623963126b | |||
2d24d35013 | |||
dde20b23cf | |||
015321e135 | |||
454f36d951 | |||
9b7f9f3519 | |||
518e29ca9c | |||
ac7b6cfdfa | |||
0238d96c6f | |||
c86b51cd12 | |||
ac77c09223 | |||
7f2ccbe3a2 | |||
74e20cbbbc | |||
27b9e3a93f | |||
dc2b8b9e90 | |||
5e90682836 | |||
3b439967f4 | |||
2f34a161cd | |||
6138439df4 | |||
d57a181163 | |||
73c3970c1f | |||
013a32b396 | |||
24fb32733f | |||
bb56c6e6af | |||
06be6f409a | |||
b2696578ce | |||
0ce3b65928 | |||
e155cb8a66 | |||
ea7a1be92c | |||
110d0884c7 | |||
57ba9b93aa | |||
0de75b26f2 | |||
e615974a03 | |||
c2bb1eed14 | |||
9c376c571f | |||
16994738d0 | |||
99225bb6d6 | |||
88be2c07e5 | |||
f2349d2af0 | |||
d843b3dadd | |||
84dab850f6 | |||
92f6d246d3 | |||
31b7820aad | |||
b9aa965cce | |||
a67f2143c3 | |||
494b4afa10 | |||
02f4e750c0 | |||
2ba3005d1c | |||
7e394b03e8 | |||
14f3613dac | |||
5e24101b36 | |||
b81a6121c3 | |||
7f0d246235 | |||
70036bf87f | |||
d0aa421e5e | |||
5375d71bbd | |||
6004e033a4 | |||
f436c3e1c9 | |||
cd1aa6bdcc | |||
b3f93f0bad | |||
6c32c8bfcd | |||
3107a40f16 | |||
419791695c | |||
7e5924d17e | |||
ed9ea74b62 | |||
511c92c91c | |||
c6cb6353a5 | |||
adb3e0560b | |||
adf58d80d0 | |||
9aa022503c | |||
82ad390caf | |||
ac038ef03a | |||
51ca76b749 | |||
7005ab4d11 | |||
ffb1ab74ba | |||
47d08a9626 | |||
70327c18e6 | |||
f05c3fa8fc | |||
4799ba4842 | |||
d45c86e2a7 | |||
c6b0d1358b | |||
3321084e30 | |||
a9cffc7caf | |||
32a928cfc2 | |||
1a3bb372ac | |||
d4564b7c64 | |||
1be4d86ccc | |||
78249d9de4 | |||
5c21de30ae | |||
0a566f0c58 | |||
de3876577c | |||
1201aa61b4 | |||
c00722ce0a | |||
124189c86a | |||
d5eeaab462 | |||
5368be1e1e | |||
b169e1030d | |||
9af4734178 | |||
a0d714949f | |||
a0e28143ec | |||
32d9d34eb1 | |||
fb1b48fdbe | |||
b5e4bc5984 | |||
7a24565d9d | |||
44a06fc487 | |||
a84fc5d815 | |||
80038a5a92 | |||
cece86b182 | |||
d005980d8b | |||
cc23b511e4 | |||
2cad48d511 | |||
6859e048da | |||
92eea1f239 | |||
663002f609 | |||
44d998b2af | |||
9b80f3d50c | |||
2038e52c30 | |||
10c2f63b2a | |||
9fb871f62f | |||
3cec013a20 | |||
cc80ac6b47 | |||
4c0c98d950 | |||
0d2bee51aa | |||
6920c2d1bb | |||
4d8267610f | |||
c3143832cb | |||
e74dbf2d6a | |||
41fe228654 | |||
07f0e687cb | |||
dc2bd07408 | |||
cdafc9333c | |||
40f05226de | |||
f6c664301d | |||
08ba866c86 | |||
ebc85b2e39 | |||
88bede66fc | |||
7a2bbe3957 | |||
d47220f299 | |||
d8324924c8 | |||
4c92ba5769 | |||
a5b98fcf97 | |||
e51a5ac985 | |||
31b93876a7 | |||
85696aa64c | |||
642c4b1855 | |||
9a6061fc2f | |||
a8fd6dcd17 | |||
e2966c8d99 | |||
37934d70a9 | |||
9c043e596b | |||
a20e822737 | |||
3511856767 | |||
f8cf88ab65 | |||
2ee0b62cdb | |||
ac071d6225 | |||
72f19c3fce | |||
8d7b54d4bf | |||
a638f73f5c | |||
8a518ee619 | |||
7a67de3c1c | |||
3412f513f2 | |||
fc20db8873 | |||
7acb9c2319 | |||
684038057e | |||
1f6a1d2f9a | |||
d60a1f50fe | |||
728a9a3b5f | |||
850ddcf598 | |||
d57e4b7265 | |||
11f442fc05 | |||
437e8ccaba | |||
4dd0dc2988 | |||
4f59e923ac | |||
10f70fa333 | |||
47ab034ca9 | |||
e755eee660 | |||
ac31d1205e | |||
c44ab6d1e9 | |||
a15a80e0d5 | |||
264f1279fd | |||
0cda2f2f01 | |||
e0ff66103e | |||
3a3ed88f28 | |||
b65657f41d | |||
de024ece28 | |||
2fbc0f4fc2 | |||
cf5168ea7c | |||
1e4fb80cbc | |||
fe41acd6ae | |||
c71262c9c6 | |||
dcee683d96 | |||
4788e5cda5 | |||
6cea2ef964 | |||
64d9816eac | |||
67564fdbbe | |||
e529579232 | |||
dc4cfab700 | |||
66d3a82dd2 | |||
3eda856371 | |||
616a273ac2 | |||
9955583829 | |||
bed205a2d2 | |||
42933fa647 | |||
bbdef00961 | |||
0956dc17cc | |||
a7dc892717 | |||
b0372e66a5 | |||
c1b272f4a6 | |||
f05f63c1ea | |||
54f806b6ff | |||
a9a756553f | |||
96bb3deb32 | |||
dbea3da917 | |||
150a93101b | |||
cbcaa46cd3 | |||
e3fe28ee1a | |||
fb0b9edc24 | |||
fc76fe8d11 | |||
b60ce797d8 | |||
6faf4c0d81 | |||
29bd0046a9 | |||
4867c2a3db | |||
332062372d | |||
b580e45c94 | |||
2004d62c5c | |||
ac7c8b1284 | |||
df12913602 | |||
ddf4c8dc3e | |||
890232fa28 | |||
9929370dee | |||
6171cddee5 | |||
33d2151f4f | |||
8bd2ab82f4 | |||
82b07d6b01 | |||
72bf6c21be | |||
74e54b5946 | |||
393097356c | |||
db8e09e346 | |||
1dae55f90f | |||
c8cef79e6c | |||
7dcf437a19 | |||
4e85bd75a9 | |||
c9d56366ed | |||
4dce042a38 | |||
98ad01ddfd | |||
fef8240c23 | |||
915ffc7c61 | |||
5828a666bf | |||
052a8e14b5 | |||
a2adfb836a | |||
4ebfc5de28 | |||
9e9dc96e67 | |||
7ddef5c158 | |||
a9cddf8c55 | |||
2860ce5091 | |||
30e33bd92d | |||
d5a0d2d345 | |||
314e8eb367 | |||
e10792032b | |||
78045dedc8 | |||
747612f9d3 | |||
9e3a35bd3d | |||
4402b36dcf | |||
78f8228874 | |||
b6af2edc93 | |||
cd85b14fbb | |||
a57544f47a | |||
b68ff96f0c | |||
c8c01cc055 | |||
3479606c8c | |||
7965b78340 | |||
56bd1bba26 | |||
94d53e6617 | |||
b5be100ae0 | |||
6e1652bc5e | |||
65374c6a71 | |||
9956091112 | |||
34d273f227 | |||
3bf94492a8 | |||
ba6abee37f | |||
a57e75967c | |||
ae23d40f3b | |||
83b367b11a | |||
d1ed730ab8 | |||
8f8e95e25d | |||
4e23d958f2 | |||
50c46205b6 | |||
6105d03f92 | |||
e247bbd7d5 | |||
3d04496196 | |||
2d244f8acb | |||
f5168fdbaf | |||
79686e1ac7 | |||
34ebc4ccaf | |||
1d84e2b888 | |||
2f71b8b1e2 | |||
5bcb8ad0d6 | |||
b8b972fde1 | |||
3eb9ccb104 | |||
974b0d380f | |||
39a7d1c121 | |||
0bdc63839f | |||
275d33b3ef | |||
c0819ee99f | |||
a03e7cc4e4 | |||
a13cb8952c | |||
84156f179f | |||
4eb0b905e2 | |||
6c203f9fef | |||
f18253bf2d | |||
151a452d14 | |||
488b502d31 | |||
3c0a10b1ae | |||
b031adfdb8 | |||
e7cb597230 | |||
bc8dfbf4e2 | |||
e4ed7a3a5a | |||
9a7efbd051 | |||
b344bcea2c | |||
35e12dc595 | |||
1da6be18e0 | |||
e249cd802f | |||
a02513c3b7 | |||
13454d2f4b | |||
99f2c94b22 | |||
6401d080c9 | |||
d632a5b289 | |||
5aeb752053 | |||
b8b89783ca | |||
8799952876 | |||
3b4c24946b | |||
0347f583e3 | |||
75de236c09 | |||
7075cec94d | |||
adf17a5a26 | |||
0d40e186ee | |||
683bc5af6f | |||
5f0913122b | |||
d1aa0b6b2c | |||
d88ec14602 | |||
6c18e40e97 | |||
1d0a7ea17b | |||
9f68ead8cf | |||
f30daa4225 | |||
24fd8dd513 | |||
c050ebc073 | |||
abc0584736 | |||
6d1cb85e73 | |||
e90e8d91d2 | |||
113aaae033 | |||
0865572748 | |||
a6532a11c2 | |||
3595eb00e0 | |||
9afd901d0f | |||
e04432d5e3 | |||
75c1c47fcc | |||
a5788ac99b | |||
3bbe7e0407 | |||
edf60e826b | |||
5d1deb1445 | |||
476c4b8dc0 | |||
e823458a6a | |||
1c0d8bca15 | |||
363369a717 | |||
aba4df02c1 | |||
98226473e4 | |||
87f4c70e60 | |||
995f1174da |
67
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
67
.github/ISSUE_TEMPLATE/bug-report.yml
vendored
Normal file
@ -0,0 +1,67 @@
|
||||
name: "\U0001F41B Bug Report"
|
||||
description: Submit a bug report to help us improve TRL
|
||||
labels: [ "bug" ]
|
||||
body:
|
||||
- type: markdown
|
||||
attributes:
|
||||
value: |
|
||||
Thanks for taking the time to fill out this bug report! 🤗
|
||||
|
||||
🚩 If it is your first time submitting, be sure to check our [bug report guidelines](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md#did-you-find-a-bug)
|
||||
|
||||
- type: textarea
|
||||
id: reproduction
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Reproduction
|
||||
description: |
|
||||
Please provide a code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
|
||||
If you have code snippets, error messages, stack traces please provide them here as well.
|
||||
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
|
||||
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
|
||||
|
||||
value: |
|
||||
```python
|
||||
from trl import ...
|
||||
|
||||
```
|
||||
|
||||
outputs:
|
||||
|
||||
```
|
||||
Traceback (most recent call last):
|
||||
File "example.py", line 42, in <module>
|
||||
...
|
||||
```
|
||||
|
||||
- type: textarea
|
||||
id: system-info
|
||||
attributes:
|
||||
label: System Info
|
||||
description: |
|
||||
Please provide information about your system: platform, Python version, PyTorch version, Transformers version, devices, TRL version, ...
|
||||
You can get this information by running `trl env` in your terminal.
|
||||
|
||||
placeholder: Copy-paste the output of `trl env`
|
||||
validations:
|
||||
required: true
|
||||
|
||||
- type: checkboxes
|
||||
id: terms
|
||||
attributes:
|
||||
label: Checklist
|
||||
description: |
|
||||
Before submitting, please confirm that you've completed each of the following.
|
||||
If an item doesn't apply to your issue, check it anyway to show you've reviewed it.
|
||||
options:
|
||||
- label: "I have checked that my issue isn't already filed (see [open issues](https://github.com/huggingface/trl/issues?q=is%3Aissue))"
|
||||
required: true
|
||||
- label: "I have included my system information"
|
||||
required: true
|
||||
- label: "Any code provided is minimal, complete, and reproducible ([more on MREs](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-and-highlighting-code-blocks))"
|
||||
required: true
|
||||
- label: "Any code provided is properly formatted in code blocks, (no screenshot, [more on code blocks](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-and-highlighting-code-blocks))"
|
||||
required: true
|
||||
- label: "Any traceback provided is complete"
|
||||
required: true
|
31
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
Normal file
31
.github/ISSUE_TEMPLATE/feature-request.yml
vendored
Normal file
@ -0,0 +1,31 @@
|
||||
name: "\U0001F680 Feature request"
|
||||
description: Submit a proposal/request for a new TRL feature
|
||||
labels: [ "Feature request" ]
|
||||
body:
|
||||
- type: textarea
|
||||
id: feature-request
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Feature request
|
||||
description: |
|
||||
A clear and concise description of the feature proposal. Please provide a link to the paper and code in case they exist.
|
||||
|
||||
- type: textarea
|
||||
id: motivation
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Motivation
|
||||
description: |
|
||||
Please outline the motivation for the proposal. Is your feature request related to a problem? e.g., I'm always frustrated when [...]. If this is related to another GitHub issue, please link here too.
|
||||
|
||||
|
||||
- type: textarea
|
||||
id: contribution
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Your contribution
|
||||
description: |
|
||||
Is there any way that you could help, e.g. by submitting a PR? Make sure to read the CONTRIBUTING.MD [readme](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md)
|
32
.github/ISSUE_TEMPLATE/new-trainer-addition.yml
vendored
Normal file
32
.github/ISSUE_TEMPLATE/new-trainer-addition.yml
vendored
Normal file
@ -0,0 +1,32 @@
|
||||
name: "\U0001F31F New trainer addition"
|
||||
description: Submit a proposal/request to implement a new trainer for a post-training method
|
||||
labels: [ "New trainer" ]
|
||||
|
||||
body:
|
||||
- type: textarea
|
||||
id: description-request
|
||||
validations:
|
||||
required: true
|
||||
attributes:
|
||||
label: Method description
|
||||
description: |
|
||||
Put any and all important information relative to the method
|
||||
|
||||
- type: checkboxes
|
||||
id: information-tasks
|
||||
attributes:
|
||||
label: Open source status
|
||||
description: |
|
||||
Please note that if the method implementation isn't available or model weights with training datasets aren't available, we are less likely to implement it in `trl`.
|
||||
options:
|
||||
- label: "The method implementation is available"
|
||||
- label: "The model weights are available"
|
||||
- label: "The training datasets are available"
|
||||
|
||||
- type: textarea
|
||||
id: additional-info
|
||||
attributes:
|
||||
label: Provide useful links for the implementation
|
||||
description: |
|
||||
Please provide information regarding the implementation, the weights, and the authors.
|
||||
Please mention the authors by @gh-username if you're aware of their usernames.
|
31
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
31
.github/PULL_REQUEST_TEMPLATE.md
vendored
Normal file
@ -0,0 +1,31 @@
|
||||
# What does this PR do?
|
||||
|
||||
<!--
|
||||
Congratulations! You've made it this far! You're not quite done yet though.
|
||||
|
||||
Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution.
|
||||
|
||||
Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change.
|
||||
|
||||
Once you're done, someone will review your PR shortly. They may suggest changes to make the code even better.
|
||||
-->
|
||||
|
||||
<!-- Remove if not applicable -->
|
||||
|
||||
Fixes # (issue)
|
||||
|
||||
|
||||
## Before submitting
|
||||
- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
|
||||
- [ ] Did you read the [contributor guideline](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md#create-a-pull-request),
|
||||
Pull Request section?
|
||||
- [ ] Was this discussed/approved via a GitHub issue? Please add a link
|
||||
to it if that's the case.
|
||||
- [ ] Did you make sure to update the documentation with your changes?
|
||||
- [ ] Did you write any new necessary tests?
|
||||
|
||||
|
||||
## Who can review?
|
||||
|
||||
Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
|
||||
members/contributors who may be interested in your PR.
|
19
.github/codeql/custom-queries.qls
vendored
Normal file
19
.github/codeql/custom-queries.qls
vendored
Normal file
@ -0,0 +1,19 @@
|
||||
import codeql
|
||||
|
||||
from WorkflowString interpolation, Workflow workflow
|
||||
where
|
||||
interpolation.getStringValue().matches("${{ github.event.issue.title }}") or
|
||||
interpolation.getStringValue().matches("${{ github.event.issue.body }}") or
|
||||
interpolation.getStringValue().matches("${{ github.event.pull_request.title }}") or
|
||||
interpolation.getStringValue().matches("${{ github.event.pull_request.body }}") or
|
||||
interpolation.getStringValue().matches("${{ github.event.review.body }}") or
|
||||
interpolation.getStringValue().matches("${{ github.event.comment.body }}") or
|
||||
interpolation.getStringValue().matches("${{ github.event.inputs.* }}") or
|
||||
interpolation.getStringValue().matches("${{ github.event.head_commit.message }}")
|
||||
interpolation.getStringValue().matches("${{ github.event.* }}") and
|
||||
(
|
||||
step.getKey() = "run" or // Injection in run
|
||||
step.getKey() = "env" or // Injection via env
|
||||
step.getKey() = "with" // Injection via with
|
||||
)
|
||||
select workflow, "🚨 Do not use directly as input of action"
|
107
.github/workflows/benchmark.yml
vendored
107
.github/workflows/benchmark.yml
vendored
@ -1,107 +0,0 @@
|
||||
name: "Benchmark on Comment"
|
||||
|
||||
# https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
|
||||
on:
|
||||
issue_comment:
|
||||
types: [created]
|
||||
|
||||
jobs:
|
||||
Benchmark:
|
||||
strategy:
|
||||
fail-fast: true
|
||||
matrix:
|
||||
python-version: [3.9]
|
||||
os: [self-hosted]
|
||||
|
||||
name: Benchmark
|
||||
# Only run if it#s a PR and the comment contains /Benchmark
|
||||
if: github.event.issue.pull_request && startsWith(github.event.comment.body, '/benchmark-trl-experiments') && contains(FromJSON('["vwxyzjn", "younesbelkada", "lvwerra", "lewtun"]'), github.actor)
|
||||
runs-on: ${{ matrix.os }}
|
||||
|
||||
steps:
|
||||
- name: Get branch of PR
|
||||
uses: xt0rted/pull-request-comment-branch@v1
|
||||
id: comment-branch
|
||||
- name: Set latest commit status as pending
|
||||
uses: myrotvorets/set-commit-status-action@master
|
||||
with:
|
||||
sha: ${{ steps.comment-branch.outputs.head_sha }}
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
status: pending
|
||||
- name: Checkout `main` branch
|
||||
uses: actions/checkout@v3
|
||||
- name: Checkout PR branch
|
||||
run: gh pr checkout $PR_NUMBER
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
PR_NUMBER: ${{ github.event.issue.number }}
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
# - name: Cleanup pip packages (specific to self-hosted runners)
|
||||
# run: |
|
||||
# echo PATH is $PATH
|
||||
# echo PYTHONPATH is $PYTHONPATH
|
||||
# echo which python is $(which python)
|
||||
# echo which pip is $(which pip)
|
||||
|
||||
# pip_list=$(pip list --format=freeze | grep -v "^pip==" | grep -v "^setuptools==")
|
||||
# if [ ! -z "$pip_list" ]; then
|
||||
# echo "$pip_list" | xargs pip uninstall -y
|
||||
# fi
|
||||
- name: Print python depdenencies
|
||||
run: pip list --format=freeze
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install .[test,benchmark]
|
||||
|
||||
- name: Login
|
||||
run: wandb login ${{ secrets.WANDB_API_KEY }} && huggingface-cli login --token ${{ secrets.HUGGING_FACE_HUB_TOKEN }}
|
||||
- name: Run benchmark
|
||||
env:
|
||||
GITHUB_CONTEXT: ${{ toJson(github) }}
|
||||
PERSONAL_ACCESS_TOKEN_GITHUB: ${{ secrets.PERSONAL_ACCESS_TOKEN_GITHUB }}
|
||||
run: |
|
||||
COMMENT="${{ github.event.comment.body }}"
|
||||
if [[ "$COMMENT" == *"/benchmark-trl-experiments benchmark/benchmark_level1.sh"* ]]; then
|
||||
echo "Running benchmark/benchmark_level1.sh"
|
||||
BENCHMARK_SCRIPT="benchmark/benchmark_level1.sh" BENCHMARK_PLOT_SCRIPT="benchmark/benchmark_level1_plot.sh" bash benchmark/benchmark_and_report.sh
|
||||
elif [[ "$COMMENT" == *"/benchmark-trl-experiments benchmark/benchmark_level2.sh"* ]]; then
|
||||
echo "Running benchmark/benchmark_level2.sh"
|
||||
BENCHMARK_SCRIPT="benchmark/benchmark_level2.sh" BENCHMARK_PLOT_SCRIPT="benchmark/benchmark_level2_plot.sh" bash benchmark/benchmark_and_report.sh
|
||||
elif [[ "$COMMENT" == *"/benchmark-trl-experiments benchmark/benchmark_level3.sh"* ]]; then
|
||||
echo "Running benchmark/benchmark_level3.sh"
|
||||
BENCHMARK_SCRIPT="benchmark/benchmark_level3.sh" BENCHMARK_PLOT_SCRIPT="benchmark/benchmark_level3_plot.sh" bash benchmark/benchmark_and_report.sh
|
||||
else
|
||||
echo "Invalid command in comment. Skipping execution."
|
||||
fi
|
||||
|
||||
# send message to PR
|
||||
- name: Setup Node.js 16
|
||||
uses: actions/setup-node@v3
|
||||
with:
|
||||
node-version: 16
|
||||
- name: Add workflow result as comment on PR
|
||||
uses: actions/github-script@v6
|
||||
if: always()
|
||||
with:
|
||||
script: |
|
||||
const name = '${{ github.workflow }}';
|
||||
const url = '${{ github.server_url }}/${{ github.repository }}/actions/runs/${{ github.run_id }}';
|
||||
const success = '${{ job.status }}' === 'success';
|
||||
const body = `${name}: ${success ? 'succeeded ✅' : 'failed ❌'}\n${url}`;
|
||||
|
||||
await github.rest.issues.createComment({
|
||||
issue_number: context.issue.number,
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
body: body
|
||||
})
|
||||
- name: Set latest commit status as ${{ job.status }}
|
||||
uses: myrotvorets/set-commit-status-action@master
|
||||
if: always()
|
||||
with:
|
||||
sha: ${{ steps.comment-branch.outputs.head_sha }}
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
status: ${{ job.status }}
|
1
.github/workflows/build_documentation.yml
vendored
1
.github/workflows/build_documentation.yml
vendored
@ -14,5 +14,6 @@ jobs:
|
||||
commit_sha: ${{ github.sha }}
|
||||
package: trl
|
||||
version_tag_suffix: ""
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
secrets:
|
||||
hf_token: ${{ secrets.HF_DOC_BUILD_PUSH }}
|
||||
|
4
.github/workflows/build_pr_documentation.yml
vendored
4
.github/workflows/build_pr_documentation.yml
vendored
@ -9,9 +9,11 @@ concurrency:
|
||||
|
||||
jobs:
|
||||
build:
|
||||
if: github.event.pull_request.draft == false
|
||||
uses: huggingface/doc-builder/.github/workflows/build_pr_documentation.yml@main
|
||||
with:
|
||||
commit_sha: ${{ github.event.pull_request.head.sha }}
|
||||
pr_number: ${{ github.event.number }}
|
||||
package: trl
|
||||
version_tag_suffix: ""
|
||||
version_tag_suffix: ""
|
||||
custom_container: huggingface/transformers-doc-builder
|
||||
|
2
.github/workflows/clear_cache.yml
vendored
2
.github/workflows/clear_cache.yml
vendored
@ -10,7 +10,7 @@ jobs:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Cleanup
|
||||
run: |
|
||||
|
26
.github/workflows/codeQL.yml
vendored
Normal file
26
.github/workflows/codeQL.yml
vendored
Normal file
@ -0,0 +1,26 @@
|
||||
name: "CodeQL Analysis - Workflows"
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
jobs:
|
||||
analyze:
|
||||
name: "Analyze GitHub Workflows"
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
security-events: write
|
||||
actions: read
|
||||
contents: read
|
||||
|
||||
steps:
|
||||
- name: "Checkout repository"
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: "Initialize CodeQL"
|
||||
uses: github/codeql-action/init@v2
|
||||
with:
|
||||
languages: "yaml"
|
||||
queries: +security-and-quality, ./.github/codeql/custom-queries.qls
|
||||
|
||||
- name: "Perform CodeQL Analysis"
|
||||
uses: github/codeql-action/analyze@v2
|
64
.github/workflows/docker-build.yml
vendored
64
.github/workflows/docker-build.yml
vendored
@ -31,7 +31,7 @@ jobs:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
@ -45,30 +45,14 @@ jobs:
|
||||
push: true
|
||||
tags: huggingface/trl-latest-gpu
|
||||
|
||||
- name: Post to a Slack channel
|
||||
id: slack
|
||||
#uses: slackapi/slack-github-action@v1.25.0
|
||||
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
# Slack channel id, channel name, or user id to post message.
|
||||
# See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
channel-id: ${{ env.CI_SLACK_CHANNEL }}
|
||||
# For posting a rich message using Block Kit
|
||||
payload: |
|
||||
{
|
||||
"text": "trl-latest-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
|
||||
"blocks": [
|
||||
{
|
||||
"type": "section",
|
||||
"text": {
|
||||
"type": "mrkdwn",
|
||||
"text": "trl-latest-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
env:
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
|
||||
title: 🤗 Results of the trl-latest-gpu Docker Image build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
trl-source:
|
||||
name: "Latest TRL + HF ecosystem from source"
|
||||
@ -87,7 +71,7 @@ jobs:
|
||||
- name: Set up Docker Buildx
|
||||
uses: docker/setup-buildx-action@v1
|
||||
- name: Check out code
|
||||
uses: actions/checkout@v3
|
||||
uses: actions/checkout@v4
|
||||
- name: Login to DockerHub
|
||||
uses: docker/login-action@v1
|
||||
with:
|
||||
@ -101,27 +85,11 @@ jobs:
|
||||
push: true
|
||||
tags: huggingface/trl-source-gpu
|
||||
|
||||
- name: Post to a Slack channel
|
||||
id: slack
|
||||
#uses: slackapi/slack-github-action@v1.25.0
|
||||
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
- name: Post to Slack
|
||||
if: always()
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
# Slack channel id, channel name, or user id to post message.
|
||||
# See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
channel-id: ${{ env.CI_SLACK_CHANNEL }}
|
||||
# For posting a rich message using Block Kit
|
||||
payload: |
|
||||
{
|
||||
"text": "trl-source-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
|
||||
"blocks": [
|
||||
{
|
||||
"type": "section",
|
||||
"text": {
|
||||
"type": "mrkdwn",
|
||||
"text": "trl-source-gpu Docker Image build result: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
env:
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
|
||||
title: 🤗 Results of the trl-source-gpu Docker Image build
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
15
.github/workflows/issue_auto_labeller.yml
vendored
Normal file
15
.github/workflows/issue_auto_labeller.yml
vendored
Normal file
@ -0,0 +1,15 @@
|
||||
name: "Hugging Face Issue Labeler"
|
||||
on:
|
||||
issues:
|
||||
types: opened
|
||||
|
||||
jobs:
|
||||
triage:
|
||||
runs-on: ubuntu-latest
|
||||
permissions:
|
||||
issues: write
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: August-murr/auto-labeler@main
|
||||
with:
|
||||
hf-api-key: ${{ secrets.CI_HF_API_TOKEN }}
|
127
.github/workflows/pr_style_bot.yml
vendored
Normal file
127
.github/workflows/pr_style_bot.yml
vendored
Normal file
@ -0,0 +1,127 @@
|
||||
name: PR Style Bot
|
||||
|
||||
on:
|
||||
workflow_dispatch:
|
||||
|
||||
|
||||
permissions:
|
||||
contents: write
|
||||
pull-requests: write
|
||||
|
||||
jobs:
|
||||
run-style-bot:
|
||||
if: >
|
||||
contains(github.event.comment.body, '@bot /style') &&
|
||||
github.event.issue.pull_request != null
|
||||
runs-on: ubuntu-latest
|
||||
|
||||
steps:
|
||||
- name: Extract PR details
|
||||
id: pr_info
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
const prNumber = context.payload.issue.number;
|
||||
const { data: pr } = await github.rest.pulls.get({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
pull_number: prNumber
|
||||
});
|
||||
|
||||
// We capture both the branch ref and the "full_name" of the head repo
|
||||
// so that we can check out the correct repository & branch (including forks).
|
||||
core.setOutput("prNumber", prNumber);
|
||||
core.setOutput("headRef", pr.head.ref);
|
||||
core.setOutput("headRepoFullName", pr.head.repo.full_name);
|
||||
|
||||
- name: Check out PR branch
|
||||
uses: actions/checkout@v3
|
||||
env:
|
||||
HEADREPOFULLNAME: ${{ steps.pr_info.outputs.headRepoFullName }}
|
||||
HEADREF: ${{ steps.pr_info.outputs.headRef }}
|
||||
with:
|
||||
# Instead of checking out the base repo, use the contributor's repo name
|
||||
repository: ${{ env.HEADREPOFULLNAME }}
|
||||
ref: ${{ env.HEADREF }}
|
||||
# You may need fetch-depth: 0 for being able to push
|
||||
fetch-depth: 0
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
|
||||
- name: Debug
|
||||
env:
|
||||
HEADREPOFULLNAME: ${{ steps.pr_info.outputs.headRepoFullName }}
|
||||
HEADREF: ${{ steps.pr_info.outputs.headRef }}
|
||||
PRNUMBER: ${{ steps.pr_info.outputs.prNumber }}
|
||||
run: |
|
||||
echo "PR number: ${{ env.PRNUMBER }}"
|
||||
echo "Head Ref: ${{ env.HEADREF }}"
|
||||
echo "Head Repo Full Name: ${{ env.HEADREPOFULLNAME }}"
|
||||
|
||||
- name: Set up Python
|
||||
uses: actions/setup-python@v4
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
pip install ruff pre-commit
|
||||
|
||||
- name: Download Makefile from main branch
|
||||
run: |
|
||||
curl -o main_Makefile https://raw.githubusercontent.com/huggingface/trl/main/Makefile
|
||||
|
||||
- name: Compare Makefiles
|
||||
run: |
|
||||
if ! diff -q main_Makefile Makefile; then
|
||||
echo "Error: The Makefile has changed. Please ensure it matches the main branch."
|
||||
exit 1
|
||||
fi
|
||||
echo "No changes in Makefile. Proceeding..."
|
||||
rm -rf main_Makefile
|
||||
|
||||
- name: Run make style and make quality
|
||||
run: |
|
||||
make precommit || true
|
||||
|
||||
- name: Commit and push changes
|
||||
id: commit_and_push
|
||||
env:
|
||||
HEADREPOFULLNAME: ${{ steps.pr_info.outputs.headRepoFullName }}
|
||||
HEADREF: ${{ steps.pr_info.outputs.headRef }}
|
||||
PRNUMBER: ${{ steps.pr_info.outputs.prNumber }}
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
run: |
|
||||
echo "HEADREPOFULLNAME: ${{ env.HEADREPOFULLNAME }}, HEADREF: ${{ env.HEADREF }}"
|
||||
# Configure git with the Actions bot user
|
||||
git config user.name "github-actions[bot]"
|
||||
git config user.email "github-actions[bot]@users.noreply.github.com"
|
||||
|
||||
# Make sure your 'origin' remote is set to the contributor's fork
|
||||
git remote set-url origin "https://x-access-token:${GITHUB_TOKEN}@github.com/${{ env.HEADREPOFULLNAME }}.git"
|
||||
|
||||
# If there are changes after running style/quality, commit them
|
||||
if [ -n "$(git status --porcelain)" ]; then
|
||||
git add .
|
||||
git commit -m "Apply style fixes"
|
||||
# Push to the original contributor's forked branch
|
||||
git push origin HEAD:${{ env.HEADREF }}
|
||||
echo "changes_pushed=true" >> $GITHUB_OUTPUT
|
||||
else
|
||||
echo "No changes to commit."
|
||||
echo "changes_pushed=false" >> $GITHUB_OUTPUT
|
||||
fi
|
||||
|
||||
- name: Comment on PR with workflow run link
|
||||
if: steps.commit_and_push.outputs.changes_pushed == 'true'
|
||||
uses: actions/github-script@v6
|
||||
with:
|
||||
script: |
|
||||
const prNumber = parseInt(process.env.prNumber, 10);
|
||||
const runUrl = `${process.env.GITHUB_SERVER_URL}/${process.env.GITHUB_REPOSITORY}/actions/runs/${process.env.GITHUB_RUN_ID}`
|
||||
|
||||
await github.rest.issues.createComment({
|
||||
owner: context.repo.owner,
|
||||
repo: context.repo.repo,
|
||||
issue_number: prNumber,
|
||||
body: `Style fixes have been applied. [View the workflow run here](${runUrl}).`
|
||||
});
|
||||
env:
|
||||
prNumber: ${{ steps.pr_info.outputs.prNumber }}
|
10
.github/workflows/slow-tests.yml
vendored
10
.github/workflows/slow-tests.yml
vendored
@ -19,7 +19,8 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
docker-image-name: ["huggingface/trl-latest-gpu:latest", "huggingface/trl-source-gpu:latest"]
|
||||
runs-on: [self-hosted, single-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0"
|
||||
TEST_TYPE: "single_gpu_${{ matrix.docker-image-name }}"
|
||||
@ -30,7 +31,7 @@ jobs:
|
||||
run:
|
||||
shell: bash
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Pip install
|
||||
run: |
|
||||
source activate trl
|
||||
@ -55,7 +56,8 @@ jobs:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
docker-image-name: ["huggingface/trl-latest-gpu:latest", "huggingface/trl-source-gpu:latest"]
|
||||
runs-on: [self-hosted, multi-gpu, nvidia-gpu, t4, ci]
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
env:
|
||||
CUDA_VISIBLE_DEVICES: "0,1"
|
||||
TEST_TYPE: "multi_gpu_${{ matrix.docker-image-name }}"
|
||||
@ -66,7 +68,7 @@ jobs:
|
||||
run:
|
||||
shell: bash
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- uses: actions/checkout@v4
|
||||
- name: Pip install
|
||||
run: |
|
||||
source activate trl
|
||||
|
27
.github/workflows/stale.yml
vendored
27
.github/workflows/stale.yml
vendored
@ -1,27 +0,0 @@
|
||||
name: Stale Bot
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: "0 15 * * *"
|
||||
|
||||
jobs:
|
||||
close_stale_issues:
|
||||
name: Close Stale Issues
|
||||
if: github.repository == 'huggingface/trl'
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
|
||||
- name: Setup Python
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: 3.8
|
||||
|
||||
- name: Install requirements
|
||||
run: |
|
||||
pip install PyGithub
|
||||
- name: Close stale issues
|
||||
run: |
|
||||
python scripts/stale.py
|
63
.github/workflows/tests-main.yml
vendored
63
.github/workflows/tests-main.yml
vendored
@ -1,63 +0,0 @@
|
||||
name: tests on transformers PEFT main
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
|
||||
env:
|
||||
CI_SLACK_CHANNEL: ${{ secrets.CI_PUSH_MAIN_CHANNEL }}
|
||||
|
||||
jobs:
|
||||
tests:
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ['3.9', '3.10', '3.11']
|
||||
os: ['ubuntu-latest', 'windows-latest']
|
||||
fail-fast: false
|
||||
runs-on: ${{ matrix.os }}
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: "pip"
|
||||
cache-dependency-path: |
|
||||
setup.py
|
||||
requirements.txt
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
# install PEFT & transformers from source
|
||||
pip install -U git+https://github.com/huggingface/peft.git
|
||||
pip install -U git+https://github.com/huggingface/transformers.git
|
||||
# cpu version of pytorch
|
||||
pip install ".[test, diffusers]"
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
make test
|
||||
- name: Post to a Slack channel
|
||||
if: always()
|
||||
id: slack
|
||||
#uses: slackapi/slack-github-action@v1.25.0
|
||||
uses: slackapi/slack-github-action@6c661ce58804a1a20f6dc5fbee7f0381b469e001
|
||||
with:
|
||||
# Slack channel id, channel name, or user id to post message.
|
||||
# See also: https://api.slack.com/methods/chat.postMessage#channels
|
||||
channel-id: ${{ env.CI_SLACK_CHANNEL }}
|
||||
# For posting a rich message using Block Kit
|
||||
payload: |
|
||||
{
|
||||
"text": "TRL CI on transformers/PEFT main: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}",
|
||||
"blocks": [
|
||||
{
|
||||
"type": "section",
|
||||
"text": {
|
||||
"type": "mrkdwn",
|
||||
"text": "TRL CI on transformers/PEFT main: ${{ job.status }}\n${{ github.event.pull_request.html_url || github.event.head_commit.url }}"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
env:
|
||||
SLACK_BOT_TOKEN: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
283
.github/workflows/tests.yml
vendored
283
.github/workflows/tests.yml
vendored
@ -1,82 +1,251 @@
|
||||
name: tests
|
||||
name: Tests
|
||||
|
||||
on:
|
||||
push:
|
||||
branches: [ main ]
|
||||
pull_request:
|
||||
branches: [ main ]
|
||||
paths:
|
||||
# Run only when relevant files are modified
|
||||
- "trl/**.py"
|
||||
- ".github/**.yml"
|
||||
- "examples/**.py"
|
||||
- "scripts/**.py"
|
||||
- ".github/**.yml"
|
||||
- "tests/**.py"
|
||||
- "trl/**.py"
|
||||
- "setup.py"
|
||||
|
||||
env:
|
||||
TQDM_DISABLE: 1
|
||||
CI_SLACK_CHANNEL: ${{ secrets.CI_PUSH_MAIN_CHANNEL }}
|
||||
|
||||
jobs:
|
||||
check_code_quality:
|
||||
name: Check code quality
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: [3.9]
|
||||
|
||||
if: github.event.pull_request.draft == false
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v4
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
fetch-depth: 0
|
||||
submodules: recursive
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v2
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
- uses: pre-commit/action@v2.0.3
|
||||
python-version: 3.12
|
||||
- uses: pre-commit/action@v3.0.1
|
||||
with:
|
||||
extra_args: --all-files
|
||||
|
||||
tests:
|
||||
needs: check_code_quality
|
||||
name: Tests
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ['3.8', '3.9', '3.10']
|
||||
os: ['ubuntu-latest', 'windows-latest']
|
||||
runs-on: ${{ matrix.os }}
|
||||
python-version: ['3.9', '3.10', '3.11', '3.12', '3.13']
|
||||
fail-fast: false
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
container:
|
||||
image: pytorch/pytorch:2.6.0-cuda12.6-cudnn9-devel
|
||||
options: --gpus all
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
if: github.event.pull_request.draft == false
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
cache: "pip"
|
||||
cache-dependency-path: |
|
||||
setup.py
|
||||
requirements.txt
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
# cpu version of pytorch
|
||||
pip install ".[test, peft, diffusers]"
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
make test
|
||||
- name: Git checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
tests_no_optional_dep:
|
||||
needs: check_code_quality
|
||||
runs-on: 'ubuntu-latest'
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
|
||||
- name: Install Make and Git
|
||||
run: |
|
||||
apt-get update && apt-get install -y make git curl
|
||||
|
||||
- name: Install uv
|
||||
run: |
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
|
||||
- name: Create Python virtual environment
|
||||
run: |
|
||||
uv venv
|
||||
uv pip install --upgrade setuptools wheel
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
uv pip install ".[dev]"
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
make test
|
||||
|
||||
- name: Post to Slack
|
||||
if: github.ref == 'refs/heads/main' && always() # Check if the branch is main
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
|
||||
title: Results with Python ${{ matrix.python-version }} and latest dependencies
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
tests_dev:
|
||||
name: Tests with dev dependencies
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
container:
|
||||
image: pytorch/pytorch:2.6.0-cuda12.6-cudnn9-devel
|
||||
options: --gpus all
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
if: github.event.pull_request.draft == false
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python 3.9
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: '3.9'
|
||||
cache: "pip"
|
||||
cache-dependency-path: |
|
||||
setup.py
|
||||
requirements.txt
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
python -m pip install --upgrade pip
|
||||
# cpu version of pytorch
|
||||
pip install .[test]
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
make test
|
||||
- name: Git checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
- name: Install Make and Git
|
||||
run: |
|
||||
apt-get update && apt-get install -y make git curl
|
||||
|
||||
- name: Install uv
|
||||
run: |
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
|
||||
- name: Create Python virtual environment
|
||||
run: |
|
||||
uv venv
|
||||
uv pip install --upgrade setuptools wheel
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
uv pip install -U git+https://github.com/huggingface/accelerate.git
|
||||
uv pip install -U git+https://github.com/huggingface/datasets.git
|
||||
uv pip install -U git+https://github.com/huggingface/transformers.git
|
||||
uv pip install ".[dev]"
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
make test
|
||||
|
||||
- name: Post to Slack
|
||||
if: github.ref == 'refs/heads/main' && always() # Check if the branch is main
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
|
||||
title: Results with Python 3.12 and dev dependencies
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
tests_wo_optional_deps:
|
||||
name: Tests without optional dependencies
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
container:
|
||||
image: pytorch/pytorch:2.6.0-cuda12.6-cudnn9-devel
|
||||
options: --gpus all
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
if: github.event.pull_request.draft == false
|
||||
steps:
|
||||
- name: Git checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
- name: Install Make and Git
|
||||
run: |
|
||||
apt-get update && apt-get install -y make git curl
|
||||
|
||||
- name: Install uv
|
||||
run: |
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
|
||||
- name: Create Python virtual environment
|
||||
run: |
|
||||
uv venv
|
||||
uv pip install --upgrade setuptools wheel
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
uv pip install ".[test]"
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
make test
|
||||
|
||||
- name: Post to Slack
|
||||
if: github.ref == 'refs/heads/main' && always() # Check if the branch is main
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
|
||||
title: Results with Python 3.12 without optional dependencies
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
||||
|
||||
tests_min_versions:
|
||||
name: Tests with minimum versions
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
container:
|
||||
image: pytorch/pytorch:2.6.0-cuda12.6-cudnn9-devel
|
||||
options: --gpus all
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
if: github.event.pull_request.draft == false
|
||||
steps:
|
||||
- name: Git checkout
|
||||
uses: actions/checkout@v4
|
||||
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
- name: Install Make and Git
|
||||
run: |
|
||||
apt-get update && apt-get install -y make git curl
|
||||
|
||||
- name: Install uv
|
||||
run: |
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
|
||||
- name: Create Python virtual environment
|
||||
run: |
|
||||
uv venv
|
||||
uv pip install --upgrade setuptools wheel
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
uv pip install accelerate==0.34.0
|
||||
uv pip install datasets==3.0.0
|
||||
uv pip install transformers==4.46.0
|
||||
uv pip install ".[dev]"
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
make test
|
||||
|
||||
- name: Post to Slack
|
||||
if: github.ref == 'refs/heads/main' && always() # Check if the branch is main
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
|
||||
title: Results with Python 3.12 and minimum dependencies versions
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
66
.github/workflows/tests_latest.yml
vendored
Normal file
66
.github/workflows/tests_latest.yml
vendored
Normal file
@ -0,0 +1,66 @@
|
||||
name: Tests latest TRL release with dev dependencies
|
||||
|
||||
on:
|
||||
schedule:
|
||||
- cron: '0 0 * * *' # Runs daily at midnight UTC
|
||||
|
||||
workflow_dispatch:
|
||||
|
||||
env:
|
||||
TQDM_DISABLE: 1
|
||||
CI_SLACK_CHANNEL: ${{ secrets.CI_PUSH_MAIN_CHANNEL }}
|
||||
|
||||
jobs:
|
||||
tests:
|
||||
name: Tests latest TRL release with dev dependencies
|
||||
runs-on:
|
||||
group: aws-g4dn-2xlarge
|
||||
container:
|
||||
image: pytorch/pytorch:2.6.0-cuda12.6-cudnn9-devel
|
||||
options: --gpus all
|
||||
defaults:
|
||||
run:
|
||||
shell: bash
|
||||
steps:
|
||||
- name: Git checkout
|
||||
uses: actions/checkout@v4
|
||||
with: { ref: v0.17-release }
|
||||
|
||||
- name: Set up Python 3.12
|
||||
uses: actions/setup-python@v5
|
||||
with:
|
||||
python-version: '3.12'
|
||||
|
||||
- name: Install Make and Git
|
||||
run: |
|
||||
apt-get update && apt-get install -y make git curl
|
||||
|
||||
- name: Install uv
|
||||
run: |
|
||||
curl -LsSf https://astral.sh/uv/install.sh | sh
|
||||
|
||||
- name: Create Python virtual environment
|
||||
run: |
|
||||
uv venv
|
||||
uv pip install --upgrade setuptools wheel
|
||||
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
uv pip install -U git+https://github.com/huggingface/accelerate.git
|
||||
uv pip install -U git+https://github.com/huggingface/datasets.git
|
||||
uv pip install -U git+https://github.com/huggingface/transformers.git
|
||||
uv pip install ".[dev]"
|
||||
|
||||
- name: Test with pytest
|
||||
run: |
|
||||
source .venv/bin/activate
|
||||
make test
|
||||
|
||||
- name: Post to Slack
|
||||
uses: huggingface/hf-workflows/.github/actions/post-slack@main
|
||||
with:
|
||||
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
|
||||
title: Results of latest TRL with Python 3.12 and dev dependencies
|
||||
status: ${{ job.status }}
|
||||
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
|
18
.github/workflows/trufflehog.yml
vendored
Normal file
18
.github/workflows/trufflehog.yml
vendored
Normal file
@ -0,0 +1,18 @@
|
||||
on:
|
||||
push:
|
||||
|
||||
name: Secret Leaks
|
||||
|
||||
jobs:
|
||||
trufflehog:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- name: Checkout code
|
||||
uses: actions/checkout@v4
|
||||
with:
|
||||
fetch-depth: 0
|
||||
- name: Secret Scanning
|
||||
uses: trufflesecurity/trufflehog@853e1e8d249fd1e29d0fcc7280d29b03df3d643d
|
||||
with:
|
||||
# exclude buggy postgres detector that is causing false positives and not relevant to our codebase
|
||||
extra_args: --results=verified,unknown --exclude-detectors=postgres
|
6
.gitignore
vendored
6
.gitignore
vendored
@ -1,4 +1,3 @@
|
||||
benchmark/trl
|
||||
*.bak
|
||||
.gitattributes
|
||||
.last_checked
|
||||
@ -143,7 +142,4 @@ checklink/cookies.txt
|
||||
# wandb files
|
||||
nbs/wandb/
|
||||
examples/notebooks/wandb/
|
||||
wandb/
|
||||
|
||||
# cli scripts that are symlinked from `examples/scripts`
|
||||
trl/commands/scripts/
|
||||
wandb/
|
@ -1,10 +1,12 @@
|
||||
repos:
|
||||
- repo: https://github.com/astral-sh/ruff-pre-commit
|
||||
rev: v0.2.0
|
||||
rev: v0.11.3
|
||||
hooks:
|
||||
- id: ruff
|
||||
types_or: [ python, pyi ]
|
||||
args: [ --fix ]
|
||||
- id: ruff-format
|
||||
types_or: [ python, pyi ]
|
||||
|
||||
# - repo: https://github.com/codespell-project/codespell
|
||||
# rev: v2.1.0
|
||||
|
@ -17,6 +17,12 @@ authors:
|
||||
family-names: Thrush
|
||||
- given-names: Nathan
|
||||
family-names: Lambert
|
||||
- given-names: Shengyi
|
||||
family-names: Huang
|
||||
- given-names: Kashif
|
||||
family-names: Rasul
|
||||
- given-names: Quentin
|
||||
family-names: Gallouédec
|
||||
repository-code: 'https://github.com/huggingface/trl'
|
||||
abstract: "With trl you can train transformer language models with Proximal Policy Optimization (PPO). The library is built on top of the transformers library by \U0001F917 Hugging Face. Therefore, pre-trained language models can be directly loaded via transformers. At this point, most decoder and encoder-decoder architectures are supported."
|
||||
keywords:
|
||||
@ -25,4 +31,4 @@ keywords:
|
||||
- pytorch
|
||||
- transformers
|
||||
license: Apache-2.0
|
||||
version: 0.2.1
|
||||
version: 0.17
|
||||
|
133
CODE_OF_CONDUCT.md
Normal file
133
CODE_OF_CONDUCT.md
Normal file
@ -0,0 +1,133 @@
|
||||
|
||||
# Contributor Covenant Code of Conduct
|
||||
|
||||
## Our Pledge
|
||||
|
||||
We as members, contributors, and leaders pledge to make participation in our
|
||||
community a harassment-free experience for everyone, regardless of age, body
|
||||
size, visible or invisible disability, ethnicity, sex characteristics, gender
|
||||
identity and expression, level of experience, education, socio-economic status,
|
||||
nationality, personal appearance, race, caste, color, religion, or sexual
|
||||
identity and orientation.
|
||||
|
||||
We pledge to act and interact in ways that contribute to an open, welcoming,
|
||||
diverse, inclusive, and healthy community.
|
||||
|
||||
## Our Standards
|
||||
|
||||
Examples of behavior that contributes to a positive environment for our
|
||||
community include:
|
||||
|
||||
* Demonstrating empathy and kindness toward other people
|
||||
* Being respectful of differing opinions, viewpoints, and experiences
|
||||
* Giving and gracefully accepting constructive feedback
|
||||
* Accepting responsibility and apologizing to those affected by our mistakes,
|
||||
and learning from the experience
|
||||
* Focusing on what is best not just for us as individuals, but for the overall
|
||||
community
|
||||
|
||||
Examples of unacceptable behavior include:
|
||||
|
||||
* The use of sexualized language or imagery, and sexual attention or advances of
|
||||
any kind
|
||||
* Trolling, insulting or derogatory comments, and personal or political attacks
|
||||
* Public or private harassment
|
||||
* Publishing others' private information, such as a physical or email address,
|
||||
without their explicit permission
|
||||
* Other conduct which could reasonably be considered inappropriate in a
|
||||
professional setting
|
||||
|
||||
## Enforcement Responsibilities
|
||||
|
||||
Community leaders are responsible for clarifying and enforcing our standards of
|
||||
acceptable behavior and will take appropriate and fair corrective action in
|
||||
response to any behavior that they deem inappropriate, threatening, offensive,
|
||||
or harmful.
|
||||
|
||||
Community leaders have the right and responsibility to remove, edit, or reject
|
||||
comments, commits, code, wiki edits, issues, and other contributions that are
|
||||
not aligned to this Code of Conduct, and will communicate reasons for moderation
|
||||
decisions when appropriate.
|
||||
|
||||
## Scope
|
||||
|
||||
This Code of Conduct applies within all community spaces, and also applies when
|
||||
an individual is officially representing the community in public spaces.
|
||||
Examples of representing our community include using an official e-mail address,
|
||||
posting via an official social media account, or acting as an appointed
|
||||
representative at an online or offline event.
|
||||
|
||||
## Enforcement
|
||||
|
||||
Instances of abusive, harassing, or otherwise unacceptable behavior may be
|
||||
reported to the community leaders responsible for enforcement at
|
||||
feedback@huggingface.co.
|
||||
All complaints will be reviewed and investigated promptly and fairly.
|
||||
|
||||
All community leaders are obligated to respect the privacy and security of the
|
||||
reporter of any incident.
|
||||
|
||||
## Enforcement Guidelines
|
||||
|
||||
Community leaders will follow these Community Impact Guidelines in determining
|
||||
the consequences for any action they deem in violation of this Code of Conduct:
|
||||
|
||||
### 1. Correction
|
||||
|
||||
**Community Impact**: Use of inappropriate language or other behavior deemed
|
||||
unprofessional or unwelcome in the community.
|
||||
|
||||
**Consequence**: A private, written warning from community leaders, providing
|
||||
clarity around the nature of the violation and an explanation of why the
|
||||
behavior was inappropriate. A public apology may be requested.
|
||||
|
||||
### 2. Warning
|
||||
|
||||
**Community Impact**: A violation through a single incident or series of
|
||||
actions.
|
||||
|
||||
**Consequence**: A warning with consequences for continued behavior. No
|
||||
interaction with the people involved, including unsolicited interaction with
|
||||
those enforcing the Code of Conduct, for a specified period of time. This
|
||||
includes avoiding interactions in community spaces as well as external channels
|
||||
like social media. Violating these terms may lead to a temporary or permanent
|
||||
ban.
|
||||
|
||||
### 3. Temporary Ban
|
||||
|
||||
**Community Impact**: A serious violation of community standards, including
|
||||
sustained inappropriate behavior.
|
||||
|
||||
**Consequence**: A temporary ban from any sort of interaction or public
|
||||
communication with the community for a specified period of time. No public or
|
||||
private interaction with the people involved, including unsolicited interaction
|
||||
with those enforcing the Code of Conduct, is allowed during this period.
|
||||
Violating these terms may lead to a permanent ban.
|
||||
|
||||
### 4. Permanent Ban
|
||||
|
||||
**Community Impact**: Demonstrating a pattern of violation of community
|
||||
standards, including sustained inappropriate behavior, harassment of an
|
||||
individual, or aggression toward or disparagement of classes of individuals.
|
||||
|
||||
**Consequence**: A permanent ban from any sort of public interaction within the
|
||||
community.
|
||||
|
||||
## Attribution
|
||||
|
||||
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
|
||||
version 2.1, available at
|
||||
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
|
||||
|
||||
Community Impact Guidelines were inspired by
|
||||
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
|
||||
|
||||
For answers to common questions about this code of conduct, see the FAQ at
|
||||
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
|
||||
[https://www.contributor-covenant.org/translations][translations].
|
||||
|
||||
[homepage]: https://www.contributor-covenant.org
|
||||
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
|
||||
[Mozilla CoC]: https://github.com/mozilla/diversity
|
||||
[FAQ]: https://www.contributor-covenant.org/faq
|
||||
[translations]: https://www.contributor-covenant.org/translations
|
649
CONTRIBUTING.md
649
CONTRIBUTING.md
@ -1,53 +1,648 @@
|
||||
# How to contribute
|
||||
# How to contribute to TRL?
|
||||
|
||||
## How to get started
|
||||
Everyone is welcome to contribute, and we value everybody's contribution. Code
|
||||
contributions are not the only way to help the community. Answering questions, helping
|
||||
others, and improving the documentation are also immensely valuable.
|
||||
|
||||
Before you start contributing make sure you installed all the dev tools:
|
||||
It also helps us if you spread the word! Reference the library in blog posts
|
||||
about the awesome projects it made possible, shout out on Twitter every time it has
|
||||
helped you, or simply ⭐️ the repository to say thank you.
|
||||
|
||||
However you choose to contribute, please be mindful and respect our
|
||||
[code of conduct](https://github.com/huggingface/trl/blob/main/CODE_OF_CONDUCT.md).
|
||||
|
||||
**This guide was heavily inspired by the awesome [scikit-learn guide to contributing](https://github.com/scikit-learn/scikit-learn/blob/main/CONTRIBUTING.md).**
|
||||
|
||||
## Ways to contribute
|
||||
|
||||
There are several ways you can contribute to TRL:
|
||||
|
||||
* Fix outstanding issues with the existing code.
|
||||
* Submit issues related to bugs or desired new features.
|
||||
* Implement trainers for new post-training algorithms.
|
||||
* Contribute to the examples or the documentation.
|
||||
|
||||
If you don't know where to start, there is a special [Good First
|
||||
Issue](https://github.com/huggingface/trl/labels/%F0%9F%91%B6%20good%20first%20issue) listing. It will give you a list of
|
||||
open issues that are beginner-friendly and help you start contributing to open-source. The best way to do that is to open a Pull Request and link it to the issue that you'd like to work on. We try to give priority to opened PRs as we can easily track the progress of the fix, and if the contributor does not have time anymore, someone else can take the PR over.
|
||||
|
||||
For something slightly more challenging, you can also take a look at the [Good Second Issue](https://github.com/huggingface/trl/labels/Good%20Second%20Issue) list. In general though, if you feel like you know what you're doing, go for it and we'll help you get there! 🚀
|
||||
|
||||
> All contributions are equally valuable to the community. 🥰
|
||||
|
||||
Before you start contributing make sure you have installed all the dev tools:
|
||||
|
||||
```bash
|
||||
make dev
|
||||
pip install -e .[dev]
|
||||
```
|
||||
|
||||
## Did you find a bug?
|
||||
## Fixing outstanding issues
|
||||
|
||||
* Ensure the bug was not already reported by searching on GitHub under Issues.
|
||||
* If you're unable to find an open issue addressing the problem, open a new one. Be sure to include a title and clear description, as much relevant information as possible, and a code sample or an executable test case demonstrating the expected behavior that is not occurring.
|
||||
* Be sure to add the complete error messages.
|
||||
If you notice an issue with the existing code and have a fix in mind, feel free to [start contributing](#submitting-a-pull-request-pr) and open a Pull Request!
|
||||
|
||||
#### Did you write a patch that fixes a bug?
|
||||
## Submitting a bug-related issue or feature request
|
||||
|
||||
* Open a new GitHub pull request with the patch.
|
||||
* Ensure that your PR includes a test that fails without your patch, and pass with it.
|
||||
* Ensure the PR description clearly describes the problem and solution. Include the relevant issue number if applicable.
|
||||
Do your best to follow these guidelines when submitting a bug-related issue or a feature request. It will make it easier for us to come back to you quickly and with good feedback.
|
||||
|
||||
## PR submission guidelines
|
||||
### Did you find a bug?
|
||||
|
||||
* Keep each PR focused. While it's more convenient, do not combine several unrelated fixes together. Create as many branches as needing to keep each PR focused.
|
||||
* Do not mix style changes/fixes with "functional" changes. It's very difficult to review such PRs and it most likely get rejected.
|
||||
* Do not add/remove vertical whitespace. Preserve the original style of the file you edit as much as you can.
|
||||
* Do not turn an already submitted PR into your development playground. If after you submitted PR, you discovered that more work is needed - close the PR, do the required work and then submit a new PR. Otherwise each of your commits requires attention from maintainers of the project.
|
||||
* If, however, you submitted a PR and received a request for changes, you should proceed with commits inside that PR, so that the maintainer can see the incremental fixes and won't need to review the whole PR again. In the exception case where you realize it'll take many many commits to complete the requests, then it's probably best to close the PR, do the work and then submit it again. Use common sense where you'd choose one way over another.
|
||||
The TRL library is robust and reliable thanks to users who report the problems they encounter.
|
||||
|
||||
### Before you submit a PR
|
||||
Before you report an issue, we would really appreciate it if you could **make sure the bug was not
|
||||
already reported** (use the search bar on GitHub under Issues). Your issue should also be related to bugs in the library itself, and not your code.
|
||||
|
||||
First you want to make sure that all the tests pass:
|
||||
Once you've confirmed the bug hasn't already been reported, please include the following information in your issue so we can quickly resolve it:
|
||||
|
||||
* Your **OS type and version**, **Python**, **PyTorch**, **TRL** and **Transformers** versions.
|
||||
* A short, self-contained, code snippet that allows us to reproduce the bug in
|
||||
less than 30s.
|
||||
* The *full* traceback if an exception is raised.
|
||||
* Attach any other additional information, like screenshots, you think may help.
|
||||
|
||||
To get the OS and software versions automatically, run the following command:
|
||||
|
||||
```bash
|
||||
make test
|
||||
trl env
|
||||
```
|
||||
|
||||
Then before submitting your PR make sure the code quality follows the standards. You can run the following command to format:
|
||||
### Do you want a new feature?
|
||||
|
||||
If there is a new feature you'd like to see in TRL, please open an issue and describe:
|
||||
|
||||
1. What is the *motivation* behind this feature? Is it related to a problem or frustration with the library? Is it a feature related to something you need for a project? Is it something you worked on and think it could benefit the community?
|
||||
|
||||
Whatever it is, we'd love to hear about it!
|
||||
|
||||
2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better we'll be able to help you.
|
||||
3. Provide a *code snippet* that demonstrates the feature's usage.
|
||||
4. If the feature is related to a paper, please include a link.
|
||||
|
||||
If your issue is well written we're already 80% of the way there by the time you create it.
|
||||
|
||||
## Do you want to implement a new trainer?
|
||||
|
||||
New post-training methods are published frequently and those that satisfy the following criteria are good candidates to be integrated into TRL:
|
||||
|
||||
* **Simplicity:** Does the new method achieve similar performance as prior methods, but with less complexity? A good example is Direct Preference Optimization (DPO) [[Rafailov et al, 2023]](https://huggingface.co/papers/2305.18290), which provided a simpler and compelling alternative to RLHF methods.
|
||||
* **Efficiency:** Does the new method provide a significant improvement in training efficiency? A good example is Odds Ratio Preference Optimization (ORPO) [[Hong et al, 2023]](https://huggingface.co/papers/2403.07691), which utilizes a similar objective as DPO but requires half the GPU VRAM.
|
||||
|
||||
Methods that only provide incremental improvements at the expense of added complexity or compute costs are unlikely to be included in TRL.
|
||||
|
||||
If you want to implement a trainer for a new post-training method, first open an issue and provide the following information:
|
||||
|
||||
* A short description of the method and a link to the paper.
|
||||
* Link to the implementation if it is open-sourced.
|
||||
* Link to model weights trained with the method if they are available.
|
||||
|
||||
Based on the community and maintainer feedback, the next step will be to implement the trainer and config classes. See the following examples for inspiration:
|
||||
|
||||
* Paired preference optimisation: [`dpo_trainer.py`](./trl/trainer/dpo_trainer.py) and [`dpo_config.py`](./trl/trainer/dpo_config.py)
|
||||
* RL-based optimisation: [`rloo_trainer.py](./trl/trainer/rloo_trainer.py) and [`rloo_config.py](./trl/trainer/rloo_config.py)
|
||||
* Online optimisation: [`online_dpo_trainer.py`](./trl/trainer/online_dpo_trainer.py) and [`online_dpo_config.py`](./trl/trainer/online_dpo_config.py)
|
||||
|
||||
## Do you want to add documentation?
|
||||
|
||||
We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved, such as typos, dead links, and any missing, unclear, or inaccurate content... We'll be happy to make the changes or help you contribute if you're interested!
|
||||
|
||||
## Submitting a pull request (PR)
|
||||
|
||||
Before writing code, we strongly advise you to search through the existing PRs or
|
||||
issues to make sure that nobody is already working on the same thing. If you are
|
||||
unsure, it is always a good idea to open an issue to get some feedback.
|
||||
|
||||
You will need basic `git` proficiency to be able to contribute to
|
||||
TRL. `git` is not the easiest tool to use but it has the greatest
|
||||
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
|
||||
Git](https://git-scm.com/book/en/v2) is a very good reference.
|
||||
|
||||
Follow these steps to start contributing:
|
||||
|
||||
1. Fork the [repository](https://github.com/huggingface/trl) by
|
||||
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
|
||||
under your GitHub user account.
|
||||
|
||||
2. Clone your fork to your local disk, and add the base repository as a remote. The following command
|
||||
assumes you have your public SSH key uploaded to GitHub. See the following guide for more
|
||||
[information](https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository).
|
||||
|
||||
```bash
|
||||
$ git clone git@github.com:<your Github handle>/trl.git
|
||||
$ cd trl
|
||||
$ git remote add upstream https://github.com/huggingface/trl.git
|
||||
```
|
||||
|
||||
3. Create a new branch to hold your development changes, and do this for every new PR you work on.
|
||||
|
||||
Start by synchronizing your `main` branch with the `upstream/main` branch (more details in the [GitHub Docs](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork)):
|
||||
|
||||
```bash
|
||||
$ git checkout main
|
||||
$ git fetch upstream
|
||||
$ git merge upstream/main
|
||||
```
|
||||
|
||||
Once your `main` branch is synchronized, create a new branch from it:
|
||||
|
||||
```bash
|
||||
$ git checkout -b a-descriptive-name-for-my-changes
|
||||
```
|
||||
|
||||
**Do not** work on the `main` branch.
|
||||
|
||||
4. Set up a development environment by running the following command in a conda or a virtual environment you've created for working on this library:
|
||||
|
||||
```bash
|
||||
$ pip install -e .[dev]
|
||||
```
|
||||
|
||||
(If TRL was already installed in the virtual environment, remove
|
||||
it with `pip uninstall trl` before reinstalling it.)
|
||||
|
||||
Alternatively, if you are using [Visual Studio Code](https://code.visualstudio.com/Download), the fastest way to get set up is by using
|
||||
the provided Dev Container. Documentation on how to get started with dev containers is available [here](https://code.visualstudio.com/docs/remote/containers).
|
||||
|
||||
5. Develop the features on your branch.
|
||||
|
||||
As you work on the features, you should make sure that the test suite
|
||||
passes. You should run the tests impacted by your changes like this (see
|
||||
below an explanation regarding the environment variable):
|
||||
|
||||
```bash
|
||||
$ pytest tests/<TEST_TO_RUN>.py
|
||||
```
|
||||
|
||||
> For the following commands leveraging the `make` utility.
|
||||
|
||||
You can also run the full suite with the following command.
|
||||
|
||||
```bash
|
||||
$ make test
|
||||
```
|
||||
|
||||
TRL relies on `ruff` for maintaining consistent code formatting across its source files. Before submitting any PR, you should apply automatic style corrections and run code verification checks.
|
||||
|
||||
We provide a `precommit` target in the `Makefile` that simplifies this process by running all required checks and optimizations on only the files modified by your PR.
|
||||
|
||||
To apply these checks and corrections in one step, use:
|
||||
|
||||
```bash
|
||||
$ make precommit
|
||||
```
|
||||
|
||||
This command runs the following:
|
||||
- Executes `pre-commit` hooks to automatically fix style issues with `ruff` and other tools.
|
||||
- Runs additional scripts such as adding copyright information.
|
||||
|
||||
If you prefer to apply the style corrections separately or review them individually, the `pre-commit` hook will handle the formatting for the files in question.
|
||||
|
||||
Once you're happy with your changes, add changed files using `git add` and
|
||||
make a commit with `git commit` to record your changes locally:
|
||||
|
||||
```bash
|
||||
$ git add modified_file.py
|
||||
$ git commit
|
||||
```
|
||||
|
||||
Please write [good commit messages](https://chris.beams.io/posts/git-commit/).
|
||||
|
||||
It is a good idea to sync your copy of the code with the original
|
||||
repository regularly. This way you can quickly account for changes:
|
||||
|
||||
```bash
|
||||
$ git fetch upstream
|
||||
$ git rebase upstream/main
|
||||
```
|
||||
|
||||
Push the changes to your account using:
|
||||
|
||||
```bash
|
||||
$ git push -u origin a-descriptive-name-for-my-changes
|
||||
```
|
||||
|
||||
6. Once you are satisfied (**and the checklist below is happy too**), go to the
|
||||
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
|
||||
to the project maintainers for review.
|
||||
|
||||
7. It's ok if maintainers ask you for changes. It happens to core contributors too! To ensure everyone can review your changes in the pull request, work on your local branch and push the updates to your fork. They will automatically appear in the pull request.
|
||||
|
||||
|
||||
### Checklist
|
||||
|
||||
1. The title of your pull request should be a summary of its contribution;
|
||||
2. If your pull request addresses an issue, please mention the issue number in
|
||||
the pull request description to make sure they are linked (and people
|
||||
consulting the issue know you are working on it);
|
||||
3. To indicate a work in progress please prefix the title with `[WIP]`, or mark
|
||||
the PR as a draft PR. These are useful to avoid duplicated work, and to differentiate
|
||||
it from PRs ready to be merged;
|
||||
4. Make sure existing tests pass;
|
||||
5. Add high-coverage tests. No quality testing = no merge.
|
||||
|
||||
|
||||
### Tests
|
||||
|
||||
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
|
||||
the [tests folder](https://github.com/huggingface/trl/tree/main/tests).
|
||||
|
||||
We use `pytest` to run the tests. From the root of the
|
||||
repository here's how to run tests with `pytest` for the library:
|
||||
|
||||
```bash
|
||||
make precommit
|
||||
$ python -m pytest -sv ./tests
|
||||
```
|
||||
|
||||
Make sure to install `pre-commit` before running the command:
|
||||
That's how `make test` is implemented (without the `pip install` line)!
|
||||
|
||||
You can specify a smaller set of tests to test only the feature
|
||||
you're working on.
|
||||
|
||||
### Default values guidelines
|
||||
|
||||
1. **Use defaults when appropriate**:
|
||||
|
||||
Provide default values unless the parameter's value varies significantly by use case. For example, datasets or models should not have defaults, but parameters like `learning_rate` should.
|
||||
|
||||
2. **Prioritize proven defaults**:
|
||||
|
||||
Default values should align with those recommended in the original paper or method. Alternatives require strong evidence of superior performance in most cases.
|
||||
|
||||
3. **Ensure safety and predictability**:
|
||||
|
||||
Defaults must be safe, expected and reliable. Avoid settings that could lead to surprising outcomes, such as excessive memory usage or poor performance in edge cases.
|
||||
|
||||
4. **Balance consistency and flexibility**:
|
||||
|
||||
Aim for consistent defaults across similar functions or methods. However, consistency should not be preferred to point 2 or 3.
|
||||
|
||||
5. **Opt-in for new features**:
|
||||
|
||||
Do not enable new features or improvements (e.g., novel loss functions) by default. Users should explicitly opt-in to use these.
|
||||
|
||||
### Writing documentation
|
||||
|
||||
High-quality documentation is crucial for maintaining a project that is easy to use, understand, and extend. When adding new features, ensure they are thoroughly documented to maintain consistency and clarity throughout the project.
|
||||
|
||||
To illustrate what good documentation looks like, here’s an example of a well-documented function:
|
||||
|
||||
````python
|
||||
def replicate_str(string: str, n: int, sep: str = " ") -> str:
|
||||
r"""
|
||||
Replicate a string `n` times with a separator.
|
||||
|
||||
Args:
|
||||
string (`str`):
|
||||
String to replicate.
|
||||
n (`int`):
|
||||
Number of times to replicate the string.
|
||||
sep (`str`, *optional*, defaults to `" "`):
|
||||
Separator to use between each replication.
|
||||
|
||||
Returns:
|
||||
`str`: The replicated string.
|
||||
|
||||
Examples:
|
||||
```python
|
||||
>>> replicate_str("hello", 3)
|
||||
"hello hello hello"
|
||||
>>> replicate_str("hello", 3, sep=", ")
|
||||
"hello, hello, hello"
|
||||
```
|
||||
"""
|
||||
return sep.join([string] * n)
|
||||
````
|
||||
|
||||
* **Line Wrapping:** Applied a consistent line wrap at column 120 to improve readability.
|
||||
* **Definite Articles:** Removed definite articles where possible to streamline language. (Eg: Changed "The string to replicate" to "String to replicate")
|
||||
* **Type Annotations:**
|
||||
* Always include type definitions, indicating if a parameter is optional and specifying the default value.
|
||||
* Note that `Optional` means that the value can be `None`, and `*optional*` means that it is not required for the user to pass a value.
|
||||
E.g., for arguments that can't be `None` and aren't required:
|
||||
|
||||
```python
|
||||
foo (`int`, *optional*, defaults to `4`):
|
||||
```
|
||||
|
||||
For arguments that can be `None` and are required:
|
||||
|
||||
```python
|
||||
foo (`Optional[int]`):
|
||||
```
|
||||
|
||||
for arguments that can be `None` and aren't required:
|
||||
|
||||
```python
|
||||
foo (`Optional[int]`, *optional*, defaults to `None`):
|
||||
```
|
||||
|
||||
* **String Defaults:**
|
||||
* Ensured that default string values are wrapped in double quotes:
|
||||
|
||||
```python
|
||||
defaults to `"foo"`
|
||||
```
|
||||
|
||||
* **Dictionary Typing:**
|
||||
* Replaced generic `dict` type hints with more explicit `dict[str, Any]` to clarify expected key-value pairs.
|
||||
* **Default Value Formatting:**
|
||||
* Consistently surrounded default values with backticks for improved formatting:
|
||||
|
||||
```python
|
||||
defaults to `4`
|
||||
```
|
||||
|
||||
* **Sub-sectioning:** When the number of arguments is large, consider breaking them into sub-sections for better readability.
|
||||
|
||||
```python
|
||||
def calculate_statistics(data: list[float], precision: int = 2, include_variance: bool = False) -> dict[str, float]:
|
||||
r"""
|
||||
Calculates basic statistics for a given dataset.
|
||||
|
||||
Args:
|
||||
> Data inputs
|
||||
|
||||
data (`list[float]`):
|
||||
A list of numerical values to analyze.
|
||||
|
||||
> Configuration parameters
|
||||
|
||||
precision (`int`, *optional*, defaults to `2`):
|
||||
Number of decimal places to round the results.
|
||||
include_variance (`bool`, *optional*, defaults to `False`):
|
||||
Whether to include the variance of the dataset in the results.
|
||||
|
||||
Returns:
|
||||
`dict[str, float]`:
|
||||
A dictionary containing calculated statistics such as mean, median, and optionally variance.
|
||||
"""
|
||||
...
|
||||
```
|
||||
|
||||
### Deprecation and backward compatibility
|
||||
|
||||
Our approach to deprecation and backward compatibility is flexible and based on the feature’s usage and impact. Each deprecation is carefully evaluated, aiming to balance innovation with user needs.
|
||||
|
||||
When a feature or component is marked for deprecation, its use will emit a warning message. This warning will include:
|
||||
|
||||
- **Transition Guidance**: Instructions on how to migrate to the alternative solution or replacement.
|
||||
- **Removal Version**: The target version when the feature will be removed, providing users with a clear timeframe to transition.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
warnings.warn(
|
||||
"The `Trainer.foo` method is deprecated and will be removed in version 0.14.0. "
|
||||
"Please use the `Trainer.bar` class instead.",
|
||||
FutureWarning,
|
||||
)
|
||||
```
|
||||
|
||||
The deprecation and removal schedule is based on each feature's usage and impact, with examples at two extremes:
|
||||
|
||||
- **Experimental or Low-Use Features**: For a feature that is experimental or has limited usage, backward compatibility may not be maintained between releases. Users should therefore anticipate potential breaking changes from one version to the next.
|
||||
|
||||
- **Widely-Used Components**: For a feature with high usage, we aim for a more gradual transition period of approximately **5 months**, generally scheduling deprecation around **5 minor releases** after the initial warning.
|
||||
|
||||
These examples represent the two ends of a continuum. The specific timeline for each feature will be determined individually, balancing innovation with user stability needs.
|
||||
|
||||
### Working with warnings
|
||||
|
||||
Warnings play a critical role in guiding users toward resolving potential issues, but they should be used thoughtfully to avoid unnecessary noise. Unlike logging, which provides informational context or operational details, warnings signal conditions that require attention and action. Overusing warnings can dilute their importance, leading users to ignore them entirely.
|
||||
|
||||
#### Definitions
|
||||
|
||||
- **Correct**: An operation is correct if it is valid, follows the intended approach, and aligns with the current best practices or guidelines within the codebase. This is the recommended or intended way to perform the operation.
|
||||
- **Supported**: An operation is supported if it is technically valid and works within the current codebase, but it may not be the most efficient, optimal, or recommended way to perform the task. This includes deprecated features or legacy approaches that still work but may be phased out in the future.
|
||||
|
||||
#### Choosing the right message
|
||||
|
||||
- **Correct → No warning**:
|
||||
If the operation is fully valid and expected, no message should be issued. The system is working as intended, so no warning is necessary.
|
||||
|
||||
- **Correct but deserves attention → No warning, possibly a log message**:
|
||||
When an operation is correct but uncommon or requires special attention, providing an informational message can be helpful. This keeps users informed without implying any issue. If available, use the logger to output this message. Example:
|
||||
|
||||
```python
|
||||
logger.info("This is an informational message about a rare but correct operation.")
|
||||
```
|
||||
|
||||
- **Correct but very likely a mistake → Warning with option to disable**:
|
||||
In rare cases, you may want to issue a warning for a correct operation that’s very likely a mistake. In such cases, you must provide an option to suppress the warning. This can be done with a flag in the function. Example:
|
||||
|
||||
```python
|
||||
def my_function(foo, bar, _warn=True):
|
||||
if foo == bar:
|
||||
if _warn:
|
||||
warnings.warn("foo and bar are the same, this is likely a mistake. Ignore this warning by setting `_warn=False`.")
|
||||
# Do something
|
||||
```
|
||||
|
||||
- **Supported but not correct → Warning**:
|
||||
If the operation is technically supported but is deprecated, suboptimal, or could cause future issues (e.g., conflicting arguments), a warning should be raised. This message should be actionable, meaning it must explain how to resolve the issue. Example:
|
||||
|
||||
```python
|
||||
def my_function(foo, bar):
|
||||
if foo and bar:
|
||||
warnings.warn("Both `foo` and `bar` were provided, but only one is allowed. Ignoring `foo`. Please pass only one of these arguments.")
|
||||
# Do something
|
||||
```
|
||||
|
||||
- **Not supported → Exception**:
|
||||
If the operation is invalid or unsupported, raise an exception. This indicates that the operation cannot be performed and requires immediate attention. Example:
|
||||
|
||||
```python
|
||||
def my_function(foo, bar):
|
||||
if foo and bar:
|
||||
raise ValueError("Both `foo` and `bar` were provided, but only one is allowed. Please pass only one of these arguments.")
|
||||
```
|
||||
|
||||
By following this classification, you ensure that warnings, information, and exceptions are used appropriately, providing clear guidance to the user without cluttering the system with unnecessary messages.
|
||||
|
||||
|
||||
## Making a release
|
||||
|
||||
> [!NOTE]
|
||||
> VERSION needs to be formatted following the `v{major}.{minor}.{patch}` convention. We need to follow this convention to be able to retrieve versioned scripts.
|
||||
|
||||
To create the package for PyPI.
|
||||
|
||||
#### 0. Prerequisites
|
||||
|
||||
- Dependencies:
|
||||
- twine: `pip install build twine`
|
||||
- Create an account in (and join the `trl` project):
|
||||
- PyPI: https://pypi.org/
|
||||
- Test PyPI: https://test.pypi.org/
|
||||
|
||||
#### 1. Ensure your local repository is up to date with the upstream repository
|
||||
|
||||
```bash
|
||||
pip install pre-commit
|
||||
git checkout main
|
||||
git pull origin main
|
||||
```
|
||||
|
||||
## Do you want to contribute to the documentation?
|
||||
> [!WARNING]
|
||||
> Do not merge other pull requests into `main` until the release is done. This is to ensure that the release is stable and does not include any untested changes. Announce internally (#trl-internal) to other maintainers that you are doing a release and that they must not merge PRs until the release is done.
|
||||
|
||||
* Docs are in the `docs/` folder and can be updated there.
|
||||
#### 2. Create a release branch from main
|
||||
|
||||
```bash
|
||||
git checkout -b release-v{major}.{minor}
|
||||
```
|
||||
|
||||
#### 3. Change the version in the following files
|
||||
|
||||
- `.github/workflows/tests_latest.yml`:
|
||||
```diff
|
||||
- with: { ref: v{major}.{minor-1}-release }
|
||||
+ with: { ref: v{major}.{minor}-release }
|
||||
```
|
||||
- `CITATION.cff`
|
||||
```diff
|
||||
- version: {major}.{minor-1}
|
||||
+ version: {major}.{minor}
|
||||
```
|
||||
- `__init__.py`
|
||||
```diff
|
||||
- __version__ = "{major}.{minor}.0.dev0"
|
||||
+ __version__ = "{major}.{minor}.0"
|
||||
```
|
||||
- `setup.cfg`
|
||||
```diff
|
||||
- version = {major}.{minor}.0.dev0
|
||||
+ version = {major}.{minor}.0
|
||||
```
|
||||
|
||||
#### 4. Commit and push these changes
|
||||
|
||||
```shell
|
||||
git commit -m 'Release: {major}.{minor}'
|
||||
git push origin release-v{major}.{minor}
|
||||
```
|
||||
|
||||
#### 5. Create a pull request
|
||||
|
||||
from `release-v{major}.{minor}` to `main`, named `Release: v{major}.{minor}`, wait for tests to pass, and request a review.
|
||||
|
||||
#### 6. Once the pull request is approved, merge it into `main`
|
||||
|
||||
#### 7. Add a tag in git to mark the release
|
||||
|
||||
```shell
|
||||
git checkout main
|
||||
git pull origin main
|
||||
git tag -a v{major}.{minor}.0 -m 'Adds tag v{major}.{minor}.0 for PyPI'
|
||||
git push origin v{major}.{minor}.0
|
||||
```
|
||||
|
||||
#### 8. Create a branch `v{major}.{minor}-release` for future patch releases.
|
||||
|
||||
```shell
|
||||
git checkout -b v{major}.{minor}-release
|
||||
git push origin v{major}.{minor}-release
|
||||
```
|
||||
|
||||
This ensures that future patch releases (`v{major}.{minor}.1`, `v{major}.{minor}.2`, etc.) can be made separately from `main`.
|
||||
|
||||
#### 9. Create the wheels for your release
|
||||
|
||||
These are the artifacts that will be uploaded to PyPI and installed by users via `pip install trl`.
|
||||
|
||||
Clean previous builds:
|
||||
|
||||
```shell
|
||||
rm -rf build dist
|
||||
```
|
||||
|
||||
At the root of your repo, run
|
||||
|
||||
```bash
|
||||
python -m build .
|
||||
```
|
||||
|
||||
This will create a folders named `dist` with the new versions of your package.
|
||||
|
||||
#### 10. Upload the package to PyPI Test
|
||||
|
||||
> [!IMPORTANT]
|
||||
> Do not skip this step. It is important to test the package before uploading it to the main PyPI server.
|
||||
|
||||
```shell
|
||||
twine upload dist/* -r testpypi
|
||||
```
|
||||
|
||||
Then in a fresh environment containing all dependencies you need, try to install your new package from the PyPI test server.
|
||||
|
||||
```bash
|
||||
pip install -i https://test.pypi.org/simple/ trl
|
||||
```
|
||||
|
||||
You might get errors for missing dependencies since the PyPI test server does not contain all packages like PyPI does. To make sure you have everything you can do:
|
||||
|
||||
```bash
|
||||
pip install trl
|
||||
pip uninstall trl
|
||||
```
|
||||
|
||||
(the second line will remove trl but keep all its dependencies).
|
||||
|
||||
Also make sure you can actually use the package! Run the following line:
|
||||
|
||||
```bash
|
||||
python -c "from trl import *"
|
||||
```
|
||||
|
||||
along with anything that tests:
|
||||
|
||||
- the core feature of your package
|
||||
- the new features you’re adding in the release
|
||||
|
||||
#### 11. Publish on PyPI
|
||||
|
||||
> [!WARNING]
|
||||
> This can't be reverted. Make sure you have tested everything before doing this step.
|
||||
|
||||
```shell
|
||||
twine upload dist/*
|
||||
```
|
||||
|
||||
#### 12. Create a GitHub Release
|
||||
|
||||
1. Go to the repo’s [releases section](https://github.com/huggingface/trl/releases) on GitHub.
|
||||
2. Click **Draft a new release**.
|
||||
3. Select the `v{major}.{minor}.0` tag you just created in step 7.
|
||||
4. Add a title (`v{major}.{minor}.0`) and a short description of what’s new.
|
||||
5. Click **Publish Release**.
|
||||
|
||||
#### 13. Bump to dev version
|
||||
|
||||
1. Create a branch `bump-dev-version-{major}.{minor+1}` from `main` and checkout to it.
|
||||
|
||||
```shell
|
||||
git checkout -b bump-dev-version-{major}.{minor+1}
|
||||
```
|
||||
|
||||
2. Change the version in the following files:
|
||||
1. `__init__.py`
|
||||
```diff
|
||||
- __version__ = "{major}.{minor}.0"
|
||||
+ __version__ = "{major}.{minor+1}.0.dev0"
|
||||
```
|
||||
2. `setup.cfg`
|
||||
```diff
|
||||
- version = {major}.{minor}.0
|
||||
+ version = {major}.{minor+1}.0.dev0
|
||||
```
|
||||
|
||||
3. Commit and push these changes
|
||||
|
||||
```shell
|
||||
git add trl/__init__.py setup.cfg
|
||||
git commit -m '⬆️ Bump dev version'
|
||||
git push origin bump-dev-version-{major}.{minor+1}
|
||||
```
|
||||
|
||||
4. Create a pull request from `bump-dev-version-{major}.{minor+1}` to `main`, named `⬆️ Bump dev version`, and request urgent review.
|
||||
|
||||
5. Once the pull request is approved, merge it into `main`.
|
||||
|
||||
6. The codebase is now ready for the next development cycle, inform the team in the #trl-internal channel.
|
||||
|
2
LICENSE
2
LICENSE
@ -186,7 +186,7 @@
|
||||
same "printed page" as the copyright notice for easier
|
||||
identification within third-party archives.
|
||||
|
||||
Copyright [yyyy] [name of copyright owner]
|
||||
Copyright 2020-2025 The HuggingFace Team
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
|
@ -1,5 +1,6 @@
|
||||
include settings.ini
|
||||
include LICENSE
|
||||
include CONTRIBUTING.md
|
||||
include README.md
|
||||
recursive-exclude * __pycache__
|
||||
recursive-exclude * __pycache__
|
||||
include trl/templates/*.md
|
||||
include trl/accelerate_configs/*.yaml
|
24
Makefile
24
Makefile
@ -1,33 +1,19 @@
|
||||
.PHONY: test precommit benchmark_core benchmark_aux common_tests slow_tests test_examples tests_gpu
|
||||
.PHONY: test precommit common_tests slow_tests test_examples tests_gpu
|
||||
|
||||
check_dirs := examples tests trl
|
||||
|
||||
ACCELERATE_CONFIG_PATH = `pwd`/examples/accelerate_configs
|
||||
COMMAND_FILES_PATH = `pwd`/commands
|
||||
|
||||
|
||||
dev:
|
||||
[ -L "$(pwd)/trl/commands/scripts" ] && unlink "$(pwd)/trl/commands/scripts" || true
|
||||
pip install -e ".[dev]"
|
||||
ln -s `pwd`/examples/scripts/ `pwd`/trl/commands
|
||||
|
||||
test:
|
||||
python -m pytest -n auto --dist=loadfile -s -v ./tests/
|
||||
pytest -n auto -m "not slow and not low-priority" -s -v --reruns 5 --reruns-delay 1 --only-rerun '(OSError|Timeout|HTTPError.*502|HTTPError.*504||not less than or equal to 0.01)' tests/
|
||||
|
||||
precommit:
|
||||
python scripts/add_copyrights.py
|
||||
pre-commit run --all-files
|
||||
|
||||
benchmark_core:
|
||||
bash ./benchmark/benchmark_core.sh
|
||||
|
||||
benchmark_aux:
|
||||
bash ./benchmark/benchmark_aux.sh
|
||||
|
||||
tests_gpu:
|
||||
python -m pytest tests/test_* $(if $(IS_GITHUB_CI),--report-log "common_tests.log",)
|
||||
|
||||
slow_tests:
|
||||
python -m pytest tests/slow/test_* $(if $(IS_GITHUB_CI),--report-log "slow_tests.log",)
|
||||
pytest -m "slow" tests/ $(if $(IS_GITHUB_CI),--report-log "slow_tests.log",)
|
||||
|
||||
test_examples:
|
||||
touch temp_results_sft_tests.txt
|
||||
@ -40,4 +26,4 @@ test_examples:
|
||||
for file in $(ACCELERATE_CONFIG_PATH)/*.yaml; do \
|
||||
TRL_ACCELERATE_CONFIG=$${file} bash $(COMMAND_FILES_PATH)/run_dpo.sh; \
|
||||
echo $$?','$${file} >> temp_results_dpo_tests.txt; \
|
||||
done
|
||||
done
|
||||
|
257
README.md
257
README.md
@ -1,228 +1,193 @@
|
||||
# TRL - Transformer Reinforcement Learning
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_banner_dark.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl_banner_dark.png" alt="TRL Banner">
|
||||
</div>
|
||||
|
||||
# TRL - Transformer Reinforcement Learning
|
||||
> Full stack library to fine-tune and align large language models.
|
||||
<hr> <br>
|
||||
|
||||
<h3 align="center">
|
||||
<p>A comprehensive library to post-train foundation models</p>
|
||||
</h3>
|
||||
|
||||
<p align="center">
|
||||
<a href="https://github.com/huggingface/trl/blob/main/LICENSE">
|
||||
<img alt="License" src="https://img.shields.io/github/license/huggingface/trl.svg?color=blue">
|
||||
</a>
|
||||
<a href="https://huggingface.co/docs/trl/index">
|
||||
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/trl/index.svg?down_color=red&down_message=offline&up_message=online">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/trl/releases">
|
||||
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/trl.svg">
|
||||
</a>
|
||||
<a href="https://github.com/huggingface/trl/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/huggingface/trl.svg?color=blue"></a>
|
||||
<a href="https://huggingface.co/docs/trl/index"><img alt="Documentation" src="https://img.shields.io/website?label=documentation&url=https%3A%2F%2Fhuggingface.co%2Fdocs%2Ftrl%2Findex&down_color=red&down_message=offline&up_color=blue&up_message=online"></a>
|
||||
<a href="https://github.com/huggingface/trl/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/trl.svg"></a>
|
||||
<a href="https://huggingface.co/trl-lib"><img alt="Hugging Face Hub" src="https://img.shields.io/badge/🤗%20Hub-trl--lib-yellow"></a>
|
||||
</p>
|
||||
|
||||
## Overview
|
||||
|
||||
## What is it?
|
||||
|
||||
The `trl` library is a full stack tool to fine-tune and align transformer language and diffusion models using methods such as Supervised Fine-tuning step (SFT), Reward Modeling (RM) and the Proximal Policy Optimization (PPO) as well as Direct Preference Optimization (DPO).
|
||||
|
||||
The library is built on top of the [`transformers`](https://github.com/huggingface/transformers) library and thus allows to use any model architecture available there.
|
||||
|
||||
TRL is a cutting-edge library designed for post-training foundation models using advanced techniques like Supervised Fine-Tuning (SFT), Proximal Policy Optimization (PPO), and Direct Preference Optimization (DPO). Built on top of the [🤗 Transformers](https://github.com/huggingface/transformers) ecosystem, TRL supports a variety of model architectures and modalities, and can be scaled-up across various hardware setups.
|
||||
|
||||
## Highlights
|
||||
|
||||
- **`Efficient and scalable`**:
|
||||
- [`accelerate`](https://github.com/huggingface/accelerate) is the backbone of `trl` which allows to scale model training from a single GPU to a large scale multi-node cluster with methods such as DDP and DeepSpeed.
|
||||
- [`PEFT`](https://github.com/huggingface/peft) is fully integrated and allows to train even the largest models on modest hardware with quantisation and methods such as LoRA or QLoRA.
|
||||
- [`unsloth`](https://github.com/unslothai/unsloth) is also integrated and allows to significantly speed up training with dedicated kernels.
|
||||
- **`CLI`**: With the [CLI](https://huggingface.co/docs/trl/clis) you can fine-tune and chat with LLMs without writing any code using a single command and a flexible config system.
|
||||
- **`Trainers`**: The Trainer classes are an abstraction to apply many fine-tuning methods with ease such as the [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer), [`DPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.DPOTrainer), [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer), [`PPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.PPOTrainer), [`CPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.CPOTrainer), and [`ORPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.ORPOTrainer).
|
||||
- **`AutoModels`**: The [`AutoModelForCausalLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForCausalLMWithValueHead) & [`AutoModelForSeq2SeqLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForSeq2SeqLMWithValueHead) classes add an additional value head to the model which allows to train them with RL algorithms such as PPO.
|
||||
- **`Examples`**: Train GPT2 to generate positive movie reviews with a BERT sentiment classifier, full RLHF using adapters only, train GPT-j to be less toxic, [StackLlama example](https://huggingface.co/blog/stackllama), etc. following the [examples](https://github.com/huggingface/trl/tree/main/examples).
|
||||
- **Trainers**: Various fine-tuning methods are easily accessible via trainers like [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer), [`GRPOTrainer`](https://huggingface.co/docs/trl/grpo_trainer), [`DPOTrainer`](https://huggingface.co/docs/trl/dpo_trainer), [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer) and more.
|
||||
|
||||
- **Efficient and scalable**:
|
||||
- Leverages [🤗 Accelerate](https://github.com/huggingface/accelerate) to scale from single GPU to multi-node clusters using methods like [DDP](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html) and [DeepSpeed](https://github.com/deepspeedai/DeepSpeed).
|
||||
- Full integration with [🤗 PEFT](https://github.com/huggingface/peft) enables training on large models with modest hardware via quantization and LoRA/QLoRA.
|
||||
- Integrates [🦥 Unsloth](https://github.com/unslothai/unsloth) for accelerating training using optimized kernels.
|
||||
|
||||
- **Command Line Interface (CLI)**: A simple interface lets you fine-tune with models without needing to write code.
|
||||
|
||||
## Installation
|
||||
|
||||
### Python package
|
||||
Install the library with `pip`:
|
||||
### Python Package
|
||||
|
||||
Install the library using `pip`:
|
||||
|
||||
```bash
|
||||
pip install trl
|
||||
```
|
||||
|
||||
### From source
|
||||
If you want to use the latest features before an official release you can install from source:
|
||||
|
||||
If you want to use the latest features before an official release, you can install TRL from source:
|
||||
|
||||
```bash
|
||||
pip install git+https://github.com/huggingface/trl.git
|
||||
```
|
||||
|
||||
### Repository
|
||||
|
||||
If you want to use the examples you can clone the repository with the following command:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/trl.git
|
||||
```
|
||||
|
||||
## Command Line Interface (CLI)
|
||||
## Quick Start
|
||||
|
||||
You can use TRL Command Line Interface (CLI) to quickly get started with Supervised Fine-tuning (SFT), Direct Preference Optimization (DPO) and test your aligned model with the chat CLI:
|
||||
|
||||
**SFT:**
|
||||
|
||||
```bash
|
||||
trl sft --model_name_or_path facebook/opt-125m --dataset_name imdb --output_dir opt-sft-imdb
|
||||
```
|
||||
|
||||
**DPO:**
|
||||
|
||||
```bash
|
||||
trl dpo --model_name_or_path facebook/opt-125m --dataset_name trl-internal-testing/hh-rlhf-trl-style --output_dir opt-sft-hh-rlhf
|
||||
```
|
||||
|
||||
**Chat:**
|
||||
|
||||
```bash
|
||||
trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat
|
||||
```
|
||||
|
||||
Read more about CLI in the [relevant documentation section](https://huggingface.co/docs/trl/main/en/clis) or use `--help` for more details.
|
||||
|
||||
## How to use
|
||||
|
||||
For more flexibility and control over the training, you can use the dedicated trainer classes to fine-tune the model in Python.
|
||||
For more flexibility and control over training, TRL provides dedicated trainer classes to post-train language models or PEFT adapters on a custom dataset. Each trainer in TRL is a light wrapper around the 🤗 Transformers trainer and natively supports distributed training methods like DDP, DeepSpeed ZeRO, and FSDP.
|
||||
|
||||
### `SFTTrainer`
|
||||
|
||||
This is a basic example of how to use the `SFTTrainer` from the library. The `SFTTrainer` is a light wrapper around the `transformers` Trainer to easily fine-tune language models or adapters on a custom dataset.
|
||||
Here is a basic example of how to use the [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer):
|
||||
|
||||
```python
|
||||
# imports
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from datasets import load_dataset
|
||||
|
||||
# get dataset
|
||||
dataset = load_dataset("imdb", split="train")
|
||||
dataset = load_dataset("trl-lib/Capybara", split="train")
|
||||
|
||||
# get trainer
|
||||
trainer = SFTTrainer(
|
||||
"facebook/opt-350m",
|
||||
model="Qwen/Qwen2.5-0.5B",
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
max_seq_length=512,
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
# train
|
||||
### `GRPOTrainer`
|
||||
|
||||
[`GRPOTrainer`](https://huggingface.co/docs/trl/grpo_trainer) implements the [Group Relative Policy Optimization (GRPO) algorithm](https://huggingface.co/papers/2402.03300) that is more memory-efficient than PPO and was used to train [Deepseek AI's R1](https://huggingface.co/deepseek-ai/DeepSeek-R1).
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from trl import GRPOTrainer
|
||||
|
||||
dataset = load_dataset("trl-lib/tldr", split="train")
|
||||
|
||||
# Dummy reward function: count the number of unique characters in the completions
|
||||
def reward_num_unique_chars(completions, **kwargs):
|
||||
return [len(set(c)) for c in completions]
|
||||
|
||||
trainer = GRPOTrainer(
|
||||
model="Qwen/Qwen2-0.5B-Instruct",
|
||||
reward_funcs=reward_num_unique_chars,
|
||||
train_dataset=dataset,
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
### `DPOTrainer`
|
||||
|
||||
[`DPOTrainer`](https://huggingface.co/docs/trl/dpo_trainer) implements the popular [Direct Preference Optimization (DPO) algorithm](https://huggingface.co/papers/2305.18290) that was used to post-train [Llama 3](https://huggingface.co/papers/2407.21783) and many other models. Here is a basic example of how to use the `DPOTrainer`:
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from trl import DPOConfig, DPOTrainer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
||||
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
|
||||
trainer = DPOTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
processing_class=tokenizer
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
### `RewardTrainer`
|
||||
|
||||
This is a basic example of how to use the `RewardTrainer` from the library. The `RewardTrainer` is a wrapper around the `transformers` Trainer to easily fine-tune reward models or adapters on a custom preference dataset.
|
||||
Here is a basic example of how to use the [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer):
|
||||
|
||||
```python
|
||||
# imports
|
||||
from trl import RewardConfig, RewardTrainer
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
||||
from trl import RewardTrainer
|
||||
|
||||
# load model and dataset - dataset needs to be in a specific format
|
||||
model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1)
|
||||
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
model = AutoModelForSequenceClassification.from_pretrained(
|
||||
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1
|
||||
)
|
||||
model.config.pad_token_id = tokenizer.pad_token_id
|
||||
|
||||
...
|
||||
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
||||
|
||||
# load trainer
|
||||
training_args = RewardConfig(output_dir="Qwen2.5-0.5B-Reward", per_device_train_batch_size=2)
|
||||
trainer = RewardTrainer(
|
||||
args=training_args,
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
processing_class=tokenizer,
|
||||
train_dataset=dataset,
|
||||
)
|
||||
|
||||
# train
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
### `PPOTrainer`
|
||||
## Command Line Interface (CLI)
|
||||
|
||||
This is a basic example of how to use the `PPOTrainer` from the library. Based on a query the language model creates a response which is then evaluated. The evaluation could be a human in the loop or another model's output.
|
||||
You can use the TRL Command Line Interface (CLI) to quickly get started with post-training methods like Supervised Fine-Tuning (SFT) or Direct Preference Optimization (DPO):
|
||||
|
||||
```python
|
||||
# imports
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model
|
||||
from trl.core import respond_to_batch
|
||||
**SFT:**
|
||||
|
||||
# get models
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
|
||||
model_ref = create_reference_model(model)
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained('gpt2')
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# initialize trainer
|
||||
ppo_config = PPOConfig(batch_size=1, mini_batch_size=1)
|
||||
|
||||
# encode a query
|
||||
query_txt = "This morning I went to the "
|
||||
query_tensor = tokenizer.encode(query_txt, return_tensors="pt")
|
||||
|
||||
# get model response
|
||||
response_tensor = respond_to_batch(model, query_tensor)
|
||||
|
||||
# create a ppo trainer
|
||||
ppo_trainer = PPOTrainer(ppo_config, model, model_ref, tokenizer)
|
||||
|
||||
# define a reward for response
|
||||
# (this could be any reward such as human feedback or output from another model)
|
||||
reward = [torch.tensor(1.0)]
|
||||
|
||||
# train model for one step with ppo
|
||||
train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward)
|
||||
```bash
|
||||
trl sft --model_name_or_path Qwen/Qwen2.5-0.5B \
|
||||
--dataset_name trl-lib/Capybara \
|
||||
--output_dir Qwen2.5-0.5B-SFT
|
||||
```
|
||||
|
||||
### `DPOTrainer`
|
||||
**DPO:**
|
||||
|
||||
`DPOTrainer` is a trainer that uses [Direct Preference Optimization algorithm](https://arxiv.org/abs/2305.18290). This is a basic example of how to use the `DPOTrainer` from the library. The `DPOTrainer` is a wrapper around the `transformers` Trainer to easily fine-tune reward models or adapters on a custom preference dataset.
|
||||
|
||||
```python
|
||||
# imports
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from trl import DPOTrainer
|
||||
|
||||
# load model and dataset - dataset needs to be in a specific format
|
||||
model = AutoModelForCausalLM.from_pretrained("gpt2")
|
||||
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
||||
|
||||
...
|
||||
|
||||
# load trainer
|
||||
trainer = DPOTrainer(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
train_dataset=dataset,
|
||||
)
|
||||
|
||||
# train
|
||||
trainer.train()
|
||||
```bash
|
||||
trl dpo --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
|
||||
--dataset_name argilla/Capybara-Preferences \
|
||||
--output_dir Qwen2.5-0.5B-DPO
|
||||
```
|
||||
|
||||
Read more about CLI in the [relevant documentation section](https://huggingface.co/docs/trl/main/en/clis) or use `--help` for more details.
|
||||
|
||||
## Development
|
||||
|
||||
If you want to contribute to `trl` or customizing it to your needs make sure to read the [contribution guide](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md) and make sure you make a dev install:
|
||||
If you want to contribute to `trl` or customize it to your needs make sure to read the [contribution guide](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md) and make sure you make a dev install:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/trl.git
|
||||
cd trl/
|
||||
make dev
|
||||
pip install -e .[dev]
|
||||
```
|
||||
|
||||
## References
|
||||
|
||||
### Proximal Policy Optimisation
|
||||
The PPO implementation largely follows the structure introduced in the paper **"Fine-Tuning Language Models from Human Preferences"** by D. Ziegler et al. \[[paper](https://arxiv.org/pdf/1909.08593.pdf), [code](https://github.com/openai/lm-human-preferences)].
|
||||
|
||||
### Direct Preference Optimization
|
||||
DPO is based on the original implementation of **"Direct Preference Optimization: Your Language Model is Secretly a Reward Model"** by E. Mitchell et al. \[[paper](https://arxiv.org/pdf/2305.18290.pdf), [code](https://github.com/eric-mitchell/direct-preference-optimization)]
|
||||
|
||||
|
||||
## Citation
|
||||
|
||||
```bibtex
|
||||
@misc{vonwerra2022trl,
|
||||
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang},
|
||||
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
|
||||
title = {TRL: Transformer Reinforcement Learning},
|
||||
year = {2020},
|
||||
publisher = {GitHub},
|
||||
@ -230,3 +195,7 @@ DPO is based on the original implementation of **"Direct Preference Optimization
|
||||
howpublished = {\url{https://github.com/huggingface/trl}}
|
||||
}
|
||||
```
|
||||
|
||||
## License
|
||||
|
||||
This repository's source code is available under the [Apache-2.0 License](LICENSE).
|
||||
|
@ -1,150 +0,0 @@
|
||||
import argparse
|
||||
import math
|
||||
import os
|
||||
import shlex
|
||||
import subprocess
|
||||
import uuid
|
||||
from distutils.util import strtobool
|
||||
|
||||
import requests
|
||||
|
||||
|
||||
def parse_args():
|
||||
# fmt: off
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--command", type=str, default="",
|
||||
help="the command to run")
|
||||
parser.add_argument("--num-seeds", type=int, default=3,
|
||||
help="the number of random seeds")
|
||||
parser.add_argument("--start-seed", type=int, default=1,
|
||||
help="the number of the starting seed")
|
||||
parser.add_argument("--workers", type=int, default=0,
|
||||
help="the number of workers to run benchmark experimenets")
|
||||
parser.add_argument("--auto-tag", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
|
||||
help="if toggled, the runs will be tagged with git tags, commit, and pull request number if possible")
|
||||
parser.add_argument("--slurm-template-path", type=str, default=None,
|
||||
help="the path to the slurm template file (see docs for more details)")
|
||||
parser.add_argument("--slurm-gpus-per-task", type=int, default=1,
|
||||
help="the number of gpus per task to use for slurm jobs")
|
||||
parser.add_argument("--slurm-total-cpus", type=int, default=50,
|
||||
help="the number of gpus per task to use for slurm jobs")
|
||||
parser.add_argument("--slurm-ntasks", type=int, default=1,
|
||||
help="the number of tasks to use for slurm jobs")
|
||||
parser.add_argument("--slurm-nodes", type=int, default=None,
|
||||
help="the number of nodes to use for slurm jobs")
|
||||
args = parser.parse_args()
|
||||
# fmt: on
|
||||
return args
|
||||
|
||||
|
||||
def run_experiment(command: str):
|
||||
command_list = shlex.split(command)
|
||||
print(f"running {command}")
|
||||
|
||||
# Use subprocess.PIPE to capture the output
|
||||
fd = subprocess.Popen(command_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
||||
output, errors = fd.communicate()
|
||||
|
||||
return_code = fd.returncode
|
||||
assert return_code == 0, f"Command failed with error: {errors.decode('utf-8')}"
|
||||
|
||||
# Convert bytes to string and strip leading/trailing whitespaces
|
||||
return output.decode("utf-8").strip()
|
||||
|
||||
|
||||
def autotag() -> str:
|
||||
wandb_tag = ""
|
||||
print("autotag feature is enabled")
|
||||
git_tag = ""
|
||||
try:
|
||||
git_tag = subprocess.check_output(["git", "describe", "--tags"]).decode("ascii").strip()
|
||||
print(f"identified git tag: {git_tag}")
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(e)
|
||||
if len(git_tag) == 0:
|
||||
try:
|
||||
count = int(subprocess.check_output(["git", "rev-list", "--count", "HEAD"]).decode("ascii").strip())
|
||||
hash = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode("ascii").strip()
|
||||
git_tag = f"no-tag-{count}-g{hash}"
|
||||
print(f"identified git tag: {git_tag}")
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(e)
|
||||
wandb_tag = f"{git_tag}"
|
||||
|
||||
git_commit = subprocess.check_output(["git", "rev-parse", "--verify", "HEAD"]).decode("ascii").strip()
|
||||
try:
|
||||
# try finding the pull request number on github
|
||||
prs = requests.get(f"https://api.github.com/search/issues?q=repo:huggingface/trl+is:pr+{git_commit}")
|
||||
if prs.status_code == 200:
|
||||
prs = prs.json()
|
||||
if len(prs["items"]) > 0:
|
||||
pr = prs["items"][0]
|
||||
pr_number = pr["number"]
|
||||
wandb_tag += f",pr-{pr_number}"
|
||||
print(f"identified github pull request: {pr_number}")
|
||||
except Exception as e:
|
||||
print(e)
|
||||
|
||||
return wandb_tag
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_args()
|
||||
if args.auto_tag:
|
||||
existing_wandb_tag = os.environ.get("WANDB_TAGS", "")
|
||||
wandb_tag = autotag()
|
||||
if len(wandb_tag) > 0:
|
||||
if len(existing_wandb_tag) > 0:
|
||||
os.environ["WANDB_TAGS"] = ",".join([existing_wandb_tag, wandb_tag])
|
||||
else:
|
||||
os.environ["WANDB_TAGS"] = wandb_tag
|
||||
print("WANDB_TAGS: ", os.environ.get("WANDB_TAGS", ""))
|
||||
commands = []
|
||||
for seed in range(0, args.num_seeds):
|
||||
commands += [" ".join([args.command, "--seed", str(args.start_seed + seed)])]
|
||||
|
||||
print("======= commands to run:")
|
||||
for command in commands:
|
||||
print(command)
|
||||
|
||||
if args.workers > 0 and args.slurm_template_path is None:
|
||||
from concurrent.futures import ThreadPoolExecutor
|
||||
|
||||
executor = ThreadPoolExecutor(max_workers=args.workers, thread_name_prefix="cleanrl-benchmark-worker-")
|
||||
for command in commands:
|
||||
executor.submit(run_experiment, command)
|
||||
executor.shutdown(wait=True)
|
||||
else:
|
||||
print("not running the experiments because --workers is set to 0; just printing the commands to run")
|
||||
|
||||
# SLURM logic
|
||||
if args.slurm_template_path is not None:
|
||||
if not os.path.exists("slurm"):
|
||||
os.makedirs("slurm")
|
||||
if not os.path.exists("slurm/logs"):
|
||||
os.makedirs("slurm/logs")
|
||||
print("======= slurm commands to run:")
|
||||
with open(args.slurm_template_path) as f:
|
||||
slurm_template = f.read()
|
||||
slurm_template = slurm_template.replace("{{array}}", f"0-{len(commands) - 1}%{args.workers}")
|
||||
slurm_template = slurm_template.replace(
|
||||
"{{seeds}}", f"({' '.join([str(args.start_seed + int(seed)) for seed in range(args.num_seeds)])})"
|
||||
)
|
||||
slurm_template = slurm_template.replace("{{len_seeds}}", f"{args.num_seeds}")
|
||||
slurm_template = slurm_template.replace("{{command}}", args.command)
|
||||
slurm_template = slurm_template.replace("{{gpus_per_task}}", f"{args.slurm_gpus_per_task}")
|
||||
total_gpus = args.slurm_gpus_per_task * args.slurm_ntasks
|
||||
slurm_cpus_per_gpu = math.ceil(args.slurm_total_cpus / total_gpus)
|
||||
slurm_template = slurm_template.replace("{{cpus_per_gpu}}", f"{slurm_cpus_per_gpu}")
|
||||
slurm_template = slurm_template.replace("{{ntasks}}", f"{args.slurm_ntasks}")
|
||||
if args.slurm_nodes is not None:
|
||||
slurm_template = slurm_template.replace("{{nodes}}", f"#SBATCH --nodes={args.slurm_nodes}")
|
||||
else:
|
||||
slurm_template = slurm_template.replace("{{nodes}}", "")
|
||||
filename = str(uuid.uuid4())
|
||||
open(os.path.join("slurm", f"{filename}.slurm"), "w").write(slurm_template)
|
||||
slurm_path = os.path.join("slurm", f"{filename}.slurm")
|
||||
print(f"saving command in {slurm_path}")
|
||||
if args.workers > 0:
|
||||
job_id = run_experiment(f"sbatch --parsable {slurm_path}")
|
||||
print(f"Job ID: {job_id}")
|
@ -1,26 +0,0 @@
|
||||
export WANDB_ENTITY=huggingface
|
||||
export WANDB_PROJECT=trl
|
||||
bash $BENCHMARK_SCRIPT > output.txt
|
||||
|
||||
# Extract Job IDs into an array
|
||||
job_ids=($(grep "Job ID:" output.txt | awk '{print $3}'))
|
||||
|
||||
# Extract WANDB_TAGS into an array
|
||||
WANDB_TAGS=($(grep "WANDB_TAGS:" output.txt | awk '{print $2}'))
|
||||
WANDB_TAGS=($(echo $WANDB_TAGS | tr "," "\n"))
|
||||
|
||||
# Print to verify
|
||||
echo "Job IDs: ${job_ids[@]}"
|
||||
echo "WANDB_TAGS: ${WANDB_TAGS[@]}"
|
||||
|
||||
TAGS_STRING="?tag=${WANDB_TAGS[0]}"
|
||||
FOLDER_STRING="${WANDB_TAGS[0]}"
|
||||
for tag in "${WANDB_TAGS[@]:1}"; do
|
||||
TAGS_STRING+="&tag=$tag"
|
||||
FOLDER_STRING+="_$tag"
|
||||
done
|
||||
|
||||
echo "TAGS_STRING: $TAGS_STRING"
|
||||
echo "FOLDER_STRING: $FOLDER_STRING"
|
||||
|
||||
TAGS_STRING=$TAGS_STRING FOLDER_STRING=$FOLDER_STRING BENCHMARK_PLOT_SCRIPT=$BENCHMARK_PLOT_SCRIPT sbatch --dependency=afterany:$job_ids benchmark/post_github_comment.sbatch
|
@ -1,44 +0,0 @@
|
||||
# hello world experiment
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --log_with wandb" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/dpo.py --model_name_or_path=gpt2 --per_device_train_batch_size 4 --max_steps 1000 --learning_rate 1e-3 --gradient_accumulation_steps 1 --logging_steps 10 --eval_steps 500 --output_dir="dpo_anthropic_hh" --optim adamw_torch --warmup_steps 150 --report_to wandb --bf16 --logging_first_step --no_remove_unused_columns" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/sft.py --model_name_or_path="facebook/opt-350m" --report_to="wandb" --learning_rate=1.41e-5 --per_device_train_batch_size=64 --gradient_accumulation_steps=16 --output_dir="sft_openassistant-guanaco" --logging_steps=1 --num_train_epochs=3 --max_steps=-1 --push_to_hub --gradient_checkpointing" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/reward_modeling.py --model_name_or_path=facebook/opt-350m --output_dir="reward_modeling_anthropic_hh" --per_device_train_batch_size=64 --num_train_epochs=1 --gradient_accumulation_steps=16 --gradient_checkpointing=True --learning_rate=1.41e-5 --report_to="wandb" --remove_unused_columns=False --optim="adamw_torch" --logging_steps=10 --evaluation_strategy="steps" --max_length=512" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
@ -1,50 +0,0 @@
|
||||
# pip install openrlbenchmark==0.2.1a5
|
||||
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
|
||||
echo "we deal with $TAGS_STRING"
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
|
||||
"ppo$TAGS_STRING" \
|
||||
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$FOLDER_STRING/ppo \
|
||||
--scan-history
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=output_dir&cen=_name_or_path&metrics=train/rewards/accuracies&metrics=train/loss' \
|
||||
"gpt2$TAGS_STRING" \
|
||||
--env-ids dpo_anthropic_hh \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$FOLDER_STRING/dpo \
|
||||
--scan-history
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=output_dir&cen=_name_or_path&metrics=train/loss&metrics=eval/accuracy&metrics=eval/loss' \
|
||||
"facebook/opt-350m$TAGS_STRING" \
|
||||
--env-ids reward_modeling_anthropic_hh \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$FOLDER_STRING/reward_modeling \
|
||||
--scan-history
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=output_dir&cen=_name_or_path&metrics=train/loss' \
|
||||
"facebook/opt-350m$TAGS_STRING" \
|
||||
--env-ids sft_openassistant-guanaco \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$FOLDER_STRING/sft \
|
||||
--scan-history
|
||||
|
||||
python benchmark/upload_benchmark.py \
|
||||
--folder_path="benchmark/trl/$FOLDER_STRING" \
|
||||
--path_in_repo="images/benchmark/$FOLDER_STRING" \
|
||||
--repo_id="trl-internal-testing/example-images" \
|
||||
--repo_type="dataset"
|
||||
|
@ -1,23 +0,0 @@
|
||||
# compound experiments: gpt2xl + grad_accu
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name ppo_gpt2xl_grad_accu --model_name gpt2-xl --mini_batch_size 16 --gradient_accumulation_steps 8 --log_with wandb" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
|
||||
# compound experiments: Cerebras-GPT-6.7B + deepspeed zero2 + grad_accu
|
||||
python benchmark/benchmark.py \
|
||||
--command "accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml examples/scripts/ppo.py --exp_name ppo_Cerebras-GPT-6.7B_grad_accu_deepspeed_stage2 --batch_size 32 --mini_batch_size 32 --log_with wandb --model_name cerebras/Cerebras-GPT-6.7B --reward_model sentiment-analysis:cerebras/Cerebras-GPT-6.7B" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 8 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 90 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
@ -1,31 +0,0 @@
|
||||
# pip install openrlbenchmark==0.2.1a5
|
||||
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
|
||||
echo "we deal with $TAGS_STRING"
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
|
||||
"ppo$TAGS_STRING" \
|
||||
"ppo_gpt2xl_grad_accu$TAGS_STRING" \
|
||||
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$FOLDER_STRING/different_models \
|
||||
--scan-history
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
|
||||
"ppo_Cerebras-GPT-6.7B_grad_accu_deepspeed_stage2$TAGS_STRING" \
|
||||
--env-ids sentiment-analysis:cerebras/Cerebras-GPT-6.7B \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$FOLDER_STRING/deepspeed \
|
||||
--scan-history
|
||||
|
||||
python benchmark/upload_benchmark.py \
|
||||
--folder_path="benchmark/trl/$FOLDER_STRING" \
|
||||
--path_in_repo="images/benchmark/$FOLDER_STRING" \
|
||||
--repo_id="trl-internal-testing/example-images" \
|
||||
--repo_type="dataset"
|
||||
|
@ -1,46 +0,0 @@
|
||||
## w/ and w/o gradient accumulation
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name ppo_step_grad_accu --mini_batch_size 1 --gradient_accumulation_steps 128 --log_with wandb" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
|
||||
## w/ different models (gpt2, gpt2-xl, falcon, llama2)
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name ppo_gpt2 --log_with wandb" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name ppo_falcon_rw_1b --model_name tiiuae/falcon-rw-1b --log_with wandb" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
|
||||
|
||||
## w/ and w/o PEFT
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name ppo_peft --use_peft --log_with wandb" \
|
||||
--num-seeds 3 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
@ -1,56 +0,0 @@
|
||||
# pip install openrlbenchmark==0.2.1a5
|
||||
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
|
||||
BASELINE_PR_TAG=v0.4.7-55-g110e672
|
||||
BASELINE_PR_NAME=PR-662
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
|
||||
"sentiment_tuning?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb ($BASELINE_PR_NAME)" \
|
||||
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$BASELINE_PR_TAG/sentiment \
|
||||
--scan-history
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
|
||||
"sentiment_tuning?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb ($BASELINE_PR_NAME)" \
|
||||
"sentiment_tuning_step_grad_accu?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb gradient accumulation ($BASELINE_PR_NAME)" \
|
||||
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$BASELINE_PR_TAG/gradient_accu \
|
||||
--scan-history
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
|
||||
"sentiment_tuning?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb ($BASELINE_PR_NAME)" \
|
||||
"sentiment_tuning_gpt2?tag=$BASELINE_PR_TAG&cl=sentiment gpt2 ($BASELINE_PR_NAME)" \
|
||||
"sentiment_tuning_falcon_rw_1b?tag=$BASELINE_PR_TAG&cl=sentiment tiiuae/falcon-rw-1b ($BASELINE_PR_NAME)" \
|
||||
"sentiment_tuning_gpt2xl_grad_accu?tag=$BASELINE_PR_TAG&cl=sentiment gpt2xl ($BASELINE_PR_NAME)" \
|
||||
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$BASELINE_PR_TAG/different_models \
|
||||
--scan-history
|
||||
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
|
||||
"sentiment_tuning?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb ($BASELINE_PR_NAME)" \
|
||||
"sentiment_tuning_peft?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb w/ peft ($BASELINE_PR_NAME)" \
|
||||
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
|
||||
--no-check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename benchmark/trl/$BASELINE_PR_TAG/peft \
|
||||
--scan-history
|
||||
|
||||
|
||||
python benchmark/upload_benchmark.py \
|
||||
--folder_path="benchmark/trl/$BASELINE_PR_TAG" \
|
||||
--path_in_repo="images/benchmark/$BASELINE_PR_TAG" \
|
||||
--repo_id="trl-internal-testing/example-images" \
|
||||
--repo_type="dataset"
|
@ -1,26 +0,0 @@
|
||||
import json
|
||||
import os
|
||||
|
||||
from ghapi.all import GhApi
|
||||
|
||||
|
||||
FOLDER_STRING = os.environ.get("FOLDER_STRING", "")
|
||||
folder = f"benchmark/trl/{FOLDER_STRING}"
|
||||
host_url = f"https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/benchmark/{FOLDER_STRING}"
|
||||
|
||||
# Create a GitHub API instance
|
||||
github_context = json.loads(os.environ["GITHUB_CONTEXT"])
|
||||
token = os.environ["PERSONAL_ACCESS_TOKEN_GITHUB"] # this needs to refreshed every 12 months
|
||||
status_message = "**[COSTA BENCHMARK BOT]**: Here are the results"
|
||||
body = status_message
|
||||
repo = github_context["repository"]
|
||||
owner, repo = repo.split("/")
|
||||
api = GhApi(owner=owner, repo=repo, token=token)
|
||||
|
||||
# for each `.png` file in the folder, add it to the comment
|
||||
for file in os.listdir(folder):
|
||||
if file.endswith(".png"):
|
||||
body += f"\n"
|
||||
|
||||
# Create a comment on the issue
|
||||
api.issues.create_comment(issue_number=github_context["event"]["issue"]["number"], body=body)
|
@ -1,9 +0,0 @@
|
||||
#!/bin/bash
|
||||
#SBATCH --job-name=trl
|
||||
#SBATCH --partition=hopper-cpu
|
||||
#SBATCH --ntasks=1
|
||||
#SBATCH --output=slurm/logs/%x_%j.out
|
||||
|
||||
sleep 2m
|
||||
bash $BENCHMARK_PLOT_SCRIPT
|
||||
srun python benchmark/post_github_comment.py
|
@ -1,3 +0,0 @@
|
||||
BENCHMARK_SCRIPT="benchmark/benchmark_level1.sh" \
|
||||
BENCHMARK_PLOT_SCRIPT="benchmark/benchmark_level1_plot.sh" \
|
||||
bash benchmark/benchmark_and_report.sh
|
@ -1,19 +0,0 @@
|
||||
#!/bin/bash
|
||||
#SBATCH --job-name=trl
|
||||
#SBATCH --partition=hopper-prod
|
||||
#SBATCH --gpus-per-task={{gpus_per_task}}
|
||||
#SBATCH --cpus-per-gpu={{cpus_per_gpu}}
|
||||
#SBATCH --ntasks={{ntasks}}
|
||||
#SBATCH --output=slurm/logs/%x_%j.out
|
||||
#SBATCH --array={{array}}
|
||||
##SBATCH --exclude=ip-26-0-149-199
|
||||
|
||||
module load cuda/12.1
|
||||
|
||||
{{nodes}}
|
||||
|
||||
seeds={{seeds}}
|
||||
seed=${seeds[$SLURM_ARRAY_TASK_ID % {{len_seeds}}]}
|
||||
|
||||
echo "Running task $SLURM_ARRAY_TASK_ID with seed: $seed"
|
||||
srun {{command}} --seed $seed
|
@ -1,23 +0,0 @@
|
||||
from dataclasses import dataclass
|
||||
|
||||
import tyro
|
||||
from huggingface_hub import HfApi
|
||||
|
||||
|
||||
@dataclass
|
||||
class Args:
|
||||
folder_path: str = "benchmark/trl"
|
||||
path_in_repo: str = "images/benchmark"
|
||||
repo_id: str = "trl-internal-testing/example-images"
|
||||
repo_type: str = "dataset"
|
||||
|
||||
|
||||
args = tyro.cli(Args)
|
||||
api = HfApi()
|
||||
|
||||
api.upload_folder(
|
||||
folder_path=args.folder_path,
|
||||
path_in_repo=args.path_in_repo,
|
||||
repo_id=args.repo_id,
|
||||
repo_type=args.repo_type,
|
||||
)
|
@ -2,8 +2,8 @@
|
||||
# This script runs an SFT example end-to-end on a tiny model using different possible configurations
|
||||
# but defaults to QLoRA + PEFT
|
||||
OUTPUT_DIR="test_dpo/"
|
||||
MODEL_NAME="HuggingFaceM4/tiny-random-LlamaForCausalLM"
|
||||
DATASET_NAME="trl-internal-testing/hh-rlhf-trl-style"
|
||||
MODEL_NAME="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
|
||||
DATASET_NAME="trl-internal-testing/hh-rlhf-helpful-base-trl-style"
|
||||
MAX_STEPS=5
|
||||
BATCH_SIZE=2
|
||||
SEQ_LEN=128
|
||||
@ -35,7 +35,7 @@ CMD="""
|
||||
accelerate launch $EXTRA_ACCELERATE_ARGS \
|
||||
--num_processes $NUM_GPUS \
|
||||
--mixed_precision 'fp16' \
|
||||
`pwd`/examples/scripts/dpo.py \
|
||||
`pwd`/trl/scripts/dpo.py \
|
||||
--model_name_or_path $MODEL_NAME \
|
||||
--dataset_name $DATASET_NAME \
|
||||
--output_dir $OUTPUT_DIR \
|
||||
@ -55,4 +55,4 @@ echo "Starting program..."
|
||||
echo "Operation Failed!"
|
||||
exit 1
|
||||
}
|
||||
exit 0
|
||||
exit 0
|
||||
|
@ -2,8 +2,8 @@
|
||||
# This script runs an SFT example end-to-end on a tiny model using different possible configurations
|
||||
# but defaults to QLoRA + PEFT
|
||||
OUTPUT_DIR="test_sft/"
|
||||
MODEL_NAME="HuggingFaceM4/tiny-random-LlamaForCausalLM"
|
||||
DATASET_NAME="imdb"
|
||||
MODEL_NAME="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
|
||||
DATASET_NAME="stanfordnlp/imdb"
|
||||
MAX_STEPS=5
|
||||
BATCH_SIZE=2
|
||||
SEQ_LEN=128
|
||||
@ -36,13 +36,13 @@ CMD="""
|
||||
accelerate launch $EXTRA_ACCELERATE_ARGS \
|
||||
--num_processes $NUM_GPUS \
|
||||
--mixed_precision 'fp16' \
|
||||
`pwd`/examples/scripts/sft.py \
|
||||
`pwd`/trl/scripts/sft.py \
|
||||
--model_name $MODEL_NAME \
|
||||
--dataset_name $DATASET_NAME \
|
||||
--output_dir $OUTPUT_DIR \
|
||||
--max_steps $MAX_STEPS \
|
||||
--per_device_train_batch_size $BATCH_SIZE \
|
||||
--max_seq_length $SEQ_LEN \
|
||||
--max_length $SEQ_LEN \
|
||||
$EXTRA_TRAINING_ARGS
|
||||
"""
|
||||
|
||||
@ -56,4 +56,4 @@ echo "Starting program..."
|
||||
echo "Operation Failed!"
|
||||
exit 1
|
||||
}
|
||||
exit 0
|
||||
exit 0
|
||||
|
@ -1,62 +1,116 @@
|
||||
- sections:
|
||||
- local: index
|
||||
title: TRL
|
||||
- local: quickstart
|
||||
title: Quickstart
|
||||
- local: installation
|
||||
title: Installation
|
||||
- local: clis
|
||||
title: Get started with Command Line Interfaces (CLIs)
|
||||
- local: quickstart
|
||||
title: Quickstart
|
||||
title: Getting started
|
||||
- sections:
|
||||
- local: dataset_formats
|
||||
title: Dataset Formats
|
||||
- local: how_to_train
|
||||
title: PPO Training FAQ
|
||||
- local: use_model
|
||||
title: Use Trained Models
|
||||
- local: customization
|
||||
title: Customize the Training
|
||||
title: Training FAQ
|
||||
- local: logging
|
||||
title: Understanding Logs
|
||||
title: Get started
|
||||
title: Conceptual Guides
|
||||
- sections:
|
||||
- local: models
|
||||
title: Model Classes
|
||||
- local: trainer
|
||||
title: Trainer Classes
|
||||
- local: reward_trainer
|
||||
title: Reward Model Training
|
||||
- local: sft_trainer
|
||||
title: Supervised Fine-Tuning
|
||||
- local: ppo_trainer
|
||||
title: PPO Trainer
|
||||
- local: best_of_n
|
||||
title: Best of N Sampling
|
||||
- local: dpo_trainer
|
||||
title: DPO Trainer
|
||||
- local: kto_trainer
|
||||
title: KTO Trainer
|
||||
- local: cpo_trainer
|
||||
title: CPO Trainer
|
||||
- local: ddpo_trainer
|
||||
title: Denoising Diffusion Policy Optimization
|
||||
- local: orpo_trainer
|
||||
title: ORPO Trainer
|
||||
- local: iterative_sft_trainer
|
||||
title: Iterative Supervised Fine-Tuning
|
||||
- local: text_environments
|
||||
title: Text Environments
|
||||
title: API
|
||||
- local: clis
|
||||
title: Command Line Interface (CLI)
|
||||
- local: customization
|
||||
title: Customizing the Training
|
||||
- local: reducing_memory_usage
|
||||
title: Reducing Memory Usage
|
||||
- local: speeding_up_training
|
||||
title: Speeding Up Training
|
||||
- local: distributing_training
|
||||
title: Distributing Training
|
||||
- local: use_model
|
||||
title: Using Trained Models
|
||||
title: How-to guides
|
||||
- sections:
|
||||
- local: deepspeed_integration
|
||||
title: DeepSpeed
|
||||
- local: liger_kernel_integration
|
||||
title: Liger Kernel
|
||||
- local: peft_integration
|
||||
title: PEFT
|
||||
- local: unsloth_integration
|
||||
title: Unsloth
|
||||
- local: vllm_integration
|
||||
title: vLLM
|
||||
title: Integrations
|
||||
- sections:
|
||||
- local: example_overview
|
||||
title: Example Overview
|
||||
- local: community_tutorials
|
||||
title: Community Tutorials
|
||||
- local: sentiment_tuning
|
||||
title: Sentiment Tuning
|
||||
- local: lora_tuning_peft
|
||||
title: Training with PEFT
|
||||
- local: detoxifying_a_lm
|
||||
title: Detoxifying a Language Model
|
||||
- local: using_llama_models
|
||||
title: Training StackLlama
|
||||
- local: learning_tools
|
||||
title: Learning to Use Tools
|
||||
- local: detoxifying_a_lm
|
||||
title: Detoxifying a Language Model
|
||||
- local: multi_adapter_rl
|
||||
title: Multi Adapter RLHF
|
||||
- local: training_vlm_sft
|
||||
title: Fine-tuning a Multimodal Model Using SFT (Single or Multi-Image Dataset)
|
||||
title: Examples
|
||||
- sections:
|
||||
- sections: # Sorted alphabetically
|
||||
- local: alignprop_trainer
|
||||
title: AlignProp
|
||||
- local: bco_trainer
|
||||
title: BCO
|
||||
- local: cpo_trainer
|
||||
title: CPO
|
||||
- local: ddpo_trainer
|
||||
title: DDPO
|
||||
- local: dpo_trainer
|
||||
title: DPO
|
||||
- local: online_dpo_trainer
|
||||
title: Online DPO
|
||||
- local: gkd_trainer
|
||||
title: GKD
|
||||
- local: grpo_trainer
|
||||
title: GRPO
|
||||
- local: kto_trainer
|
||||
title: KTO
|
||||
- local: nash_md_trainer
|
||||
title: Nash-MD
|
||||
- local: orpo_trainer
|
||||
title: ORPO
|
||||
- local: ppo_trainer
|
||||
title: PPO
|
||||
- local: prm_trainer
|
||||
title: PRM
|
||||
- local: reward_trainer
|
||||
title: Reward
|
||||
- local: rloo_trainer
|
||||
title: RLOO
|
||||
- local: sft_trainer
|
||||
title: SFT
|
||||
- local: iterative_sft_trainer
|
||||
title: Iterative SFT
|
||||
- local: xpo_trainer
|
||||
title: XPO
|
||||
title: Trainers
|
||||
- local: models
|
||||
title: Model Classes
|
||||
- local: model_utils
|
||||
title: Model Utilities
|
||||
- local: best_of_n
|
||||
title: Best of N Sampling
|
||||
- local: judges
|
||||
title: Judges
|
||||
- local: callbacks
|
||||
title: Callbacks
|
||||
- local: data_utils
|
||||
title: Data Utilities
|
||||
- local: rewards
|
||||
title: Reward Functions
|
||||
- local: script_utils
|
||||
title: Script Utilities
|
||||
- local: others
|
||||
title: Others
|
||||
title: API
|
||||
|
93
docs/source/alignprop_trainer.md
Normal file
93
docs/source/alignprop_trainer.md
Normal file
@ -0,0 +1,93 @@
|
||||
# Aligning Text-to-Image Diffusion Models with Reward Backpropagation
|
||||
|
||||
[](https://huggingface.co/models?other=alignprop,trl)
|
||||
|
||||
## The why
|
||||
|
||||
If your reward function is differentiable, directly backpropagating gradients from the reward models to the diffusion model is significantly more sample and compute efficient (25x) than doing policy gradient algorithm like DDPO.
|
||||
AlignProp does full backpropagation through time, which allows updating the earlier steps of denoising via reward backpropagation.
|
||||
|
||||
<div style="text-align: center"><img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/reward_tuning.png"/></div>
|
||||
|
||||
|
||||
## Getting started with `examples/scripts/alignprop.py`
|
||||
|
||||
The `alignprop.py` script is a working example of using the `AlignProp` trainer to finetune a Stable Diffusion model. This example explicitly configures a small subset of the overall parameters associated with the config object (`AlignPropConfig`).
|
||||
|
||||
**Note:** one A100 GPU is recommended to get this running. For lower memory setting, consider setting truncated_backprop_rand to False. With default settings this will do truncated backpropagation with K=1.
|
||||
|
||||
Almost every configuration parameter has a default. There is only one commandline flag argument that is required of the user to get things up and running. The user is expected to have a [huggingface user access token](https://huggingface.co/docs/hub/security-tokens) that will be used to upload the model post-finetuning to HuggingFace hub. The following bash command is to be entered to get things running
|
||||
|
||||
```batch
|
||||
python alignprop.py --hf_user_access_token <token>
|
||||
```
|
||||
|
||||
To obtain the documentation of `stable_diffusion_tuning.py`, please run `python stable_diffusion_tuning.py --help`
|
||||
|
||||
The following are things to keep in mind (The code checks this for you as well) in general while configuring the trainer (beyond the use case of using the example script)
|
||||
|
||||
- The configurable randomized truncation range (`--alignprop_config.truncated_rand_backprop_minmax=(0,50)`) the first number should be equal and greater than 0, while the second number should equal or less to the number of diffusion timesteps (sample_num_steps)
|
||||
- The configurable truncation backprop absolute step (`--alignprop_config.truncated_backprop_timestep=49`) the number should be less than the number of diffusion timesteps (sample_num_steps), it only matters when truncated_backprop_rand is set to False
|
||||
|
||||
## Setting up the image logging hook function
|
||||
|
||||
Expect the function to be given a dictionary with keys
|
||||
```python
|
||||
['image', 'prompt', 'prompt_metadata', 'rewards']
|
||||
|
||||
```
|
||||
and `image`, `prompt`, `prompt_metadata`, `rewards`are batched.
|
||||
You are free to log however you want the use of `wandb` or `tensorboard` is recommended.
|
||||
|
||||
### Key terms
|
||||
|
||||
- `rewards` : The rewards/score is a numerical associated with the generated image and is key to steering the RL process
|
||||
- `prompt` : The prompt is the text that is used to generate the image
|
||||
- `prompt_metadata` : The prompt metadata is the metadata associated with the prompt. A situation where this will not be empty is when the reward model comprises of a [`FLAVA`](https://huggingface.co/docs/transformers/model_doc/flava) setup where questions and ground answers (linked to the generated image) are expected with the generated image (See here: https://github.com/kvablack/ddpo-pytorch/blob/main/ddpo_pytorch/rewards.py#L45)
|
||||
- `image` : The image generated by the Stable Diffusion model
|
||||
|
||||
Example code for logging sampled images with `wandb` is given below.
|
||||
|
||||
```python
|
||||
# for logging these images to wandb
|
||||
|
||||
def image_outputs_hook(image_data, global_step, accelerate_logger):
|
||||
# For the sake of this example, we only care about the last batch
|
||||
# hence we extract the last element of the list
|
||||
result = {}
|
||||
images, prompts, rewards = [image_data['images'],image_data['prompts'],image_data['rewards']]
|
||||
for i, image in enumerate(images):
|
||||
pil = Image.fromarray(
|
||||
(image.cpu().numpy().transpose(1, 2, 0) * 255).astype(np.uint8)
|
||||
)
|
||||
pil = pil.resize((256, 256))
|
||||
result[f"{prompts[i]:.25} | {rewards[i]:.2f}"] = [pil]
|
||||
accelerate_logger.log_images(
|
||||
result,
|
||||
step=global_step,
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
### Using the finetuned model
|
||||
|
||||
Assuming you've done with all the epochs and have pushed up your model to the hub, you can use the finetuned model as follows
|
||||
|
||||
```python
|
||||
from diffusers import StableDiffusionPipeline
|
||||
pipeline = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
||||
pipeline.to("cuda")
|
||||
|
||||
pipeline.load_lora_weights('mihirpd/alignprop-trl-aesthetics')
|
||||
|
||||
prompts = ["squirrel", "crab", "starfish", "whale","sponge", "plankton"]
|
||||
results = pipeline(prompts)
|
||||
|
||||
for prompt, image in zip(prompts,results.images):
|
||||
image.save(f"dump/{prompt}.png")
|
||||
```
|
||||
|
||||
## Credits
|
||||
|
||||
This work is heavily influenced by the repo [here](https://github.com/mihirp1998/AlignProp/) and the associated paper [Aligning Text-to-Image Diffusion Models with Reward Backpropagation
|
||||
by Mihir Prabhudesai, Anirudh Goyal, Deepak Pathak, Katerina Fragkiadaki](https://huggingface.co/papers/2310.03739).
|
100
docs/source/bco_trainer.md
Normal file
100
docs/source/bco_trainer.md
Normal file
@ -0,0 +1,100 @@
|
||||
# BCO Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=bco,trl)
|
||||
|
||||
TRL supports the Binary Classifier Optimization (BCO).
|
||||
The [BCO](https://huggingface.co/papers/2404.04656) authors train a binary classifier whose logit serves as a reward so that the classifier maps {prompt, chosen completion} pairs to 1 and {prompt, rejected completion} pairs to 0.
|
||||
For a full example have a look at [`examples/scripts/bco.py`].
|
||||
|
||||
## Expected dataset type
|
||||
|
||||
The [`BCOTrainer`] requires an [unpaired preference dataset](dataset_formats#unpaired-preference).
|
||||
The [`BCOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
|
||||
|
||||
## Expected model format
|
||||
The BCO trainer expects a model of `AutoModelForCausalLM`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
|
||||
|
||||
## Using the `BCOTrainer`
|
||||
|
||||
For a detailed example have a look at the `examples/scripts/bco.py` script. At a high level we need to initialize the `BCOTrainer` with a `model` we wish to train and a reference `ref_model` which we will use to calculate the implicit rewards of the preferred and rejected response.
|
||||
|
||||
The `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above. Note that the `model` and `ref_model` need to have the same architecture (ie decoder only or encoder-decoder).
|
||||
|
||||
|
||||
|
||||
```py
|
||||
training_args = BCOConfig(
|
||||
beta=0.1,
|
||||
)
|
||||
|
||||
bco_trainer = BCOTrainer(
|
||||
model,
|
||||
model_ref,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
processing_class=tokenizer,
|
||||
)
|
||||
```
|
||||
After this one can then call:
|
||||
|
||||
```py
|
||||
bco_trainer.train()
|
||||
```
|
||||
|
||||
## Underlying Distribution matching (UDM)
|
||||
|
||||
In practical scenarios, the thumbs-up and thumbs-down datasets are likely to have divergent underlying distributions of prompts.
|
||||
Consider an LLM deployed for user feedback: if the model excels in writing tasks but underperforms in coding, the thumbs-up dataset will be dominated by writing-related prompts, while the thumbs-down dataset will contain mostly coding-related prompts.
|
||||
If the prompts in your desired and undesired datasets differ a lot, it is useful to enable UDM.
|
||||
|
||||
Choose an embedding model and tokenizer:
|
||||
|
||||
```py
|
||||
embedding_model = AutoModel.from_pretrained(your_model_id)
|
||||
embedding_tokenizer = AutoTokenizer.from_pretrained(your_model_id)
|
||||
|
||||
# customize this function depending on your embedding model
|
||||
def embed_prompt(input_ids, attention_mask, model):
|
||||
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
|
||||
return outputs.last_hidden_state.mean(dim=1)
|
||||
|
||||
embedding_model = Accelerator().prepare_model(self.embedding_model)
|
||||
embedding_func = partial(embed_prompt, model=embedding_model)
|
||||
```
|
||||
|
||||
Set `prompt_sample_size` to define how many prompts are selected to train the UDM classifier and start the training with the provided embedding function:
|
||||
|
||||
```py
|
||||
training_args = BCOConfig(
|
||||
beta=0.1,
|
||||
prompt_sample_size=512,
|
||||
)
|
||||
|
||||
bco_trainer = BCOTrainer(
|
||||
model,
|
||||
model_ref,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
processing_class=tokenizer,
|
||||
embedding_func=embedding_func,
|
||||
embedding_tokenizer=self.embedding_tokenizer,
|
||||
)
|
||||
|
||||
bco_trainer.train()
|
||||
```
|
||||
|
||||
### For Mixture of Experts Models: Enabling the auxiliary loss
|
||||
|
||||
MOEs are the most efficient if the load is about equally distributed between experts.
|
||||
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
|
||||
|
||||
This option is enabled by setting `output_router_logits=True` in the model config (e.g. MixtralConfig).
|
||||
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: 0.001).
|
||||
|
||||
## BCOTrainer
|
||||
|
||||
[[autodoc]] BCOTrainer
|
||||
|
||||
## BCOConfig
|
||||
|
||||
[[autodoc]] BCOConfig
|
@ -67,6 +67,6 @@ best_of_n.generate(query_tensors, device=device)
|
||||
|
||||
```
|
||||
|
||||
Furthermore, at the time of initialization you can set the seed to control repeatability of the generation process and the number of samples to generate for each query
|
||||
Furthermore, at the time of initialization you can set the seed to control the repeatability of the generation process and the number of samples to generate for each query
|
||||
|
||||
|
21
docs/source/callbacks.md
Normal file
21
docs/source/callbacks.md
Normal file
@ -0,0 +1,21 @@
|
||||
# Callbacks
|
||||
|
||||
## SyncRefModelCallback
|
||||
|
||||
[[autodoc]] SyncRefModelCallback
|
||||
|
||||
## RichProgressCallback
|
||||
|
||||
[[autodoc]] RichProgressCallback
|
||||
|
||||
## WinRateCallback
|
||||
|
||||
[[autodoc]] WinRateCallback
|
||||
|
||||
## LogCompletionsCallback
|
||||
|
||||
[[autodoc]] LogCompletionsCallback
|
||||
|
||||
## MergeModelCallback
|
||||
|
||||
[[autodoc]] MergeModelCallback
|
303
docs/source/clis.md
Normal file
303
docs/source/clis.md
Normal file
@ -0,0 +1,303 @@
|
||||
# Command Line Interfaces (CLIs)
|
||||
|
||||
TRL provides a powerful command-line interface (CLI) to fine-tune large language models (LLMs) using methods like Supervised Fine-Tuning (SFT), Direct Preference Optimization (DPO), and more. The CLI abstracts away much of the boilerplate, letting you launch training jobs quickly and reproducibly.
|
||||
|
||||
Currently supported commands are:
|
||||
|
||||
#### Training Commands
|
||||
|
||||
- `trl dpo`: fine-tune a LLM with DPO
|
||||
- `trl grpo`: fine-tune a LLM with GRPO
|
||||
- `trl kto`: fine-tune a LLM with KTO
|
||||
- `trl sft`: fine-tune a LLM with SFT
|
||||
|
||||
#### Other Commands
|
||||
|
||||
- `trl env`: get the system information
|
||||
- `trl vllm-serve`: serve a model with vLLM
|
||||
|
||||
## Fine-Tuning with the TRL CLI
|
||||
|
||||
### Basic Usage
|
||||
|
||||
You can launch training directly from the CLI by specifying required arguments like the model and dataset:
|
||||
|
||||
<hfoptions id="command_line">
|
||||
<hfoption id="SFT">
|
||||
|
||||
```bash
|
||||
trl sft \
|
||||
--model_name_or_path Qwen/Qwen2.5-0.5B \
|
||||
--dataset_name stanfordnlp/imdb
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="DPO">
|
||||
|
||||
```bash
|
||||
trl dpo \
|
||||
--model_name_or_path Qwen/Qwen2.5-0.5B \
|
||||
--dataset_name anthropic/hh-rlhf
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### Using Configuration Files
|
||||
|
||||
To keep your CLI commands clean and reproducible, you can define all training arguments in a YAML configuration file:
|
||||
|
||||
<hfoptions id="config_file">
|
||||
<hfoption id="SFT">
|
||||
|
||||
```yaml
|
||||
# sft_config.yaml
|
||||
model_name_or_path: Qwen/Qwen2.5-0.5B
|
||||
dataset_name: stanfordnlp/imdb
|
||||
```
|
||||
|
||||
Launch with:
|
||||
|
||||
```bash
|
||||
trl sft --config sft_config.yaml
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="DPO">
|
||||
|
||||
```yaml
|
||||
# dpo_config.yaml
|
||||
model_name_or_path: Qwen/Qwen2.5-0.5B
|
||||
dataset_name: anthropic/hh-rlhf
|
||||
```
|
||||
|
||||
Launch with:
|
||||
|
||||
```bash
|
||||
trl dpo --config dpo_config.yaml
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### Scaling Up with Accelerate
|
||||
|
||||
TRL CLI natively supports [🤗 Accelerate](https://huggingface.co/docs/accelerate), making it easy to scale training across multiple GPUs, machines, or use advanced setups like DeepSpeed — all from the same CLI.
|
||||
|
||||
You can pass any `accelerate launch` arguments directly to `trl`, such as `--num_processes`. For more information see [Using accelerate launch](https://huggingface.co/docs/accelerate/en/basic_tutorials/launch#using-accelerate-launch).
|
||||
|
||||
<hfoptions id="launch_args">
|
||||
<hfoption id="SFT inline">
|
||||
|
||||
```bash
|
||||
trl sft \
|
||||
--model_name_or_path Qwen/Qwen2.5-0.5B \
|
||||
--dataset_name stanfordnlp/imdb \
|
||||
--num_processes 4
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="SFT w/ config file">
|
||||
|
||||
```yaml
|
||||
# sft_config.yaml
|
||||
model_name_or_path: Qwen/Qwen2.5-0.5B
|
||||
dataset_name: stanfordnlp/imdb
|
||||
num_processes: 4
|
||||
```
|
||||
|
||||
Launch with:
|
||||
|
||||
```bash
|
||||
trl sft --config sft_config.yaml
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="DPO inline">
|
||||
|
||||
```bash
|
||||
trl dpo \
|
||||
--model_name_or_path Qwen/Qwen2.5-0.5B \
|
||||
--dataset_name anthropic/hh-rlhf \
|
||||
--num_processes 4
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="DPO w/ config file">
|
||||
|
||||
```yaml
|
||||
# dpo_config.yaml
|
||||
model_name_or_path: Qwen/Qwen2.5-0.5B
|
||||
dataset_name: anthropic/hh-rlhf
|
||||
num_processes: 4
|
||||
```
|
||||
|
||||
Launch with:
|
||||
|
||||
```bash
|
||||
trl dpo --config dpo_config.yaml
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
### Using `--accelerate_config` for Accelerate Configuration
|
||||
|
||||
The `--accelerate_config` flag lets you easily configure distributed training with [🤗 Accelerate](https://github.com/huggingface/accelerate). This flag accepts either:
|
||||
|
||||
* the name of a predefined config profile (built into TRL), or
|
||||
* a path to a custom Accelerate YAML config file.
|
||||
|
||||
#### Predefined Config Profiles
|
||||
|
||||
TRL provides several ready-to-use Accelerate configs to simplify common training setups:
|
||||
|
||||
| Name | Description |
|
||||
| ------------ | ----------------------------------- |
|
||||
| `fsdp1` | Fully Sharded Data Parallel Stage 1 |
|
||||
| `fsdp2` | Fully Sharded Data Parallel Stage 2 |
|
||||
| `zero1` | DeepSpeed ZeRO Stage 1 |
|
||||
| `zero2` | DeepSpeed ZeRO Stage 2 |
|
||||
| `zero3` | DeepSpeed ZeRO Stage 3 |
|
||||
| `multi_gpu` | Multi-GPU training |
|
||||
| `single_gpu` | Single-GPU training |
|
||||
|
||||
To use one of these, just pass the name to `--accelerate_config`. TRL will automatically load the corresponding config file from `trl/accelerate_config/`.
|
||||
|
||||
#### Example Usage
|
||||
|
||||
<hfoptions id="accelerate_config">
|
||||
<hfoption id="SFT inline">
|
||||
|
||||
```bash
|
||||
trl sft \
|
||||
--model_name_or_path Qwen/Qwen2.5-0.5B \
|
||||
--dataset_name stanfordnlp/imdb \
|
||||
--accelerate_config zero2 # or path/to/my/accelerate/config.yaml
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="SFT w/ config file">
|
||||
|
||||
```yaml
|
||||
# sft_config.yaml
|
||||
model_name_or_path: Qwen/Qwen2.5-0.5B
|
||||
dataset_name: stanfordnlp/imdb
|
||||
accelerate_config: zero2 # or path/to/my/accelerate/config.yaml
|
||||
```
|
||||
|
||||
Launch with:
|
||||
|
||||
```bash
|
||||
trl sft --config sft_config.yaml
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="DPO inline">
|
||||
|
||||
```bash
|
||||
trl dpo \
|
||||
--model_name_or_path Qwen/Qwen2.5-0.5B \
|
||||
--dataset_name anthropic/hh-rlhf \
|
||||
--accelerate_config zero2 # or path/to/my/accelerate/config.yaml
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="DPO w/ config file">
|
||||
|
||||
```yaml
|
||||
# dpo_config.yaml
|
||||
model_name_or_path: Qwen/Qwen2.5-0.5B
|
||||
dataset_name: anthropic/hh-rlhf
|
||||
accelerate_config: zero2 # or path/to/my/accelerate/config.yaml
|
||||
```
|
||||
|
||||
Launch with:
|
||||
|
||||
```bash
|
||||
trl dpo --config dpo_config.yaml
|
||||
```
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Chat Interface
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
The chat interface is deprecated and will be removed in TRL 0.19. Use `transformers-cli chat` instead. For more information, see the [Transformers documentation, chat with text generation models](https://huggingface.co/docs/transformers/quicktour#chat-with-text-generation-models).
|
||||
|
||||
</Tip>
|
||||
|
||||
The chat CLI lets you quickly load the model and talk to it. Simply run the following:
|
||||
|
||||
<pre><code>$ trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat
|
||||
<strong><span style="color: red;"><quentin_gallouedec>:</span></strong>
|
||||
What is the best programming language?
|
||||
|
||||
<strong><span style="color: blue;"><Qwen/Qwen1.5-0.5B-Chat>:</span></strong>
|
||||
There isn't a "best" programming language, as everyone has different style preferences, needs, and preferences. However, some people commonly use
|
||||
languages like Python, Java, C++, and JavaScript, which are popular among developers for a variety of reasons, including readability, flexibility,
|
||||
and scalability. Ultimately, it depends on personal preference, needs, and goals.
|
||||
</code></pre>
|
||||
|
||||
Note that the chat interface relies on the tokenizer's [chat template](https://huggingface.co/docs/transformers/chat_templating) to format the inputs for the model. Make sure your tokenizer has a chat template defined.
|
||||
|
||||
Besides talking to the model there are a few commands you can use:
|
||||
|
||||
- `clear`: clears the current conversation and start a new one
|
||||
- `example {NAME}`: load example named `{NAME}` from the config and use it as the user input
|
||||
- `set {SETTING_NAME}={SETTING_VALUE};`: change the system prompt or generation settings (multiple settings are separated by a `;`).
|
||||
- `reset`: same as clear but also resets the generation configs to defaults if they have been changed by `set`
|
||||
- `save` or `save {SAVE_NAME}`: save the current chat and settings to file by default to `./chat_history/{MODEL_NAME}/chat_{DATETIME}.yaml` or `{SAVE_NAME}` if provided
|
||||
- `exit`: closes the interface
|
||||
|
||||
## Getting the System Information
|
||||
|
||||
You can get the system information by running the following command:
|
||||
|
||||
```bash
|
||||
trl env
|
||||
```
|
||||
|
||||
This will print out the system information, including the GPU information, the CUDA version, the PyTorch version, the transformers version, the TRL version, and any optional dependencies that are installed.
|
||||
|
||||
```txt
|
||||
Copy-paste the following information when reporting an issue:
|
||||
|
||||
- Platform: Linux-5.15.0-1048-aws-x86_64-with-glibc2.31
|
||||
- Python version: 3.11.9
|
||||
- PyTorch version: 2.4.1
|
||||
- accelerator(s): NVIDIA H100 80GB HBM3
|
||||
- Transformers version: 4.45.0.dev0
|
||||
- Accelerate version: 0.34.2
|
||||
- Accelerate config:
|
||||
- compute_environment: LOCAL_MACHINE
|
||||
- distributed_type: DEEPSPEED
|
||||
- mixed_precision: no
|
||||
- use_cpu: False
|
||||
- debug: False
|
||||
- num_processes: 4
|
||||
- machine_rank: 0
|
||||
- num_machines: 1
|
||||
- rdzv_backend: static
|
||||
- same_network: True
|
||||
- main_training_function: main
|
||||
- enable_cpu_affinity: False
|
||||
- deepspeed_config: {'gradient_accumulation_steps': 4, 'offload_optimizer_device': 'none', 'offload_param_device': 'none', 'zero3_init_flag': False, 'zero_stage': 2}
|
||||
- downcast_bf16: no
|
||||
- tpu_use_cluster: False
|
||||
- tpu_use_sudo: False
|
||||
- tpu_env: []
|
||||
- Datasets version: 3.0.0
|
||||
- HF Hub version: 0.24.7
|
||||
- TRL version: 0.12.0.dev0+acb4d70
|
||||
- bitsandbytes version: 0.41.1
|
||||
- DeepSpeed version: 0.15.1
|
||||
- Diffusers version: 0.30.3
|
||||
- Liger-Kernel version: 0.3.0
|
||||
- LLM-Blender version: 0.0.2
|
||||
- OpenAI version: 1.46.0
|
||||
- PEFT version: 0.12.0
|
||||
- vLLM version: not installed
|
||||
```
|
||||
|
||||
This information is required when reporting an issue.
|
@ -1,119 +0,0 @@
|
||||
# Command Line Interfaces (CLIs)
|
||||
|
||||
You can use TRL to fine-tune your Language Model with Supervised Fine-Tuning (SFT) or Direct Policy Optimization (DPO) or even chat with your model using the TRL CLIs.
|
||||
|
||||
Currently supported CLIs are:
|
||||
|
||||
- `trl sft`: fine-tune a LLM on a text/instruction dataset
|
||||
- `trl dpo`: fine-tune a LLM with DPO on a preference dataset
|
||||
- `trl chat`: quickly spin up a LLM fine-tuned for chatting
|
||||
|
||||
## Fine-tuning with the CLI
|
||||
|
||||
Before getting started, pick up a Language Model from Hugging Face Hub. Supported models can be found with the filter "text-generation" within models. Also make sure to pick up a relevant dataset for your task.
|
||||
|
||||
Before using the `sft` or `dpo` commands make sure to run:
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
and pick up the right configuration for your training setup (single / multi-GPU, DeepSpeed, etc.). Make sure to complete all steps of `accelerate config` before running any CLI command.
|
||||
|
||||
We also recommend you passing a YAML config file to configure your training protocol. Below is a simple example of a YAML file that you can use for training your models with `trl sft` command.
|
||||
|
||||
```yaml
|
||||
model_name_or_path:
|
||||
HuggingFaceM4/tiny-random-LlamaForCausalLM
|
||||
dataset_name:
|
||||
imdb
|
||||
dataset_text_field:
|
||||
text
|
||||
report_to:
|
||||
none
|
||||
learning_rate:
|
||||
0.0001
|
||||
lr_scheduler_type:
|
||||
cosine
|
||||
```
|
||||
|
||||
Save that config in a `.yaml` and get directly started ! Note you can overwrite the arguments from the config file by explicitly passing them to the CLI, e.g.:
|
||||
|
||||
```bash
|
||||
trl sft --config example_config.yaml --output_dir test-trl-cli --lr_scheduler_type cosine_with_restarts
|
||||
```
|
||||
|
||||
Will force-use `cosine_with_restarts` for `lr_scheduler_type`.
|
||||
|
||||
### Supported Arguments
|
||||
|
||||
We do support all arguments from `transformers.TrainingArguments`, for loading your model, we support all arguments from `~trl.ModelConfig`:
|
||||
|
||||
[[autodoc]] ModelConfig
|
||||
|
||||
You can pass any of these arguments either to the CLI or the YAML file.
|
||||
|
||||
### Supervised Fine-tuning (SFT)
|
||||
|
||||
Follow the basic instructions above and run `trl sft --output_dir <output_dir> <*args>`:
|
||||
|
||||
```bash
|
||||
trl sft --model_name_or_path facebook/opt-125m --dataset_name imdb --output_dir opt-sft-imdb
|
||||
```
|
||||
|
||||
The SFT CLI is based on the `examples/scripts/sft.py` script.
|
||||
|
||||
### Direct Policy Optimization (DPO)
|
||||
|
||||
To use the DPO CLI, you need to have a dataset in the TRL format such as
|
||||
|
||||
* TRL's Anthropic HH dataset: https://huggingface.co/datasets/trl-internal-testing/hh-rlhf-trl-style
|
||||
* TRL's OpenAI TL;DR summarization dataset: https://huggingface.co/datasets/trl-internal-testing/tldr-preference-trl-style
|
||||
|
||||
These datasets always have at least three columns `prompt, chosen, rejected`:
|
||||
|
||||
* `prompt` is a list of strings.
|
||||
* `chosen` is the chosen response in [chat format](https://huggingface.co/docs/transformers/main/en/chat_templating)
|
||||
* `rejected` is the rejected response [chat format](https://huggingface.co/docs/transformers/main/en/chat_templating)
|
||||
|
||||
|
||||
To do a quick start, you can run the following command:
|
||||
|
||||
```bash
|
||||
trl dpo --model_name_or_path facebook/opt-125m --output_dir trl-hh-rlhf --dataset_name trl-internal-testing/hh-rlhf-trl-style
|
||||
```
|
||||
|
||||
|
||||
The DPO CLI is based on the `examples/scripts/dpo.py` script.
|
||||
|
||||
|
||||
#### Custom preference dataset
|
||||
|
||||
Format the dataset into TRL format (you can adapt the `examples/datasets/anthropic_hh.py`):
|
||||
|
||||
```bash
|
||||
python examples/datasets/anthropic_hh.py --push_to_hub --hf_entity your-hf-org
|
||||
```
|
||||
|
||||
## Chat interface
|
||||
|
||||
The chat CLI lets you quickly load the model and talk to it. Simply run the following:
|
||||
|
||||
```bash
|
||||
trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat
|
||||
```
|
||||
|
||||
> [!TIP]
|
||||
> To use the chat CLI with the developer installation, you must run `make dev`
|
||||
>
|
||||
|
||||
Note that the chat interface relies on the tokenizer's [chat template](https://huggingface.co/docs/transformers/chat_templating) to format the inputs for the model. Make sure your tokenizer has a chat template defined.
|
||||
|
||||
Besides talking to the model there are a few commands you can use:
|
||||
|
||||
- **clear**: clears the current conversation and start a new one
|
||||
- **example {NAME}**: load example named `{NAME}` from the config and use it as the user input
|
||||
- **set {SETTING_NAME}={SETTING_VALUE};**: change the system prompt or generation settings (multiple settings are separated by a ';').
|
||||
- **reset**: same as clear but also resets the generation configs to defaults if they have been changed by **set**
|
||||
- **save {SAVE_NAME} (optional)**: save the current chat and settings to file by default to `./chat_history/{MODEL_NAME}/chat_{DATETIME}.yaml` or `{SAVE_NAME}` if provided
|
||||
- **exit**: closes the interface
|
||||
|
||||
The default examples are defined in `examples/scripts/config/default_chat_config.yaml` but you can pass your own with `--config CONFIG_FILE` where you can also specify the default generation parameters.
|
31
docs/source/community_tutorials.md
Normal file
31
docs/source/community_tutorials.md
Normal file
@ -0,0 +1,31 @@
|
||||
# Community Tutorials
|
||||
|
||||
Community tutorials are made by active members of the Hugging Face community who want to share their knowledge and expertise with others. They are a great way to learn about the library and its features, and to get started with core classes and modalities.
|
||||
|
||||
# Language Models
|
||||
|
||||
| Task | Class | Description | Author | Tutorial | Colab |
|
||||
| --- | --- | --- | --- | --- | --- |
|
||||
| Reinforcement Learning | [`GRPOTrainer`] | Post training an LLM for reasoning with GRPO in TRL | [Sergio Paniego](https://huggingface.co/sergiopaniego) | [Link](https://huggingface.co/learn/cookbook/fine_tuning_llm_grpo_trl) | [](https://colab.research.google.com/github/huggingface/cookbook/blob/main/notebooks/en/fine_tuning_llm_grpo_trl.ipynb) |
|
||||
| Reinforcement Learning | [`GRPOTrainer`] | Mini-R1: Reproduce Deepseek R1 „aha moment“ a RL tutorial | [Philipp Schmid](https://huggingface.co/philschmid) | [Link](https://www.philschmid.de/mini-deepseek-r1) | [](https://colab.research.google.com/github/philschmid/deep-learning-pytorch-huggingface/blob/main/training/mini-deepseek-r1-aha-grpo.ipynb) |
|
||||
| Instruction tuning | [`SFTTrainer`] | Fine-tuning Google Gemma LLMs using ChatML format with QLoRA | [Philipp Schmid](https://huggingface.co/philschmid) | [Link](https://www.philschmid.de/fine-tune-google-gemma) | [](https://colab.research.google.com/github/philschmid/deep-learning-pytorch-huggingface/blob/main/training/gemma-lora-example.ipynb) |
|
||||
| Structured Generation | [`SFTTrainer`] | Fine-tuning Llama-2-7B to generate Persian product catalogs in JSON using QLoRA and PEFT | [Mohammadreza Esmaeilian](https://huggingface.co/Mohammadreza) | [Link](https://huggingface.co/learn/cookbook/en/fine_tuning_llm_to_generate_persian_product_catalogs_in_json_format) | [](https://colab.research.google.com/github/huggingface/cookbook/blob/main/notebooks/en/fine_tuning_llm_to_generate_persian_product_catalogs_in_json_format.ipynb) |
|
||||
| Preference Optimization | [`DPOTrainer`] | Align Mistral-7b using Direct Preference Optimization for human preference alignment | [Maxime Labonne](https://huggingface.co/mlabonne) | [Link](https://mlabonne.github.io/blog/posts/Fine_tune_Mistral_7b_with_DPO.html) | [](https://colab.research.google.com/github/mlabonne/llm-course/blob/main/Fine_tune_a_Mistral_7b_model_with_DPO.ipynb) |
|
||||
| Preference Optimization | [`ORPOTrainer`] | Fine-tuning Llama 3 with ORPO combining instruction tuning and preference alignment | [Maxime Labonne](https://huggingface.co/mlabonne) | [Link](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) | [](https://colab.research.google.com/drive/1eHNWg9gnaXErdAa8_mcvjMupbSS6rDvi) |
|
||||
| Instruction tuning | [`SFTTrainer`] | How to fine-tune open LLMs in 2025 with Hugging Face | [Philipp Schmid](https://huggingface.co/philschmid) | [Link](https://www.philschmid.de/fine-tune-llms-in-2025) | [](https://colab.research.google.com/github/philschmid/deep-learning-pytorch-huggingface/blob/main/training/fine-tune-llms-in-2025.ipynb) |
|
||||
|
||||
<Youtube id="cnGyyM0vOes" />
|
||||
|
||||
# Vision Language Models
|
||||
|
||||
| Task | Class | Description | Author | Tutorial | Colab |
|
||||
| --- | --- | --- | --- | --- | --- |
|
||||
| Visual QA | [`SFTTrainer`] | Fine-tuning Qwen2-VL-7B for visual question answering on ChartQA dataset | [Sergio Paniego](https://huggingface.co/sergiopaniego) | [Link](https://huggingface.co/learn/cookbook/fine_tuning_vlm_trl) | [](https://colab.research.google.com/github/huggingface/cookbook/blob/main/notebooks/en/fine_tuning_vlm_trl.ipynb) |
|
||||
| Visual QA | [`SFTTrainer`] | Fine-tuning SmolVLM with TRL on a consumer GPU | [Sergio Paniego](https://huggingface.co/sergiopaniego) | [Link](https://huggingface.co/learn/cookbook/fine_tuning_smol_vlm_sft_trl) | [](https://colab.research.google.com/github/huggingface/cookbook/blob/main/notebooks/en/fine_tuning_smol_vlm_sft_trl.ipynb) |
|
||||
| SEO Description | [`SFTTrainer`] | Fine-tuning Qwen2-VL-7B for generating SEO-friendly descriptions from images | [Philipp Schmid](https://huggingface.co/philschmid) | [Link](https://www.philschmid.de/fine-tune-multimodal-llms-with-trl) | [](https://colab.research.google.com/github/philschmid/deep-learning-pytorch-huggingface/blob/main/training/fine-tune-multimodal-llms-with-trl.ipynb) |
|
||||
| Visual QA | [`DPOTrainer`] | PaliGemma 🤝 Direct Preference Optimization | [Merve Noyan](https://huggingface.co/merve) | [Link](https://github.com/merveenoyan/smol-vision/blob/main/PaliGemma_DPO.ipynb) | [](https://colab.research.google.com/github/merveenoyan/smol-vision/blob/main/PaliGemma_DPO.ipynb) |
|
||||
| Visual QA | [`DPOTrainer`] | Fine-tuning SmolVLM using direct preference optimization (DPO) with TRL on a consumer GPU | [Sergio Paniego](https://huggingface.co/sergiopaniego) | [Link](https://huggingface.co/learn/cookbook/fine_tuning_vlm_dpo_smolvlm_instruct) | [](https://colab.research.google.com/github/huggingface/cookbook/blob/main/notebooks/en/fine_tuning_vlm_dpo_smolvlm_instruct.ipynb) |
|
||||
|
||||
## Contributing
|
||||
|
||||
If you have a tutorial that you would like to add to this list, please open a PR to add it. We will review it and merge it if it is relevant to the community.
|
108
docs/source/cpo_trainer.md
Normal file
108
docs/source/cpo_trainer.md
Normal file
@ -0,0 +1,108 @@
|
||||
# CPO Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=cpo,trl)
|
||||
|
||||
## Overview
|
||||
|
||||
Contrastive Preference Optimization (CPO) as introduced in the paper [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417) by [Haoran Xu](https://huggingface.co/haoranxu), [Amr Sharaf](https://huggingface.co/amrsharaf), [Yunmo Chen](https://huggingface.co/yunmochen), Weiting Tan, Lingfeng Shen, Benjamin Van Durme, [Kenton Murray](https://huggingface.co/Kenton), and [Young Jin Kim](https://huggingface.co/ykim362). At a high-level, CPO trains models to avoid generating adequate, but not perfect translations in Machine Translation (MT) tasks. However, CPO is a general approximation of the DPO loss and can be applied to other domains, such as chat.
|
||||
|
||||
CPO aims to mitigate two fundamental shortcomings of SFT. First, SFT’s methodology of minimizing the discrepancy between predicted outputs and gold-standard references inherently caps model performance at the quality level of the training data. Secondly, SFT lacks a mechanism to prevent the model from rejecting mistakes in translations. The CPO objective is derived from the DPO objective.
|
||||
|
||||
## Quick start
|
||||
|
||||
This example demonstrates how to train a model using the CPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model. We use the preference data from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the data in the dataset here:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized/embed/viewer/default/train?row=0"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
Below is the script to train the model:
|
||||
|
||||
```python
|
||||
# train_cpo.py
|
||||
from datasets import load_dataset
|
||||
from trl import CPOConfig, CPOTrainer
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
||||
|
||||
training_args = CPOConfig(output_dir="Qwen2-0.5B-CPO", logging_steps=10)
|
||||
trainer = CPOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Execute the script using the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch train_cpo.py
|
||||
```
|
||||
|
||||
## Expected dataset type
|
||||
|
||||
CPO requires a [preference dataset](dataset_formats#preference). The [`CPOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
|
||||
|
||||
## Example script
|
||||
|
||||
We provide an example script to train a model using the CPO method. The script is available in [`examples/scripts/cpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/cpo.py)
|
||||
|
||||
To test the CPO script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized), run the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch examples/scripts/cpo.py \
|
||||
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
|
||||
--dataset_name trl-lib/ultrafeedback_binarized \
|
||||
--num_train_epochs 1 \
|
||||
--logging_steps 25 \
|
||||
--output_dir Qwen2-0.5B-CPO
|
||||
```
|
||||
|
||||
## Logged metrics
|
||||
|
||||
While training and evaluating we record the following reward metrics:
|
||||
|
||||
* `rewards/chosen`: the mean log probabilities of the policy model for the chosen responses scaled by beta
|
||||
* `rewards/rejected`: the mean log probabilities of the policy model for the rejected responses scaled by beta
|
||||
* `rewards/accuracies`: mean of how often the chosen rewards are > than the corresponding rejected rewards
|
||||
* `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
|
||||
* `nll_loss`: the mean negative log likelihood loss of the policy model for the chosen responses
|
||||
|
||||
## CPO variants
|
||||
|
||||
### Simple Preference Optimization (SimPO)
|
||||
|
||||
The [SimPO](https://huggingface.co/papers/2405.14734) method is also implemented in the [`CPOTrainer`]. SimPO is an alternative loss that adds a reward margin, allows for length normalization, and does not use BC regularization. To use this loss, we can use SimPO easily by turning on `loss_type="simpo"` and `cpo_alpha=0.0` in the [`CPOConfig`].
|
||||
|
||||
### CPO-SimPO
|
||||
|
||||
We also offer the combined use of CPO and SimPO, which enables more stable training and improved performance. Learn more details at [CPO-SimPO GitHub](https://github.com/fe1ixxu/CPO_SIMPO). To use this method, simply enable SimPO by setting `loss_type="simpo"` and a non-zero `cpo_alpha` in the [`CPOConfig`].
|
||||
|
||||
## Loss functions
|
||||
|
||||
The CPO algorithm supports several loss functions. The loss function can be set using the `loss_type` parameter in the [`CPOConfig`]. The following loss functions are supported:
|
||||
|
||||
| `loss_type=` | Description |
|
||||
| -------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `"sigmoid"` (default) | Given the preference data, we can fit a binary classifier according to the Bradley-Terry model and in fact the [DPO](https://huggingface.co/papers/2305.18290) authors propose the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression. |
|
||||
| `"hinge"` | The [RSO](https://huggingface.co/papers/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper. In this case, the `beta` is the reciprocal of the margin. |
|
||||
| `"ipo"` | The [IPO](https://huggingface.co/papers/2310.12036) authors provide a deeper theoretical understanding of the DPO algorithms and identify an issue with overfitting and propose an alternative loss. In this case, the `beta` is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike DPO which is summed only). |
|
||||
|
||||
### For Mixture of Experts Models: Enabling the auxiliary loss
|
||||
|
||||
MOEs are the most efficient if the load is about equally distributed between experts.
|
||||
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
|
||||
|
||||
This option is enabled by setting `output_router_logits=True` in the model config (e.g. [`~transformers.MixtralConfig`]).
|
||||
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: `0.001`) in the model config.
|
||||
|
||||
## CPOTrainer
|
||||
|
||||
[[autodoc]] CPOTrainer
|
||||
|
||||
## CPOConfig
|
||||
|
||||
[[autodoc]] CPOConfig
|
@ -1,102 +0,0 @@
|
||||
# CPO Trainer
|
||||
|
||||
Contrastive Preference Optimization (CPO) as introduced in the paper [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417) by Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton Murray, and Young Jin Kim. At a high-level, CPO trains models to
|
||||
avoid generating adequate, but not perfect translations in Machine Translation (MT) tasks. However, CPO is a general approximation to the DPO loss and can be applied to other domains like chat.
|
||||
|
||||
CPO aims to mitigate two fundamental shortcomings of SFT. First, SFT’s methodology of minimizing the discrepancy between predicted outputs and gold-standard references inherently caps model performance at the quality level of the training data. Secondly, SFT lacks a mechanism to prevent the model from rejecting mistakes in translations. The CPO objective is derived from the DPO objective.
|
||||
|
||||
## Expected dataset format
|
||||
|
||||
The CPO trainer expects a format identical to the DPO trainer, which should include three entries. These entries should be named as follows:
|
||||
|
||||
- `prompt`
|
||||
- `chosen`
|
||||
- `rejected`
|
||||
|
||||
for example:
|
||||
|
||||
```py
|
||||
cpo_dataset_dict = {
|
||||
"prompt": [
|
||||
"hello",
|
||||
"how are you",
|
||||
"What is your name?",
|
||||
"What is your name?",
|
||||
"Which is the best programming language?",
|
||||
"Which is the best programming language?",
|
||||
"Which is the best programming language?",
|
||||
],
|
||||
"chosen": [
|
||||
"hi nice to meet you",
|
||||
"I am fine",
|
||||
"My name is Mary",
|
||||
"My name is Mary",
|
||||
"Python",
|
||||
"Python",
|
||||
"Java",
|
||||
],
|
||||
"rejected": [
|
||||
"leave me alone",
|
||||
"I am not fine",
|
||||
"Whats it to you?",
|
||||
"I dont have a name",
|
||||
"Javascript",
|
||||
"C++",
|
||||
"C++",
|
||||
],
|
||||
}
|
||||
```
|
||||
where the `prompt` contains the context inputs, `chosen` contains the corresponding chosen responses and `rejected` contains the corresponding negative (rejected) responses. As can be seen a prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays.
|
||||
|
||||
|
||||
## Expected model format
|
||||
The CPO trainer expects a model of `AutoModelForCausalLM`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
|
||||
|
||||
## Using the `CPOTrainer`
|
||||
For a detailed example have a look at the `examples/scripts/cpo.py` script. At a high level we need to initialize the `CPOTrainer` with a `model` we wish to train. **Note that CPOTrainer eliminates the need to use the reference model, simplifying the optimization process.** The `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above.
|
||||
|
||||
```py
|
||||
cpo_config = CPOConfig(
|
||||
beta=0.1,
|
||||
)
|
||||
|
||||
cpo_trainer = CPOTrainer(
|
||||
model,
|
||||
args=cpo_config,
|
||||
train_dataset=train_dataset,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
```
|
||||
After this one can then call:
|
||||
|
||||
```py
|
||||
cpo_trainer.train()
|
||||
```
|
||||
|
||||
## Loss functions
|
||||
|
||||
Given the preference data, the `CPOTrainer` uses the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression.
|
||||
|
||||
The [RSO](https://arxiv.org/abs/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://arxiv.org/abs/2305.10425) paper. The `CPOTrainer` can be switched to this loss via the `loss_type="hinge"` argument and the `beta` in this case is the reciprocal of the margin.
|
||||
|
||||
The [IPO](https://arxiv.org/abs/2310.12036) authors provide a deeper theoretical understanding of the CPO algorithms and identify an issue with overfitting and propose an alternative loss which can be used via the `loss_type="ipo"` argument to the trainer. Note that the `beta` parameter is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike CPO which is summed only).
|
||||
|
||||
|
||||
## Logging
|
||||
|
||||
While training and evaluating we record the following reward metrics:
|
||||
|
||||
* `rewards/chosen`: the mean log probabilities of the policy model for the chosen responses scaled by beta
|
||||
* `rewards/rejected`: the mean log probabilities of the policy model for the rejected responses scaled by beta
|
||||
* `rewards/accuracies`: mean of how often the chosen rewards are > than the corresponding rejected rewards
|
||||
* `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
|
||||
* `nll_loss`: the mean negative log likelihood loss of the policy model for the chosen responses
|
||||
|
||||
## CPOTrainer
|
||||
|
||||
[[autodoc]] CPOTrainer
|
||||
|
||||
|
||||
## CPOConfig
|
||||
|
||||
[[autodoc]] CPOConfig
|
121
docs/source/customization.md
Normal file
121
docs/source/customization.md
Normal file
@ -0,0 +1,121 @@
|
||||
# Training customization
|
||||
|
||||
TRL is designed with modularity in mind so that users to be able to efficiently customize the training loop for their needs. Below are some examples on how you can apply and test different techniques. Note: Although these examples use the DPOTrainer, the customization applies to most (if not all) trainers.
|
||||
|
||||
|
||||
|
||||
## Use different optimizers and schedulers
|
||||
|
||||
By default, the `DPOTrainer` creates a `torch.optim.AdamW` optimizer. You can create and define a different optimizer and pass it to `DPOTrainer` as follows:
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from torch import optim
|
||||
from trl import DPOConfig, DPOTrainer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
||||
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
|
||||
|
||||
optimizer = optim.SGD(model.parameters(), lr=training_args.learning_rate)
|
||||
|
||||
trainer = DPOTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
optimizers=(optimizer, None),
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
### Add a learning rate scheduler
|
||||
|
||||
You can also play with your training by adding learning rate schedulers.
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from torch import optim
|
||||
from trl import DPOConfig, DPOTrainer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
||||
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
|
||||
|
||||
optimizer = optim.AdamW(model.parameters(), lr=training_args.learning_rate)
|
||||
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
|
||||
|
||||
trainer = DPOTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
optimizers=(optimizer, lr_scheduler),
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
## Memory efficient fine-tuning by sharing layers
|
||||
|
||||
Another tool you can use for more memory efficient fine-tuning is to share layers between the reference model and the model you want to train.
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from trl import create_reference_model, DPOConfig, DPOTrainer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
ref_model = create_reference_model(model, num_shared_layers=6)
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train[:1%]")
|
||||
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
|
||||
|
||||
trainer = DPOTrainer(
|
||||
model=model,
|
||||
ref_model=ref_model,
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
## Pass 8-bit reference models
|
||||
|
||||
Since `trl` supports all keyword arguments when loading a model from `transformers` using `from_pretrained`, you can also leverage `load_in_8bit` from `transformers` for more memory efficient fine-tuning.
|
||||
|
||||
Read more about 8-bit model loading in `transformers` [here](https://huggingface.co/docs/transformers/en/peft#load-in-8bit-or-4bit).
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
||||
from trl import DPOConfig, DPOTrainer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
||||
ref_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", quantization_config= quantization_config)
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
||||
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
||||
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
|
||||
|
||||
trainer = DPOTrainer(
|
||||
model=model,
|
||||
ref_model=ref_model,
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
## Use the CUDA cache optimizer
|
||||
|
||||
When training large models, you should better handle the CUDA cache by iteratively clearing it. To do so, simply pass `optimize_cuda_cache=True` to `DPOConfig`:
|
||||
|
||||
```python
|
||||
training_args = DPOConfig(..., optimize_cuda_cache=True)
|
||||
```
|
@ -1,216 +0,0 @@
|
||||
# Training customization
|
||||
|
||||
TRL is designed with modularity in mind so that users to be able to efficiently customize the training loop for their needs. Below are some examples on how you can apply and test different techniques.
|
||||
|
||||
## Train on multiple GPUs / nodes
|
||||
|
||||
The trainers in TRL use 🤗 Accelerate to enable distributed training across multiple GPUs or nodes. To do so, first create an 🤗 Accelerate config file by running
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
|
||||
and answering the questions according to your multi-gpu / multi-node setup. You can then launch distributed training by running:
|
||||
|
||||
```bash
|
||||
accelerate launch your_script.py
|
||||
```
|
||||
|
||||
We also provide config files in the [examples folder](https://github.com/huggingface/trl/tree/main/examples/accelerate_configs) that can be used as templates. To use these templates, simply pass the path to the config file when launching a job, e.g.:
|
||||
|
||||
```shell
|
||||
accelerate launch --config_file=examples/accelerate_configs/multi_gpu.yaml --num_processes {NUM_GPUS} path_to_script.py --all_arguments_of_the_script
|
||||
```
|
||||
|
||||
Refer to the [examples page](https://github.com/huggingface/trl/tree/main/examples) for more details.
|
||||
|
||||
### Distributed training with DeepSpeed
|
||||
|
||||
All of the trainers in TRL can be run on multiple GPUs together with DeepSpeed ZeRO-{1,2,3} for efficient sharding of the optimizer states, gradients, and model weights. To do so, run:
|
||||
|
||||
```shell
|
||||
accelerate launch --config_file=examples/accelerate_configs/deepspeed_zero{1,2,3}.yaml --num_processes {NUM_GPUS} path_to_your_script.py --all_arguments_of_the_script
|
||||
```
|
||||
|
||||
Note that for ZeRO-3, a small tweak is needed to initialize your reward model on the correct device via the `zero3_init_context_manager()` context manager. In particular, this is needed to avoid DeepSpeed hanging after a fixed number of training steps. Here is a snippet of what is involved from the [`sentiment_tuning`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo.py) example:
|
||||
|
||||
```python
|
||||
ds_plugin = ppo_trainer.accelerator.state.deepspeed_plugin
|
||||
if ds_plugin is not None and ds_plugin.is_zero3_init_enabled():
|
||||
with ds_plugin.zero3_init_context_manager(enable=False):
|
||||
sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device)
|
||||
else:
|
||||
sentiment_pipe = pipeline("sentiment-analysis", model="lvwerra/distilbert-imdb", device=device)
|
||||
```
|
||||
|
||||
Consult the 🤗 Accelerate [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more information about the DeepSpeed plugin.
|
||||
|
||||
|
||||
## Use different optimizers
|
||||
|
||||
By default, the `PPOTrainer` creates a `torch.optim.Adam` optimizer. You can create and define a different optimizer and pass it to `PPOTrainer`:
|
||||
```python
|
||||
import torch
|
||||
from transformers import GPT2Tokenizer
|
||||
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
|
||||
|
||||
# 1. load a pretrained model
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
|
||||
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
|
||||
# 2. define config
|
||||
ppo_config = {'batch_size': 1, 'learning_rate':1e-5}
|
||||
config = PPOConfig(**ppo_config)
|
||||
|
||||
|
||||
# 2. Create optimizer
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate)
|
||||
|
||||
|
||||
# 3. initialize trainer
|
||||
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer)
|
||||
```
|
||||
|
||||
For memory efficient fine-tuning, you can also pass `Adam8bit` optimizer from `bitsandbytes`:
|
||||
|
||||
```python
|
||||
import torch
|
||||
import bitsandbytes as bnb
|
||||
|
||||
from transformers import GPT2Tokenizer
|
||||
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
|
||||
|
||||
# 1. load a pretrained model
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
|
||||
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
|
||||
# 2. define config
|
||||
ppo_config = {'batch_size': 1, 'learning_rate':1e-5}
|
||||
config = PPOConfig(**ppo_config)
|
||||
|
||||
|
||||
# 2. Create optimizer
|
||||
optimizer = bnb.optim.Adam8bit(model.parameters(), lr=config.learning_rate)
|
||||
|
||||
# 3. initialize trainer
|
||||
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer)
|
||||
```
|
||||
|
||||
### Use LION optimizer
|
||||
|
||||
You can use the new [LION optimizer from Google](https://arxiv.org/abs/2302.06675) as well, first take the source code of the optimizer definition [here](https://github.com/lucidrains/lion-pytorch/blob/main/lion_pytorch/lion_pytorch.py), and copy it so that you can import the optimizer. Make sure to initialize the optimizer by considering the trainable parameters only for a more memory efficient training:
|
||||
```python
|
||||
optimizer = Lion(filter(lambda p: p.requires_grad, self.model.parameters()), lr=self.config.learning_rate)
|
||||
|
||||
...
|
||||
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer)
|
||||
```
|
||||
We advise you to use the learning rate that you would use for `Adam` divided by 3 as pointed out [here](https://github.com/lucidrains/lion-pytorch#lion---pytorch). We observed an improvement when using this optimizer compared to classic Adam (check the full logs [here](https://wandb.ai/distill-bloom/trl/runs/lj4bheke?workspace=user-younesbelkada)):
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-lion.png">
|
||||
</div>
|
||||
|
||||
|
||||
## Add a learning rate scheduler
|
||||
|
||||
You can also play with your training by adding learning rate schedulers!
|
||||
```python
|
||||
import torch
|
||||
from transformers import GPT2Tokenizer
|
||||
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
|
||||
|
||||
# 1. load a pretrained model
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
|
||||
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
|
||||
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
||||
|
||||
# 2. define config
|
||||
ppo_config = {'batch_size': 1, 'learning_rate':1e-5}
|
||||
config = PPOConfig(**ppo_config)
|
||||
|
||||
|
||||
# 2. Create optimizer
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate)
|
||||
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
|
||||
|
||||
# 3. initialize trainer
|
||||
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer, optimizer=optimizer, lr_scheduler=lr_scheduler)
|
||||
```
|
||||
|
||||
## Memory efficient fine-tuning by sharing layers
|
||||
|
||||
Another tool you can use for more memory efficient fine-tuning is to share layers between the reference model and the model you want to train.
|
||||
```python
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model
|
||||
|
||||
# 1. load a pretrained model
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m')
|
||||
model_ref = create_reference_model(model, num_shared_layers=6)
|
||||
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
|
||||
|
||||
# 2. initialize trainer
|
||||
ppo_config = {'batch_size': 1}
|
||||
config = PPOConfig(**ppo_config)
|
||||
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer)
|
||||
```
|
||||
|
||||
## Pass 8-bit reference models
|
||||
|
||||
<div>
|
||||
|
||||
Since `trl` supports all key word arguments when loading a model from `transformers` using `from_pretrained`, you can also leverage `load_in_8bit` from `transformers` for more memory efficient fine-tuning.
|
||||
|
||||
Read more about 8-bit model loading in `transformers` [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#bitsandbytes-integration-for-int8-mixedprecision-matrix-decomposition).
|
||||
|
||||
</div>
|
||||
|
||||
```python
|
||||
# 0. imports
|
||||
# pip install bitsandbytes
|
||||
import torch
|
||||
from transformers import AutoTokenizer
|
||||
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
|
||||
|
||||
# 1. load a pretrained model
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m')
|
||||
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m', device_map="auto", load_in_8bit=True)
|
||||
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
|
||||
|
||||
# 2. initialize trainer
|
||||
ppo_config = {'batch_size': 1}
|
||||
config = PPOConfig(**ppo_config)
|
||||
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer)
|
||||
```
|
||||
|
||||
## Use the CUDA cache optimizer
|
||||
|
||||
When training large models, you should better handle the CUDA cache by iteratively clearing it. Do do so, simply pass `optimize_cuda_cache=True` to `PPOConfig`:
|
||||
|
||||
```python
|
||||
config = PPOConfig(..., optimize_cuda_cache=True)
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Use score scaling/normalization/clipping
|
||||
As suggested by [Secrets of RLHF in Large Language Models Part I: PPO](https://arxiv.org/abs/2307.04964), we support score (aka reward) scaling/normalization/clipping to improve training stability via `PPOConfig`:
|
||||
```python
|
||||
from trl import PPOConfig
|
||||
|
||||
ppo_config = {
|
||||
use_score_scaling=True,
|
||||
use_score_norm=True,
|
||||
score_clip=0.5,
|
||||
}
|
||||
config = PPOConfig(**ppo_config)
|
||||
```
|
||||
|
||||
To run `ppo.py`, you can use the following command:
|
||||
```
|
||||
python examples/scripts/ppo.py --log_with wandb --use_score_scaling --use_score_norm --score_clip 0.5
|
||||
```
|
45
docs/source/data_utils.md
Normal file
45
docs/source/data_utils.md
Normal file
@ -0,0 +1,45 @@
|
||||
# Data Utilities
|
||||
|
||||
## is_conversational
|
||||
|
||||
[[autodoc]] is_conversational
|
||||
|
||||
## apply_chat_template
|
||||
|
||||
[[autodoc]] apply_chat_template
|
||||
|
||||
## maybe_apply_chat_template
|
||||
|
||||
[[autodoc]] maybe_apply_chat_template
|
||||
|
||||
## maybe_convert_to_chatml
|
||||
|
||||
[[autodoc]] maybe_convert_to_chatml
|
||||
|
||||
## extract_prompt
|
||||
|
||||
[[autodoc]] extract_prompt
|
||||
|
||||
## maybe_extract_prompt
|
||||
|
||||
[[autodoc]] maybe_extract_prompt
|
||||
|
||||
## unpair_preference_dataset
|
||||
|
||||
[[autodoc]] unpair_preference_dataset
|
||||
|
||||
## maybe_unpair_preference_dataset
|
||||
|
||||
[[autodoc]] maybe_unpair_preference_dataset
|
||||
|
||||
## pack_examples
|
||||
|
||||
[[autodoc]] pack_examples
|
||||
|
||||
## pack_dataset
|
||||
|
||||
[[autodoc]] pack_dataset
|
||||
|
||||
## truncate_dataset
|
||||
|
||||
[[autodoc]] truncate_dataset
|
938
docs/source/dataset_formats.md
Normal file
938
docs/source/dataset_formats.md
Normal file
@ -0,0 +1,938 @@
|
||||
# Dataset formats and types
|
||||
|
||||
This guide provides an overview of the dataset formats and types supported by each trainer in TRL.
|
||||
|
||||
## Overview of the dataset formats and types
|
||||
|
||||
- The *format* of a dataset refers to how the data is structured, typically categorized as either *standard* or *conversational*.
|
||||
- The *type* is associated with the specific task the dataset is designed for, such as *prompt-only* or *preference*. Each type is characterized by its columns, which vary according to the task, as shown in the table.
|
||||
|
||||
<table>
|
||||
<tr>
|
||||
<th>Type \ Format</th>
|
||||
<th>Standard</th>
|
||||
<th>Conversational</th>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Language modeling</td>
|
||||
<td>
|
||||
<pre><code>{"text": "The sky is blue."}</code></pre>
|
||||
</td>
|
||||
<td>
|
||||
<pre><code>{"messages": [{"role": "user", "content": "What color is the sky?"},
|
||||
{"role": "assistant", "content": "It is blue."}]}</code></pre>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Prompt-only</td>
|
||||
<td>
|
||||
<pre><code>{"prompt": "The sky is"}</code></pre>
|
||||
</td>
|
||||
<td>
|
||||
<pre><code>{"prompt": [{"role": "user", "content": "What color is the sky?"}]}</code></pre>
|
||||
</td>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Prompt-completion</td>
|
||||
<td>
|
||||
<pre><code>{"prompt": "The sky is",
|
||||
"completion": " blue."}</code></pre>
|
||||
</td>
|
||||
<td>
|
||||
<pre><code>{"prompt": [{"role": "user", "content": "What color is the sky?"}],
|
||||
"completion": [{"role": "assistant", "content": "It is blue."}]}</code></pre>
|
||||
</td>
|
||||
</tr>
|
||||
</tr>
|
||||
<tr>
|
||||
<td>Preference</td>
|
||||
<td>
|
||||
<pre><code>{"prompt": "The sky is",
|
||||
"chosen": " blue.",
|
||||
"rejected": " green."}</code></pre>
|
||||
or, with implicit prompt:
|
||||
<pre><code>{"chosen": "The sky is blue.",
|
||||
"rejected": "The sky is green."}</code></pre>
|
||||
</td>
|
||||
<td>
|
||||
<pre><code>{"prompt": [{"role": "user", "content": "What color is the sky?"}],
|
||||
"chosen": [{"role": "assistant", "content": "It is blue."}],
|
||||
"rejected": [{"role": "assistant", "content": "It is green."}]}</code></pre>
|
||||
or, with implicit prompt:
|
||||
<pre><code>{"chosen": [{"role": "user", "content": "What color is the sky?"},
|
||||
{"role": "assistant", "content": "It is blue."}],
|
||||
"rejected": [{"role": "user", "content": "What color is the sky?"},
|
||||
{"role": "assistant", "content": "It is green."}]}</code></pre>
|
||||
</td>
|
||||
</tr>
|
||||
<td>Unpaired preference</td>
|
||||
<td>
|
||||
<pre><code>{"prompt": "The sky is",
|
||||
"completion": " blue.",
|
||||
"label": True}</code></pre>
|
||||
</td>
|
||||
<td>
|
||||
<pre><code>{"prompt": [{"role": "user", "content": "What color is the sky?"}],
|
||||
"completion": [{"role": "assistant", "content": "It is green."}],
|
||||
"label": False}</code></pre>
|
||||
</td>
|
||||
</tr>
|
||||
</tr>
|
||||
<td>Stepwise supervision</td>
|
||||
<td>
|
||||
<pre><code>{"prompt": "Which number is larger, 9.8 or 9.11?",
|
||||
"completions": ["The fractional part of 9.8 is 0.8.",
|
||||
"The fractional part of 9.11 is 0.11.",
|
||||
"0.11 is greater than 0.8.",
|
||||
"Hence, 9.11 > 9.8."],
|
||||
"labels": [True, True, False, False]}</code></pre>
|
||||
</td>
|
||||
<td></td>
|
||||
</tr>
|
||||
</table>
|
||||
|
||||
### Formats
|
||||
|
||||
#### Standard
|
||||
|
||||
The standard dataset format typically consists of plain text strings. The columns in the dataset vary depending on the task. This is the format expected by TRL trainers. Below are examples of standard dataset formats for different tasks:
|
||||
|
||||
```python
|
||||
# Language modeling
|
||||
language_modeling_example = {"text": "The sky is blue."}
|
||||
# Preference
|
||||
preference_example = {"prompt": "The sky is", "chosen": " blue.", "rejected": " green."}
|
||||
# Unpaired preference
|
||||
unpaired_preference_example = {"prompt": "The sky is", "completion": " blue.", "label": True}
|
||||
```
|
||||
|
||||
#### Conversational
|
||||
|
||||
Conversational datasets are used for tasks involving dialogues or chat interactions between users and assistants. Unlike standard dataset formats, these contain sequences of messages where each message has a `role` (e.g., `"user"` or `"assistant"`) and `content` (the message text).
|
||||
|
||||
```python
|
||||
messages = [
|
||||
{"role": "user", "content": "Hello, how are you?"},
|
||||
{"role": "assistant", "content": "I'm doing great. How can I help you today?"},
|
||||
{"role": "user", "content": "I'd like to show off how chat templating works!"},
|
||||
]
|
||||
```
|
||||
|
||||
Just like standard datasets, the columns in conversational datasets vary depending on the task. Below are examples of conversational dataset formats for different tasks:
|
||||
|
||||
```python
|
||||
# Prompt-completion
|
||||
prompt_completion_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
|
||||
"completion": [{"role": "assistant", "content": "It is blue."}]}
|
||||
# Preference
|
||||
preference_example = {
|
||||
"prompt": [{"role": "user", "content": "What color is the sky?"}],
|
||||
"chosen": [{"role": "assistant", "content": "It is blue."}],
|
||||
"rejected": [{"role": "assistant", "content": "It is green."}],
|
||||
}
|
||||
```
|
||||
|
||||
Conversational datasets are useful for training chat models, but must be converted into a standard format before being used with TRL trainers. This is typically done using chat templates specific to the model being used. For more information, refer to the [Working with conversational datasets in TRL](#working-with-conversational-datasets-in-trl) section.
|
||||
|
||||
### Types
|
||||
|
||||
#### Language modeling
|
||||
|
||||
A language modeling dataset consists of a column `"text"` (or `"messages"` for conversational datasets) containing a full sequence of text.
|
||||
|
||||
```python
|
||||
# Standard format
|
||||
language_modeling_example = {"text": "The sky is blue."}
|
||||
# Conversational format
|
||||
language_modeling_example = {"messages": [
|
||||
{"role": "user", "content": "What color is the sky?"},
|
||||
{"role": "assistant", "content": "It is blue."}
|
||||
]}
|
||||
```
|
||||
|
||||
#### Prompt-only
|
||||
|
||||
In a prompt-only dataset, only the initial prompt (the question or partial sentence) is provided under the key `"prompt"`. The training typically involves generating the completion based on this prompt, where the model learns to continue or complete the given input.
|
||||
|
||||
```python
|
||||
# Standard format
|
||||
prompt_only_example = {"prompt": "The sky is"}
|
||||
# Conversational format
|
||||
prompt_only_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}]}
|
||||
```
|
||||
|
||||
For examples of prompt-only datasets, refer to the [Prompt-only datasets collection](https://huggingface.co/collections/trl-lib/prompt-only-datasets-677ea25245d20252cea00368).
|
||||
|
||||
<Tip>
|
||||
|
||||
While both the prompt-only and language modeling types are similar, they differ in how the input is handled. In the prompt-only type, the prompt represents a partial input that expects the model to complete or continue, while in the language modeling type, the input is treated as a complete sentence or sequence. These two types are processed differently by TRL. Below is an example showing the difference in the output of the `apply_chat_template` function for each type:
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer
|
||||
from trl import apply_chat_template
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
|
||||
|
||||
# Example for prompt-only type
|
||||
prompt_only_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}]}
|
||||
apply_chat_template(prompt_only_example, tokenizer)
|
||||
# Output: {'prompt': '<|user|>\nWhat color is the sky?<|end|>\n<|assistant|>\n'}
|
||||
|
||||
# Example for language modeling type
|
||||
lm_example = {"messages": [{"role": "user", "content": "What color is the sky?"}]}
|
||||
apply_chat_template(lm_example, tokenizer)
|
||||
# Output: {'text': '<|user|>\nWhat color is the sky?<|end|>\n<|endoftext|>'}
|
||||
```
|
||||
|
||||
- The prompt-only output includes a `'<|assistant|>\n'`, indicating the beginning of the assistant’s turn and expecting the model to generate a completion.
|
||||
- In contrast, the language modeling output treats the input as a complete sequence and terminates it with `'<|endoftext|>'`, signaling the end of the text and not expecting any additional content.
|
||||
|
||||
</Tip>
|
||||
|
||||
#### Prompt-completion
|
||||
|
||||
A prompt-completion dataset includes a `"prompt"` and a `"completion"`.
|
||||
|
||||
```python
|
||||
# Standard format
|
||||
prompt_completion_example = {"prompt": "The sky is", "completion": " blue."}
|
||||
# Conversational format
|
||||
prompt_completion_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
|
||||
"completion": [{"role": "assistant", "content": "It is blue."}]}
|
||||
```
|
||||
|
||||
For examples of prompt-completion datasets, refer to the [Prompt-completion datasets collection](https://huggingface.co/collections/trl-lib/prompt-completion-datasets-677ea2bb20bbb6bdccada216).
|
||||
|
||||
#### Preference
|
||||
|
||||
A preference dataset is used for tasks where the model is trained to choose between two or more possible completions to the same prompt. This dataset includes a `"prompt"`, a `"chosen"` completion, and a `"rejected"` completion. The model is trained to select the `"chosen"` response over the `"rejected"` response.
|
||||
Some dataset may not include the `"prompt"` column, in which case the prompt is implicit and directly included in the `"chosen"` and `"rejected"` completions. We recommend using explicit prompts whenever possible.
|
||||
|
||||
```python
|
||||
# Standard format
|
||||
## Explicit prompt (recommended)
|
||||
preference_example = {"prompt": "The sky is", "chosen": " blue.", "rejected": " green."}
|
||||
# Implicit prompt
|
||||
preference_example = {"chosen": "The sky is blue.", "rejected": "The sky is green."}
|
||||
|
||||
# Conversational format
|
||||
## Explicit prompt (recommended)
|
||||
preference_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
|
||||
"chosen": [{"role": "assistant", "content": "It is blue."}],
|
||||
"rejected": [{"role": "assistant", "content": "It is green."}]}
|
||||
## Implicit prompt
|
||||
preference_example = {"chosen": [{"role": "user", "content": "What color is the sky?"},
|
||||
{"role": "assistant", "content": "It is blue."}],
|
||||
"rejected": [{"role": "user", "content": "What color is the sky?"},
|
||||
{"role": "assistant", "content": "It is green."}]}
|
||||
```
|
||||
|
||||
For examples of preference datasets, refer to the [Preference datasets collection](https://huggingface.co/collections/trl-lib/preference-datasets-677e99b581018fcad9abd82c).
|
||||
|
||||
Some preference datasets can be found with [the tag `dpo` on Hugging Face Hub](https://huggingface.co/datasets?other=dpo). You can also explore the [librarian-bots' DPO Collections](https://huggingface.co/collections/librarian-bots/direct-preference-optimization-datasets-66964b12835f46289b6ef2fc) to identify preference datasets.
|
||||
|
||||
#### Unpaired preference
|
||||
|
||||
An unpaired preference dataset is similar to a preference dataset but instead of having `"chosen"` and `"rejected"` completions for the same prompt, it includes a single `"completion"` and a `"label"` indicating whether the completion is preferred or not.
|
||||
|
||||
```python
|
||||
# Standard format
|
||||
unpaired_preference_example = {"prompt": "The sky is", "completion": " blue.", "label": True}
|
||||
# Conversational format
|
||||
unpaired_preference_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
|
||||
"completion": [{"role": "assistant", "content": "It is blue."}],
|
||||
"label": True}
|
||||
```
|
||||
|
||||
For examples of unpaired preference datasets, refer to the [Unpaired preference datasets collection](https://huggingface.co/collections/trl-lib/unpaired-preference-datasets-677ea22bf5f528c125b0bcdf).
|
||||
|
||||
#### Stepwise supervision
|
||||
|
||||
A stepwise (or process) supervision dataset is similar to an [unpaired preference](#unpaired-preference) dataset but includes multiple steps of completions, each with its own label. This structure is useful for tasks that need detailed, step-by-step labeling, such as reasoning tasks. By evaluating each step separately and providing targeted labels, this approach helps identify precisely where the reasoning is correct and where errors occur, allowing for targeted feedback on each part of the reasoning process.
|
||||
|
||||
```python
|
||||
stepwise_example = {
|
||||
"prompt": "Which number is larger, 9.8 or 9.11?",
|
||||
"completions": ["The fractional part of 9.8 is 0.8, while the fractional part of 9.11 is 0.11.", "Since 0.11 is greater than 0.8, the number 9.11 is larger than 9.8."],
|
||||
"labels": [True, False]
|
||||
}
|
||||
```
|
||||
|
||||
For examples of stepwise supervision datasets, refer to the [Stepwise supervision datasets collection](https://huggingface.co/collections/trl-lib/stepwise-supervision-datasets-677ea27fd4c5941beed7a96e).
|
||||
|
||||
## Which dataset type to use?
|
||||
|
||||
Choosing the right dataset type depends on the task you are working on and the specific requirements of the TRL trainer you are using. Below is a brief overview of the dataset types supported by each TRL trainer.
|
||||
|
||||
| Trainer | Expected dataset type |
|
||||
| ----------------------- | ------------------------------------------------------------------------------------------------------ |
|
||||
| [`BCOTrainer`] | [Unpaired preference](#unpaired-preference) |
|
||||
| [`CPOTrainer`] | [Preference (explicit prompt recommended)](#preference) |
|
||||
| [`DPOTrainer`] | [Preference (explicit prompt recommended)](#preference) |
|
||||
| [`GKDTrainer`] | [Prompt-completion](#prompt-completion) |
|
||||
| [`GRPOTrainer`] | [Prompt-only](#prompt-only) |
|
||||
| [`IterativeSFTTrainer`] | [Unpaired preference](#unpaired-preference) |
|
||||
| [`KTOTrainer`] | [Unpaired preference](#unpaired-preference) or [Preference (explicit prompt recommended)](#preference) |
|
||||
| [`NashMDTrainer`] | [Prompt-only](#prompt-only) |
|
||||
| [`OnlineDPOTrainer`] | [Prompt-only](#prompt-only) |
|
||||
| [`ORPOTrainer`] | [Preference (explicit prompt recommended)](#preference) |
|
||||
| [`PPOTrainer`] | Tokenized language modeling |
|
||||
| [`PRMTrainer`] | [Stepwise supervision](#stepwise-supervision) |
|
||||
| [`RewardTrainer`] | [Preference (implicit prompt recommended)](#preference) |
|
||||
| [`SFTTrainer`] | [Language modeling](#language-modeling) or [Prompt-completion](#prompt-completion) |
|
||||
| [`XPOTrainer`] | [Prompt-only](#prompt-only) |
|
||||
|
||||
<Tip>
|
||||
|
||||
TRL trainers only support standard dataset formats, [for now](https://github.com/huggingface/trl/issues/2071). If you have a conversational dataset, you must first convert it into a standard format.
|
||||
For more information on how to work with conversational datasets, refer to the [Working with conversational datasets in TRL](#working-with-conversational-datasets-in-trl) section.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Working with conversational datasets in TRL
|
||||
|
||||
Conversational datasets are increasingly common, especially for training chat models. However, some TRL trainers don't support conversational datasets in their raw format. (For more information, see [issue #2071](https://github.com/huggingface/trl/issues/2071).) These datasets must first be converted into a standard format.
|
||||
Fortunately, TRL offers tools to easily handle this conversion, which are detailed below.
|
||||
|
||||
### Converting a conversational dataset into a standard dataset
|
||||
|
||||
To convert a conversational dataset into a standard dataset, you need to _apply a chat template_ to the dataset. A chat template is a predefined structure that typically includes placeholders for user and assistant messages. This template is provided by the tokenizer of the model you use.
|
||||
|
||||
For detailed instructions on using chat templating, refer to the [Chat templating section in the `transformers` documentation](https://huggingface.co/docs/transformers/en/chat_templating).
|
||||
|
||||
In TRL, the method you apply to convert the dataset will vary depending on the task. Fortunately, TRL provides a helper function called [`apply_chat_template`] to simplify this process. Here's an example of how to use it:
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer
|
||||
from trl import apply_chat_template
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
|
||||
|
||||
example = {
|
||||
"prompt": [{"role": "user", "content": "What color is the sky?"}],
|
||||
"completion": [{"role": "assistant", "content": "It is blue."}]
|
||||
}
|
||||
|
||||
apply_chat_template(example, tokenizer)
|
||||
# Output:
|
||||
# {'prompt': '<|user|>\nWhat color is the sky?<|end|>\n<|assistant|>\n', 'completion': 'It is blue.<|end|>\n<|endoftext|>'}
|
||||
```
|
||||
|
||||
Alternatively, you can use the [`~datasets.Dataset.map`] method to apply the template across an entire dataset:
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
from trl import apply_chat_template
|
||||
|
||||
dataset_dict = {
|
||||
"prompt": [[{"role": "user", "content": "What color is the sky?"}],
|
||||
[{"role": "user", "content": "Where is the sun?"}]],
|
||||
"completion": [[{"role": "assistant", "content": "It is blue."}],
|
||||
[{"role": "assistant", "content": "In the sky."}]]
|
||||
}
|
||||
|
||||
dataset = Dataset.from_dict(dataset_dict)
|
||||
dataset = dataset.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer})
|
||||
# Output:
|
||||
# {'prompt': ['<|user|>\nWhat color is the sky?<|end|>\n<|assistant|>\n',
|
||||
# '<|user|>\nWhere is the sun?<|end|>\n<|assistant|>\n'],
|
||||
# 'completion': ['It is blue.<|end|>\n<|endoftext|>', 'In the sky.<|end|>\n<|endoftext|>']}
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
We recommend using the [`apply_chat_template`] function instead of calling `tokenizer.apply_chat_template` directly. Handling chat templates for non-language modeling datasets can be tricky and may result in errors, such as mistakenly placing a system prompt in the middle of a conversation.
|
||||
For additional examples, see [#1930 (comment)](https://github.com/huggingface/trl/pull/1930#issuecomment-2292908614). The [`apply_chat_template`] is designed to handle these intricacies and ensure the correct application of chat templates for various tasks.
|
||||
|
||||
</Tip>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
It's important to note that chat templates are model-specific. For example, if you use the chat template from [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) with the above example, you get a different output:
|
||||
|
||||
```python
|
||||
apply_chat_template(example, AutoTokenizer.from_pretrained("meta-llama/Meta-Llama-3.1-8B-Instruct"))
|
||||
# Output:
|
||||
# {'prompt': '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\nWhat color is the sky?<|im_end|>\n<|im_start|>assistant\n',
|
||||
# 'completion': 'It is blue.<|im_end|>\n'}
|
||||
```
|
||||
|
||||
Always use the chat template associated with the model you're working with. Using the wrong template can lead to inaccurate or unexpected results.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Using any dataset with TRL: preprocessing and conversion
|
||||
|
||||
Many datasets come in formats tailored to specific tasks, which might not be directly compatible with TRL. To use such datasets with TRL, you may need to preprocess and convert them into the required format.
|
||||
|
||||
To make this easier, we provide a set of [example scripts](https://github.com/huggingface/trl/tree/main/examples/datasets) that cover common dataset conversions.
|
||||
|
||||
### Example: UltraFeedback dataset
|
||||
|
||||
Let’s take the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback) as an example. Here's a preview of the dataset:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/openbmb/UltraFeedback/embed/viewer/default/train"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
As shown above, the dataset format does not match the expected structure. It’s not in a conversational format, the column names differ, and the results pertain to different models (e.g., Bard, GPT-4) and aspects (e.g., "helpfulness", "honesty").
|
||||
|
||||
By using the provided conversion script [`examples/datasets/ultrafeedback.py`](https://github.com/huggingface/trl/tree/main/examples/datasets/ultrafeedback.py), you can transform this dataset into an unpaired preference type, and push it to the Hub:
|
||||
|
||||
```sh
|
||||
python examples/datasets/ultrafeedback.py --push_to_hub --repo_id trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness
|
||||
```
|
||||
|
||||
Once converted, the dataset will look like this:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness/embed/viewer/default/train?row=0"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
Now, you can use this dataset with TRL!
|
||||
|
||||
By adapting the provided scripts or creating your own, you can convert any dataset into a format compatible with TRL.
|
||||
|
||||
## Utilities for converting dataset types
|
||||
|
||||
This section provides example code to help you convert between different dataset types. While some conversions can be performed after applying the chat template (i.e., in the standard format), we recommend performing the conversion before applying the chat template to ensure it works consistently.
|
||||
|
||||
For simplicity, some of the examples below do not follow this recommendation and use the standard format. However, the conversions can be applied directly to the conversational format without modification.
|
||||
|
||||
| From \ To | Language modeling | Prompt-completion | Prompt-only | Preference with implicit prompt | Preference | Unpaired preference | Stepwise supervision |
|
||||
| ------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | ------------------------------------------------------------------------- | -------------------- |
|
||||
| Language modeling | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
|
||||
| Prompt-completion | [🔗](#from-prompt-completion-to-language-modeling-dataset) | N/A | [🔗](#from-prompt-completion-to-prompt-only-dataset) | N/A | N/A | N/A | N/A |
|
||||
| Prompt-only | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
|
||||
| Preference with implicit prompt | [🔗](#from-preference-with-implicit-prompt-to-language-modeling-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-completion-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-only-dataset) | N/A | [🔗](#from-implicit-to-explicit-prompt-preference-dataset) | [🔗](#from-preference-with-implicit-prompt-to-unpaired-preference-dataset) | N/A |
|
||||
| Preference | [🔗](#from-preference-to-language-modeling-dataset) | [🔗](#from-preference-to-prompt-completion-dataset) | [🔗](#from-preference-to-prompt-only-dataset) | [🔗](#from-explicit-to-implicit-prompt-preference-dataset) | N/A | [🔗](#from-preference-to-unpaired-preference-dataset) | N/A |
|
||||
| Unpaired preference | [🔗](#from-unpaired-preference-to-language-modeling-dataset) | [🔗](#from-unpaired-preference-to-prompt-completion-dataset) | [🔗](#from-unpaired-preference-to-prompt-only-dataset) | N/A | N/A | N/A | N/A |
|
||||
| Stepwise supervision | [🔗](#from-stepwise-supervision-to-language-modeling-dataset) | [🔗](#from-stepwise-supervision-to-prompt-completion-dataset) | [🔗](#from-stepwise-supervision-to-prompt-only-dataset) | N/A | N/A | [🔗](#from-stepwise-supervision-to-unpaired-preference-dataset) | N/A |
|
||||
|
||||
### From prompt-completion to language modeling dataset
|
||||
|
||||
To convert a prompt-completion dataset into a language modeling dataset, concatenate the prompt and the completion.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["The sky is", "The sun is"],
|
||||
"completion": [" blue.", " in the sky."],
|
||||
})
|
||||
|
||||
def concat_prompt_completion(example):
|
||||
return {"text": example["prompt"] + example["completion"]}
|
||||
|
||||
dataset = dataset.map(concat_prompt_completion, remove_columns=["prompt", "completion"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'text': 'The sky is blue.'}
|
||||
```
|
||||
|
||||
### From prompt-completion to prompt-only dataset
|
||||
|
||||
To convert a prompt-completion dataset into a prompt-only dataset, remove the completion.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["The sky is", "The sun is"],
|
||||
"completion": [" blue.", " in the sky."],
|
||||
})
|
||||
|
||||
dataset = dataset.remove_columns("completion")
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': 'The sky is'}
|
||||
```
|
||||
|
||||
### From preference with implicit prompt to language modeling dataset
|
||||
|
||||
To convert a preference with implicit prompt dataset into a language modeling dataset, remove the rejected, and rename the column `"chosen"` to `"text"`.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"chosen": ["The sky is blue.", "The sun is in the sky."],
|
||||
"rejected": ["The sky is green.", "The sun is in the sea."],
|
||||
})
|
||||
|
||||
dataset = dataset.rename_column("chosen", "text").remove_columns("rejected")
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'text': 'The sky is blue.'}
|
||||
```
|
||||
|
||||
### From preference with implicit prompt to prompt-completion dataset
|
||||
|
||||
To convert a preference dataset with implicit prompt into a prompt-completion dataset, extract the prompt with [`extract_prompt`], remove the rejected, and rename the column `"chosen"` to `"completion"`.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
from trl import extract_prompt
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"chosen": [
|
||||
[{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is blue."}],
|
||||
[{"role": "user", "content": "Where is the sun?"}, {"role": "assistant", "content": "In the sky."}],
|
||||
],
|
||||
"rejected": [
|
||||
[{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is green."}],
|
||||
[{"role": "user", "content": "Where is the sun?"}, {"role": "assistant", "content": "In the sea."}],
|
||||
],
|
||||
})
|
||||
dataset = dataset.map(extract_prompt).remove_columns("rejected").rename_column("chosen", "completion")
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': [{'role': 'user', 'content': 'What color is the sky?'}], 'completion': [{'role': 'assistant', 'content': 'It is blue.'}]}
|
||||
```
|
||||
|
||||
### From preference with implicit prompt to prompt-only dataset
|
||||
|
||||
To convert a preference dataset with implicit prompt into a prompt-only dataset, extract the prompt with [`extract_prompt`], and remove the rejected and the chosen.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
from trl import extract_prompt
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"chosen": [
|
||||
[{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is blue."}],
|
||||
[{"role": "user", "content": "Where is the sun?"}, {"role": "assistant", "content": "In the sky."}],
|
||||
],
|
||||
"rejected": [
|
||||
[{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is green."}],
|
||||
[{"role": "user", "content": "Where is the sun?"}, {"role": "assistant", "content": "In the sea."}],
|
||||
],
|
||||
})
|
||||
dataset = dataset.map(extract_prompt).remove_columns(["chosen", "rejected"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': [{'role': 'user', 'content': 'What color is the sky?'}]}
|
||||
```
|
||||
|
||||
### From implicit to explicit prompt preference dataset
|
||||
|
||||
To convert a preference dataset with implicit prompt into a preference dataset with explicit prompt, extract the prompt with [`extract_prompt`].
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
from trl import extract_prompt
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"chosen": [
|
||||
[{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is blue."}],
|
||||
[{"role": "user", "content": "Where is the sun?"}, {"role": "assistant", "content": "In the sky."}],
|
||||
],
|
||||
"rejected": [
|
||||
[{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is green."}],
|
||||
[{"role": "user", "content": "Where is the sun?"}, {"role": "assistant", "content": "In the sea."}],
|
||||
],
|
||||
})
|
||||
|
||||
dataset = dataset.map(extract_prompt)
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': [{'role': 'user', 'content': 'What color is the sky?'}],
|
||||
'chosen': [{'role': 'assistant', 'content': 'It is blue.'}],
|
||||
'rejected': [{'role': 'assistant', 'content': 'It is green.'}]}
|
||||
```
|
||||
|
||||
### From preference with implicit prompt to unpaired preference dataset
|
||||
|
||||
To convert a preference dataset with implicit prompt into an unpaired preference dataset, extract the prompt with [`extract_prompt`], and unpair the dataset with [`unpair_preference_dataset`].
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
from trl import extract_prompt, unpair_preference_dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"chosen": [
|
||||
[{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is blue."}],
|
||||
[{"role": "user", "content": "Where is the sun?"}, {"role": "assistant", "content": "In the sky."}],
|
||||
],
|
||||
"rejected": [
|
||||
[{"role": "user", "content": "What color is the sky?"}, {"role": "assistant", "content": "It is green."}],
|
||||
[{"role": "user", "content": "Where is the sun?"}, {"role": "assistant", "content": "In the sea."}],
|
||||
],
|
||||
})
|
||||
|
||||
dataset = dataset.map(extract_prompt)
|
||||
dataset = unpair_preference_dataset(dataset)
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': [{'role': 'user', 'content': 'What color is the sky?'}],
|
||||
'completion': [{'role': 'assistant', 'content': 'It is blue.'}],
|
||||
'label': True}
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Keep in mind that the `"chosen"` and `"rejected"` completions in a preference dataset can be both good or bad.
|
||||
Before applying [`unpair_preference_dataset`], please ensure that all `"chosen"` completions can be labeled as good and all `"rejected"` completions as bad.
|
||||
This can be ensured by checking absolute rating of each completion, e.g. from a reward model.
|
||||
|
||||
</Tip>
|
||||
|
||||
### From preference to language modeling dataset
|
||||
|
||||
To convert a preference dataset into a language modeling dataset, remove the rejected, concatenate the prompt and the chosen into the `"text"` column.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["The sky is", "The sun is"],
|
||||
"chosen": [" blue.", " in the sky."],
|
||||
"rejected": [" green.", " in the sea."],
|
||||
})
|
||||
|
||||
def concat_prompt_chosen(example):
|
||||
return {"text": example["prompt"] + example["chosen"]}
|
||||
|
||||
dataset = dataset.map(concat_prompt_chosen, remove_columns=["prompt", "chosen", "rejected"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'text': 'The sky is blue.'}
|
||||
```
|
||||
|
||||
### From preference to prompt-completion dataset
|
||||
|
||||
To convert a preference dataset into a prompt-completion dataset, remove the rejected, and rename the column `"chosen"` to `"completion"`.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["The sky is", "The sun is"],
|
||||
"chosen": [" blue.", " in the sky."],
|
||||
"rejected": [" green.", " in the sea."],
|
||||
})
|
||||
|
||||
dataset = dataset.remove_columns("rejected").rename_column("chosen", "completion")
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': 'The sky is', 'completion': ' blue.'}
|
||||
```
|
||||
|
||||
### From preference to prompt-only dataset
|
||||
|
||||
To convert a preference dataset into a prompt-only dataset, remove the rejected and the chosen.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["The sky is", "The sun is"],
|
||||
"chosen": [" blue.", " in the sky."],
|
||||
"rejected": [" green.", " in the sea."],
|
||||
})
|
||||
|
||||
dataset = dataset.remove_columns(["chosen", "rejected"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': 'The sky is'}
|
||||
```
|
||||
|
||||
### From explicit to implicit prompt preference dataset
|
||||
|
||||
To convert a preference dataset with explicit prompt into a preference dataset with implicit prompt, concatenate the prompt to both chosen and rejected, and remove the prompt.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": [
|
||||
[{"role": "user", "content": "What color is the sky?"}],
|
||||
[{"role": "user", "content": "Where is the sun?"}],
|
||||
],
|
||||
"chosen": [
|
||||
[{"role": "assistant", "content": "It is blue."}],
|
||||
[{"role": "assistant", "content": "In the sky."}],
|
||||
],
|
||||
"rejected": [
|
||||
[{"role": "assistant", "content": "It is green."}],
|
||||
[{"role": "assistant", "content": "In the sea."}],
|
||||
],
|
||||
})
|
||||
|
||||
def concat_prompt_to_completions(example):
|
||||
return {"chosen": example["prompt"] + example["chosen"], "rejected": example["prompt"] + example["rejected"]}
|
||||
|
||||
dataset = dataset.map(concat_prompt_to_completions, remove_columns="prompt")
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'chosen': [{'role': 'user', 'content': 'What color is the sky?'}, {'role': 'assistant', 'content': 'It is blue.'}],
|
||||
'rejected': [{'role': 'user', 'content': 'What color is the sky?'}, {'role': 'assistant', 'content': 'It is green.'}]}
|
||||
```
|
||||
|
||||
### From preference to unpaired preference dataset
|
||||
|
||||
To convert dataset into an unpaired preference dataset, unpair the dataset with [`unpair_preference_dataset`].
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
from trl import unpair_preference_dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": [
|
||||
[{"role": "user", "content": "What color is the sky?"}],
|
||||
[{"role": "user", "content": "Where is the sun?"}],
|
||||
],
|
||||
"chosen": [
|
||||
[{"role": "assistant", "content": "It is blue."}],
|
||||
[{"role": "assistant", "content": "In the sky."}],
|
||||
],
|
||||
"rejected": [
|
||||
[{"role": "assistant", "content": "It is green."}],
|
||||
[{"role": "assistant", "content": "In the sea."}],
|
||||
],
|
||||
})
|
||||
|
||||
dataset = unpair_preference_dataset(dataset)
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': [{'role': 'user', 'content': 'What color is the sky?'}],
|
||||
'completion': [{'role': 'assistant', 'content': 'It is blue.'}],
|
||||
'label': True}
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Keep in mind that the `"chosen"` and `"rejected"` completions in a preference dataset can be both good or bad.
|
||||
Before applying [`unpair_preference_dataset`], please ensure that all `"chosen"` completions can be labeled as good and all `"rejected"` completions as bad.
|
||||
This can be ensured by checking absolute rating of each completion, e.g. from a reward model.
|
||||
|
||||
</Tip>
|
||||
|
||||
### From unpaired preference to language modeling dataset
|
||||
|
||||
To convert an unpaired preference dataset into a language modeling dataset, concatenate prompts with good completions into the `"text"` column, and remove the prompt, completion and label columns.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["The sky is", "The sun is", "The sky is", "The sun is"],
|
||||
"completion": [" blue.", " in the sky.", " green.", " in the sea."],
|
||||
"label": [True, True, False, False],
|
||||
})
|
||||
|
||||
def concatenate_prompt_completion(example):
|
||||
return {"text": example["prompt"] + example["completion"]}
|
||||
|
||||
dataset = dataset.filter(lambda x: x["label"]).map(concatenate_prompt_completion).remove_columns(["prompt", "completion", "label"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'text': 'The sky is blue.'}
|
||||
```
|
||||
|
||||
### From unpaired preference to prompt-completion dataset
|
||||
|
||||
To convert an unpaired preference dataset into a prompt-completion dataset, filter for good labels, then remove the label columns.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["The sky is", "The sun is", "The sky is", "The sun is"],
|
||||
"completion": [" blue.", " in the sky.", " green.", " in the sea."],
|
||||
"label": [True, True, False, False],
|
||||
})
|
||||
|
||||
dataset = dataset.filter(lambda x: x["label"]).remove_columns(["label"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': 'The sky is', 'completion': ' blue.'}
|
||||
```
|
||||
|
||||
### From unpaired preference to prompt-only dataset
|
||||
|
||||
To convert an unpaired preference dataset into a prompt-only dataset, remove the completion and the label columns.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["The sky is", "The sun is", "The sky is", "The sun is"],
|
||||
"completion": [" blue.", " in the sky.", " green.", " in the sea."],
|
||||
"label": [True, True, False, False],
|
||||
})
|
||||
|
||||
dataset = dataset.remove_columns(["completion", "label"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': 'The sky is'}
|
||||
```
|
||||
|
||||
### From stepwise supervision to language modeling dataset
|
||||
|
||||
To convert a stepwise supervision dataset into a language modeling dataset, concatenate prompts with good completions into the `"text"` column.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["Blue light", "Water"],
|
||||
"completions": [[" scatters more in the atmosphere,", " so the sky is green."],
|
||||
[" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
|
||||
"labels": [[True, False], [True, True]],
|
||||
})
|
||||
|
||||
def concatenate_prompt_completions(example):
|
||||
completion = "".join(example["completions"])
|
||||
return {"text": example["prompt"] + completion}
|
||||
|
||||
dataset = dataset.filter(lambda x: all(x["labels"])).map(concatenate_prompt_completions, remove_columns=["prompt", "completions", "labels"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'text': 'Blue light scatters more in the atmosphere, so the sky is green.'}
|
||||
```
|
||||
|
||||
### From stepwise supervision to prompt completion dataset
|
||||
|
||||
To convert a stepwise supervision dataset into a prompt-completion dataset, join the good completions and remove the labels.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["Blue light", "Water"],
|
||||
"completions": [[" scatters more in the atmosphere,", " so the sky is green."],
|
||||
[" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
|
||||
"labels": [[True, False], [True, True]],
|
||||
})
|
||||
|
||||
def join_completions(example):
|
||||
completion = "".join(example["completions"])
|
||||
return {"completion": completion}
|
||||
|
||||
dataset = dataset.filter(lambda x: all(x["labels"])).map(join_completions, remove_columns=["completions", "labels"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': 'Blue light', 'completion': ' scatters more in the atmosphere, so the sky is green.'}
|
||||
```
|
||||
|
||||
### From stepwise supervision to prompt only dataset
|
||||
|
||||
To convert a stepwise supervision dataset into a prompt-only dataset, remove the completions and the labels.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["Blue light", "Water"],
|
||||
"completions": [[" scatters more in the atmosphere,", " so the sky is green."],
|
||||
[" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
|
||||
"labels": [[True, False], [True, True]],
|
||||
})
|
||||
|
||||
dataset = dataset.remove_columns(["completions", "labels"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': 'Blue light'}
|
||||
```
|
||||
|
||||
### From stepwise supervision to unpaired preference dataset
|
||||
|
||||
To convert a stepwise supervision dataset into an unpaired preference dataset, join the completions and merge the labels.
|
||||
|
||||
The method for merging the labels depends on the specific task. In this example, we use the logical AND operation. This means that if the step labels indicate the correctness of individual steps, the resulting label will reflect the correctness of the entire sequence.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
|
||||
dataset = Dataset.from_dict({
|
||||
"prompt": ["Blue light", "Water"],
|
||||
"completions": [[" scatters more in the atmosphere,", " so the sky is green."],
|
||||
[" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
|
||||
"labels": [[True, False], [True, True]],
|
||||
})
|
||||
|
||||
def merge_completions_and_labels(example):
|
||||
return {"prompt": example["prompt"], "completion": "".join(example["completions"]), "label": all(example["labels"])}
|
||||
|
||||
dataset = dataset.map(merge_completions_and_labels, remove_columns=["completions", "labels"])
|
||||
```
|
||||
|
||||
```python
|
||||
>>> dataset[0]
|
||||
{'prompt': 'Blue light', 'completion': ' scatters more in the atmosphere, so the sky is green.', 'label': False}
|
||||
```
|
||||
|
||||
## Vision datasets
|
||||
|
||||
Some trainers also support fine-tuning vision-language models (VLMs) using image-text pairs. In this scenario, it's recommended to use a conversational format, as each model handles image placeholders in text differently.
|
||||
|
||||
A conversational vision dataset differs from a standard conversational dataset in two key ways:
|
||||
|
||||
1. The dataset must contain the key `images` with the image data.
|
||||
2. The `"content"` field in messages must be a list of dictionaries, where each dictionary specifies the type of data: `"image"` or `"text"`.
|
||||
|
||||
Example:
|
||||
|
||||
```python
|
||||
# Textual dataset:
|
||||
"content": "What color is the sky?"
|
||||
|
||||
# Vision dataset:
|
||||
"content": [
|
||||
{"type": "image"},
|
||||
{"type": "text", "text": "What color is the sky in the image?"}
|
||||
]
|
||||
```
|
||||
|
||||
An example of a conversational vision dataset is the [openbmb/RLAIF-V-Dataset](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset). Below is an embedded view of the dataset's training data, allowing you to explore it directly:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/rlaif-v/embed/viewer/default/train"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
@ -1,18 +1,21 @@
|
||||
# Denoising Diffusion Policy Optimization
|
||||
|
||||
[](https://huggingface.co/models?other=ddpo,trl)
|
||||
|
||||
## The why
|
||||
|
||||
| Before | After DDPO finetuning |
|
||||
| --- | --- |
|
||||
| <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/pre_squirrel.png"/></div> | <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/post_squirrel.png"/></div> |
|
||||
| <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/pre_crab.png"/></div> | <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/post_crab.png"/></div> |
|
||||
| <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/pre_starfish.png"/></div> | <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/post_starfish.png"/></div> |
|
||||
| <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/pre_squirrel.png"/></div> | <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/post_squirrel.png"/></div> |
|
||||
| <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/pre_crab.png"/></div> | <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/post_crab.png"/></div> |
|
||||
| <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/pre_starfish.png"/></div> | <div style="text-align: center"><img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/post_starfish.png"/></div> |
|
||||
|
||||
|
||||
## Getting started with Stable Diffusion finetuning with reinforcement learning
|
||||
|
||||
The machinery for finetuning of Stable Diffusion models with reinforcement learning makes heavy use of HuggingFace's `diffusers`
|
||||
library. A reason for stating this is that getting started requires a bit of familiarity with the `diffusers` library concepts, mainly two of them - pipelines and schedulers.
|
||||
Right out of the box (`diffusers` library), there isn't a `Pipeline` nor a `Scheduler` instance that is suitable for finetuning with reinforcement learning. Some adjustments need to made.
|
||||
library. A reason for stating this is that getting started requires a bit of familiarity with the `diffusers` library concepts, mainly two of them - pipelines and schedulers.
|
||||
Right out of the box (`diffusers` library), there isn't a `Pipeline` nor a `Scheduler` instance that is suitable for finetuning with reinforcement learning. Some adjustments need to be made.
|
||||
|
||||
There is a pipeline interface that is provided by this library that is required to be implemented to be used with the `DDPOTrainer`, which is the main machinery for fine-tuning Stable Diffusion with reinforcement learning. **Note: Only the StableDiffusion architecture is supported at this point.**
|
||||
There is a default implementation of this interface that you can use out of the box. Assuming the default implementation is sufficient and/or to get things moving, refer to the training example alongside this guide.
|
||||
@ -23,7 +26,7 @@ For a more detailed look into the interface and the associated default implement
|
||||
|
||||
Note that the default implementation has a LoRA implementation path and a non-LoRA based implementation path. The LoRA flag enabled by default and this can be turned off by passing in the flag to do so. LORA based training is faster and the LORA associated model hyperparameters responsible for model convergence aren't as finicky as non-LORA based training.
|
||||
|
||||
Also in addition, there is the expectation of providing a reward function and a prompt function. The reward function is used to evaluate the generated images and the prompt function is used to generate the prompts that are used to generate the images.
|
||||
Also in addition, there is the expectation of providing a reward function and a prompt function. The reward function is used to evaluate the generated images and the prompt function is used to generate the prompts that are used to generate the images.
|
||||
|
||||
## Getting started with `examples/scripts/ddpo.py`
|
||||
|
||||
@ -116,4 +119,13 @@ for prompt, image in zip(prompts,results.images):
|
||||
## Credits
|
||||
|
||||
This work is heavily influenced by the repo [here](https://github.com/kvablack/ddpo-pytorch) and the associated paper [Training Diffusion Models
|
||||
with Reinforcement Learning by Kevin Black, Michael Janner, Yilan Du, Ilya Kostrikov, Sergey Levine](https://arxiv.org/abs/2305.13301).
|
||||
with Reinforcement Learning by Kevin Black, Michael Janner, Yilan Du, Ilya Kostrikov, Sergey Levine](https://huggingface.co/papers/2305.13301).
|
||||
|
||||
## DDPOTrainer
|
||||
|
||||
[[autodoc]] DDPOTrainer
|
||||
|
||||
## DDPOConfig
|
||||
|
||||
[[autodoc]] DDPOConfig
|
||||
|
39
docs/source/deepspeed_integration.md
Normal file
39
docs/source/deepspeed_integration.md
Normal file
@ -0,0 +1,39 @@
|
||||
# DeepSpeed Integration
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Section under construction. Feel free to contribute!
|
||||
|
||||
</Tip>
|
||||
|
||||
TRL supports training with DeepSpeed, a library that implements advanced training optimization techniques. These include optimizer state partitioning, offloading, gradient partitioning, and more.
|
||||
|
||||
DeepSpeed integrates the [Zero Redundancy Optimizer (ZeRO)](https://huggingface.co/papers/1910.02054), which allows to scale the model size proportional to the number of devices with sustained high efficiency.
|
||||
|
||||

|
||||
|
||||
## Installation
|
||||
|
||||
To use DeepSpeed with TRL, install it using the following command:
|
||||
|
||||
```bash
|
||||
pip install deepspeed
|
||||
```
|
||||
|
||||
## Running Training Scripts with DeepSpeed
|
||||
|
||||
No modifications to your training script are required. Simply run it with the DeepSpeed configuration file:
|
||||
|
||||
```bash
|
||||
accelerate launch --config_file <ACCELERATE_WITH_DEEPSPEED_CONFIG_FILE.yaml> train.py
|
||||
```
|
||||
|
||||
We provide ready-to-use DeepSpeed configuration files in the [`examples/accelerate_configs`](https://github.com/huggingface/trl/tree/main/examples/accelerate_configs) directory. For example, to run training with ZeRO Stage 2, use the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml train.py
|
||||
```
|
||||
|
||||
## Additional Resources
|
||||
|
||||
Consult the 🤗 Accelerate [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more information about the DeepSpeed plugin.
|
@ -30,7 +30,7 @@ We selected the following models for our experiments to show that TRL can be eas
|
||||
* [`EleutherAI/gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B) (2.7 billion parameters)
|
||||
* [`EleutherAI/gpt-j-6B`](https://huggingface.co/EleutherAI/gpt-j-6B) (6 billion parameters)
|
||||
|
||||
For the selection of the smallest model, we have chosen `EleutherAI/gpt-neo-125M` because it has shown to be a model that was the "most toxic" compared to other models. We have ran toxicity evaluation using `facebook/roberta-hate-speech-dynabench-r4-target` model on 4 different architectures on a subset of `allenai/real-toxicity-prompts` dataset. Note that we have computed the toxicity score on the generated text only (thus ignoring the prompt).
|
||||
For the selection of the smallest model, we have chosen `EleutherAI/gpt-neo-125M` because it has shown to be a model that was the "most toxic" compared to other models. We have run toxicity evaluation using `facebook/roberta-hate-speech-dynabench-r4-target` model on 4 different architectures on a subset of `allenai/real-toxicity-prompts` dataset. Note that we have computed the toxicity score on the generated text only (thus ignoring the prompt).
|
||||
|
||||
| Model | Mean toxicity score |
|
||||
|---|---|
|
||||
@ -45,7 +45,7 @@ When doing PPO, it is very important to design the problem efficiently so that t
|
||||
|
||||
### Pre-processing the dataset
|
||||
|
||||
The dataset consist of prompts and their continuations, and each of them has an associated `toxicity` score.
|
||||
The dataset consists of prompts and their continuations, and each of them has an associated `toxicity` score.
|
||||
|
||||
A `prompt` example:
|
||||
```
|
||||
@ -58,13 +58,13 @@ And its `continuation` value:
|
||||
|
||||
We want to increase the chance for the model to generate toxic prompts so we get more learning signal. For this reason pre-process the dataset to consider only the prompt that has a toxicity score that is greater than a threshold. We can do this in a few lines of code:
|
||||
```python
|
||||
ds = load_dataset("allenai/real-toxicity-prompts", split="train")
|
||||
train_dataset = load_dataset("allenai/real-toxicity-prompts", split="train")
|
||||
|
||||
def filter_fn(sample):
|
||||
toxicity = sample["prompt"]["toxicity"]
|
||||
return toxicity is not None and toxicity > 0.3
|
||||
|
||||
ds = ds.filter(filter_fn, batched=False)
|
||||
train_dataset = train_dataset.filter(filter_fn, batched=False)
|
||||
```
|
||||
|
||||
### Reward function
|
||||
@ -83,12 +83,12 @@ As a compromise between the two we took for a context window of 10 to 15 tokens
|
||||
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-long-vs-short-context.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-long-vs-short-context.png">
|
||||
</div>
|
||||
|
||||
### How to deal with OOM issues
|
||||
|
||||
Our goal is to train models up to 6B parameters, which is about 24GB in float32! Here two tricks we use to be able to train a 6B model on a single 40GB-RAM GPU:
|
||||
Our goal is to train models up to 6B parameters, which is about 24GB in float32! Here are two tricks we use to be able to train a 6B model on a single 40GB-RAM GPU:
|
||||
|
||||
- Use `bfloat16` precision: Simply load your model in `bfloat16` when calling `from_pretrained` and you can reduce the size of the model by 2:
|
||||
|
||||
@ -98,22 +98,18 @@ model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", torch_dtype=
|
||||
|
||||
and the optimizer will take care of computing the gradients in `bfloat16` precision. Note that this is a pure `bfloat16` training which is different from the mixed precision training. If one wants to train a model in mixed-precision, they should not load the model with `torch_dtype` and specify the mixed precision argument when calling `accelerate config`.
|
||||
|
||||
- Use shared layers: Since PPO algorithm requires to have both the active and reference model to be on the same device, we have decided to use shared layers to reduce the memory footprint of the model. This can be achieved by just speifying `num_shared_layers` argument when creating a `PPOTrainer`:
|
||||
- Use shared layers: Since PPO algorithm requires to have both the active and reference model to be on the same device, we have decided to use shared layers to reduce the memory footprint of the model. This can be achieved by specifying `num_shared_layers` argument when calling the `create_reference_model()` function. For example, if you want to share the first 6 layers of the model, you can do it like this:
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-shared-layers.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-shared-layers.png">
|
||||
</div>
|
||||
|
||||
```python
|
||||
ppo_trainer = PPOTrainer(
|
||||
model=model,
|
||||
tokenizer=tokenizer,
|
||||
num_shared_layers=4,
|
||||
...
|
||||
)
|
||||
ref_model = create_reference_model(model, num_shared_layers=6)
|
||||
trainer = PPOTrainer(..., ref_model=ref_model)
|
||||
```
|
||||
|
||||
In the example above this means that the model have the 4 first layers frozen (i.e. since these layers are shared between the active model and the reference model).
|
||||
In the example above this means that the model has the 4 first layers frozen (i.e. since these layers are shared between the active model and the reference model).
|
||||
|
||||
- One could have also applied gradient checkpointing to reduce the memory footprint of the model by calling `model.pretrained_model.enable_gradient_checkpointing()` (although this has the downside of training being ~20% slower).
|
||||
|
||||
@ -128,13 +124,13 @@ We have decided to keep 3 models in total that correspond to our best models:
|
||||
We have used different learning rates for each model, and have found out that the largest models were quite hard to train and can easily lead to collapse mode if the learning rate is not chosen correctly (i.e. if the learning rate is too high):
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-collapse-mode.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-collapse-mode.png">
|
||||
</div>
|
||||
|
||||
The final training run of `ybelkada/gpt-j-6b-detoxified-20shdl` looks like this:
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-gpt-j-final-run-2.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-gpt-j-final-run-2.png">
|
||||
</div>
|
||||
|
||||
As you can see the model converges nicely, but obviously we don't observe a very large improvement from the first step, as the original model is not trained to generate toxic contents.
|
||||
@ -142,7 +138,7 @@ As you can see the model converges nicely, but obviously we don't observe a very
|
||||
Also we have observed that training with larger `mini_batch_size` leads to smoother convergence and better results on the test set:
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-gpt-j-mbs-run.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-gpt-j-mbs-run.png">
|
||||
</div>
|
||||
|
||||
## Results
|
||||
@ -155,7 +151,7 @@ We report the toxicity score of 400 sampled examples, compute its mean and stand
|
||||
| `EleutherAI/gpt-neo-125m` | 0.1627 | 0.2997 |
|
||||
| `ybelkada/gpt-neo-125m-detox` | **0.1148** | **0.2506** |
|
||||
| --- | --- | --- |
|
||||
| `EleutherAI/gpt-neo-2.7B` | 0.1884 | ,0.3178 |
|
||||
| `EleutherAI/gpt-neo-2.7B` | 0.1884 | 0.3178 |
|
||||
| `ybelkada/gpt-neo-2.7B-detox` | **0.0916** | **0.2104** |
|
||||
| --- | --- | --- |
|
||||
| `EleutherAI/gpt-j-6B` | 0.1699 | 0.3033 |
|
||||
@ -163,7 +159,7 @@ We report the toxicity score of 400 sampled examples, compute its mean and stand
|
||||
|
||||
<div class="column" style="text-align:center">
|
||||
<figure>
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-final-barplot.png" style="width:80%">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-final-barplot.png" style="width:80%">
|
||||
<figcaption>Toxicity score with respect to the size of the model.</figcaption>
|
||||
</figure>
|
||||
</div>
|
||||
@ -171,7 +167,7 @@ We report the toxicity score of 400 sampled examples, compute its mean and stand
|
||||
Below are few generation examples of `gpt-j-6b-detox` model:
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-toxicity-examples.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-toxicity-examples.png">
|
||||
</div>
|
||||
|
||||
The evaluation script can be found [here](https://github.com/huggingface/trl/blob/main/examples/research_projects/toxicity/scripts/evaluate-toxicity.py).
|
||||
@ -180,7 +176,7 @@ The evaluation script can be found [here](https://github.com/huggingface/trl/blo
|
||||
|
||||
The results are quite promising, as we can see that the models are able to reduce the toxicity score of the generated text by an interesting margin. The gap is clear for `gpt-neo-2B` model but we less so for the `gpt-j-6B` model. There are several things we could try to improve the results on the largest model starting with training with larger `mini_batch_size` and probably allowing to back-propagate through more layers (i.e. use less shared layers).
|
||||
|
||||
To sum up, in addition to human feedback this could be a useful additional signal when training large language models to ensure there outputs are less toxic as well as useful.
|
||||
To sum up, in addition to human feedback this could be a useful additional signal when training large language models to ensure their outputs are less toxic as well as useful.
|
||||
|
||||
### Limitations
|
||||
|
60
docs/source/distributing_training.md
Normal file
60
docs/source/distributing_training.md
Normal file
@ -0,0 +1,60 @@
|
||||
# Distributing Training
|
||||
|
||||
<Tip warning={true}>
|
||||
Section under construction. Feel free to contribute!
|
||||
</Tip>
|
||||
|
||||
## Multi-GPU Training with TRL
|
||||
|
||||
The trainers in TRL use [🤗 Accelerate](https://github.com/huggingface/accelerate) to enable distributed training across multiple GPUs or nodes. To do so, first create an [🤗 Accelerate](https://github.com/huggingface/accelerate) config file by running
|
||||
|
||||
```bash
|
||||
accelerate config
|
||||
```
|
||||
|
||||
and answering the questions according to your multi-GPU / multi-node setup. You can then launch distributed training by running:
|
||||
|
||||
```bash
|
||||
accelerate launch train.py
|
||||
```
|
||||
|
||||
We also provide config files in the [examples folder](https://github.com/huggingface/trl/tree/main/examples/accelerate_configs) that can be used as templates. To use these templates, simply pass the path to the config file when launching a job, e.g.:
|
||||
|
||||
```shell
|
||||
accelerate launch --config_file examples/accelerate_configs/multi_gpu.yaml train.py <SCRIPT_ARGS>
|
||||
```
|
||||
|
||||
This automatically distributes the workload across all available GPUs.
|
||||
|
||||
Under the hood, [🤗 Accelerate](https://github.com/huggingface/accelerate) creates one model per GPU. Each process:
|
||||
- Processes its own batch of data
|
||||
- Computes the loss and gradients for that batch
|
||||
- Shares gradient updates across all GPUs
|
||||
|
||||

|
||||
|
||||
The effective batch size is calculated as:
|
||||
|
||||
$$
|
||||
\text{Batch Size} = \text{per\_device\_train\_batch\_size} \times \text{num\_devices} \times \text{gradient\_accumulation\_steps}
|
||||
$$
|
||||
|
||||
To maintain a consistent batch size when scaling to multiple GPUs, make sure to update `per_device_train_batch_size` and `gradient_accumulation_steps` accordingly.
|
||||
|
||||
Example, these configurations are equivalent, and should yield the same results:
|
||||
|
||||
| Number of GPUs | Per device batch size | Gradient accumulation steps | Comments |
|
||||
| --- | --- | --- | --- |
|
||||
| 1 | 32 | 1 | Possibly high memory usage, but faster training |
|
||||
| 1 | 4 | 8 | Lower memory usage, slower training |
|
||||
| 8 | 4 | 1 | Multi-GPU to get the best of both worlds |
|
||||
|
||||
<Tip>
|
||||
|
||||
Having one model per GPU can lead to high memory usage, which may not be feasible for large models or low-memory GPUs. In such cases, you can leverage [DeepSpeed](https://github.com/deepspeedai/DeepSpeed), which provides optimizations like model sharding, Zero Redundancy Optimizer, mixed precision training, and offloading to CPU or NVMe. Check out our [DeepSpeed Integration](deepspeed_integration.md) guide for more details.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Multi-Nodes Training
|
||||
|
||||
We're working on a guide for multi-node training. Stay tuned! 🚀
|
283
docs/source/dpo_trainer.md
Normal file
283
docs/source/dpo_trainer.md
Normal file
@ -0,0 +1,283 @@
|
||||
# DPO Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=dpo,trl) [](https://github.com/huggingface/smol-course/tree/main/2_preference_alignment)
|
||||
|
||||
## Overview
|
||||
|
||||
TRL supports the DPO Trainer for training language models from preference data, as described in the paper [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290) by [Rafael Rafailov](https://huggingface.co/rmrafailov), Archit Sharma, Eric Mitchell, [Stefano Ermon](https://huggingface.co/ermonste), [Christopher D. Manning](https://huggingface.co/manning), [Chelsea Finn](https://huggingface.co/cbfinn).
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> While large-scale unsupervised language models (LMs) learn broad world knowledge and some reasoning skills, achieving precise control of their behavior is difficult due to the completely unsupervised nature of their training. Existing methods for gaining such steerability collect human labels of the relative quality of model generations and fine-tune the unsupervised LM to align with these preferences, often with reinforcement learning from human feedback (RLHF). However, RLHF is a complex and often unstable procedure, first fitting a reward model that reflects the human preferences, and then fine-tuning the large unsupervised LM using reinforcement learning to maximize this estimated reward without drifting too far from the original model. In this paper we introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form, allowing us to solve the standard RLHF problem with only a simple classification loss. The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight, eliminating the need for sampling from the LM during fine-tuning or performing significant hyperparameter tuning. Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods. Notably, fine-tuning with DPO exceeds PPO-based RLHF in ability to control sentiment of generations, and matches or improves response quality in summarization and single-turn dialogue while being substantially simpler to implement and train.
|
||||
|
||||
The first step is to train an SFT model, to ensure the data we train on is in-distribution for the DPO algorithm.
|
||||
|
||||
Then, fine-tuning a language model via DPO consists of two steps and is easier than [PPO](ppo_trainer):
|
||||
|
||||
1. **Data collection**: Gather a [preference dataset](dataset_formats#preference) with positive and negative selected pairs of generation, given a prompt.
|
||||
2. **Optimization**: Maximize the log-likelihood of the DPO loss directly.
|
||||
|
||||
This process is illustrated in the sketch below (from [Figure 1 of the DPO paper](https://huggingface.co/papers/2305.18290)):
|
||||
|
||||

|
||||
|
||||
Read more about DPO algorithm in the [original paper](https://huggingface.co/papers/2305.18290).
|
||||
|
||||
## Quick start
|
||||
|
||||
This example demonstrates how to train a model using the DPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model. We use the preference data from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the data in the dataset here:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized/embed/viewer/default/train?row=0"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
Below is the script to train the model:
|
||||
|
||||
```python
|
||||
# train_dpo.py
|
||||
from datasets import load_dataset
|
||||
from trl import DPOConfig, DPOTrainer
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
||||
|
||||
training_args = DPOConfig(output_dir="Qwen2-0.5B-DPO", logging_steps=10)
|
||||
trainer = DPOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Execute the script using the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch train_dpo.py
|
||||
```
|
||||
|
||||
Distributed across 8 GPUs, the training takes approximately 3 minutes. You can verify the training progress by checking the reward graph. An increasing trend in the reward margin indicates that the model is improving and generating better responses over time.
|
||||
|
||||

|
||||
|
||||
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-DPO) performs, you can use the [Transformers Chat CLI](https://huggingface.co/docs/transformers/quicktour#chat-with-text-generation-models).
|
||||
|
||||
<pre><code>$ transformers-cli chat --model_name_or_path trl-lib/Qwen2-0.5B-DPO
|
||||
<strong><span style="color: red;"><quentin_gallouedec>:</span></strong>
|
||||
What is the best programming language?
|
||||
|
||||
<strong><span style="color: blue;"><trl-lib/Qwen2-0.5B-DPO>:</span></strong>
|
||||
The best programming language for specific applications can vary depending on the use case and knowledge level of the programmer. Here are some general factors that can be used as input to choose the best programming language:
|
||||
|
||||
<strong><span style="color: green;">1</span></strong> Ease of use: Some programming languages are more user-friendly than others, such as Python, Java, or Ruby. Python is popular due to its simplicity and great scalability.
|
||||
<strong><span style="color: green;">2</span></strong> Versatility: The ability to work with a wide range of data structures and frameworks can define the language as versatile.
|
||||
<strong><span style="color: green;">3</span></strong> Ease of learning: Different programming languages have different learning curves, so users must be willing to take some time to master one.
|
||||
<strong><span style="color: green;">4</span></strong> Community support: The broader community of developers and enthusiasts in the selected programming language can provide great support and resources.
|
||||
<strong><span style="color: green;">5</span></strong> Reusability: Languages that emphasize code reuse and can be easily modifiable can be more suitable for software development.
|
||||
|
||||
The best programming language based on these factors is subjective and depends on what the programmer intends to accomplish.
|
||||
</code></pre>
|
||||
|
||||
## Expected dataset type
|
||||
|
||||
DPO requires a [preference dataset](dataset_formats#preference). The [`DPOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset formats. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
|
||||
|
||||
Although the [`DPOTrainer`] supports both explicit and implicit prompts, we recommend using explicit prompts. If provided with an implicit prompt dataset, the trainer will automatically extract the prompt from the `"chosen"` and `"rejected"` columns. For more information, refer to the [preference style](dataset_formats#preference) section.
|
||||
|
||||
### Special considerations for vision-language models
|
||||
|
||||
The [`DPOTrainer`] supports fine-tuning vision-language models (VLMs). For these models, a vision dataset is required. To learn more about the specific format for vision datasets, refer to the [Vision dataset format](dataset_formats#vision-datasets) section.
|
||||
|
||||
Additionally, unlike standard text-based models where a `tokenizer` is used, for VLMs, you should replace the `tokenizer` with a `processor`.
|
||||
|
||||
```diff
|
||||
- model = AutoModelForCausalLM.from_pretrained(model_id)
|
||||
+ model = AutoModelForVision2Seq.from_pretrained(model_id)
|
||||
|
||||
- tokenizer = AutoTokenizer.from_pretrained(model_id)
|
||||
+ processor = AutoProcessor.from_pretrained(model_id)
|
||||
|
||||
trainer = DPOTrainer(
|
||||
model,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
- processing_class=tokenizer,
|
||||
+ processing_class=processor,
|
||||
)
|
||||
```
|
||||
|
||||
For a complete example of fine-tuning a vision-language model, refer to the script in [`examples/scripts/dpo_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo_vlm.py).
|
||||
|
||||
|
||||
## Example script
|
||||
|
||||
We provide an example script to train a model using the DPO method. The script is available in [`trl/scripts/dpo.py`](https://github.com/huggingface/trl/blob/main/trl/scripts/dpo.py)
|
||||
|
||||
To test the DPO script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized), run the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch trl/scripts/dpo.py \
|
||||
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
|
||||
--dataset_name trl-lib/ultrafeedback_binarized \
|
||||
--num_train_epochs 1 \
|
||||
--logging_steps 25 \
|
||||
--output_dir Qwen2-0.5B-DPO
|
||||
```
|
||||
|
||||
## Logged metrics
|
||||
|
||||
While training and evaluating we record the following reward metrics:
|
||||
|
||||
- `rewards/chosen`: the mean difference between the log probabilities of the policy model and the reference model for the chosen responses scaled by beta
|
||||
- `rewards/rejected`: the mean difference between the log probabilities of the policy model and the reference model for the rejected responses scaled by beta
|
||||
- `rewards/accuracies`: mean of how often the chosen rewards are > than the corresponding rejected rewards
|
||||
- `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
|
||||
|
||||
## Loss functions
|
||||
|
||||
The DPO algorithm supports several loss functions. The loss function can be set using the `loss_type` parameter in the [`DPOConfig`]. The following loss functions are supported:
|
||||
|
||||
| `loss_type=` | Description |
|
||||
| -------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
|
||||
| `"sigmoid"` (default) | Given the preference data, we can fit a binary classifier according to the Bradley-Terry model and in fact the [DPO](https://huggingface.co/papers/2305.18290) authors propose the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression. |
|
||||
| `"hinge"` | The [RSO](https://huggingface.co/papers/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper. In this case, the `beta` is the reciprocal of the margin. |
|
||||
| `"ipo"` | The [IPO](https://huggingface.co/papers/2310.12036) authors provide a deeper theoretical understanding of the DPO algorithms and identify an issue with overfitting and propose an alternative loss. In this case, the `beta` is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike DPO which is summed only). |
|
||||
| `"exo_pair"` | The [EXO](https://huggingface.co/papers/2402.00856) authors propose to minimize the reverse KL instead of the negative log-sigmoid loss of DPO which corresponds to forward KL. Setting non-zero `label_smoothing` (default `1e-3`) leads to a simplified version of EXO on pair-wise preferences (see Eqn. (16) of the [EXO paper](https://huggingface.co/papers/2402.00856)). The full version of EXO uses `K>2` completions generated by the SFT policy, which becomes an unbiased estimator of the PPO objective (up to a constant) when `K` is sufficiently large. |
|
||||
| `"nca_pair"` | The [NCA](https://huggingface.co/papers/2402.05369) authors shows that NCA optimizes the absolute likelihood for each response rather than the relative likelihood. |
|
||||
| `"robust"` | The [Robust DPO](https://huggingface.co/papers/2403.00409) authors propose an unbiased estimate of the DPO loss that is robust to preference noise in the data. Like in cDPO, it assumes that the preference labels are noisy with some probability. In this approach, the `label_smoothing` parameter in the [`DPOConfig`] is used to model the probability of existing label noise. To apply this conservative loss, set `label_smoothing` to a value greater than 0.0 (between 0.0 and 0.5; the default is 0.0) |
|
||||
| `"bco_pair"` | The [BCO](https://huggingface.co/papers/2404.04656) authors train a binary classifier whose logit serves as a reward so that the classifier maps {prompt, chosen completion} pairs to 1 and {prompt, rejected completion} pairs to 0. For unpaired data, we recommend the dedicated [`BCOTrainer`]. |
|
||||
| `"sppo_hard"` | The [SPPO](https://huggingface.co/papers/2405.00675) authors claim that SPPO is capable of solving the Nash equilibrium iteratively by pushing the chosen rewards to be as large as 1/2 and the rejected rewards to be as small as -1/2 and can alleviate data sparsity issues. The implementation approximates this algorithm by employing hard label probabilities, assigning 1 to the winner and 0 to the loser. |
|
||||
| `"aot"` or `loss_type="aot_pair"` | The [AOT](https://huggingface.co/papers/2406.05882) authors propose to use Distributional Preference Alignment Via Optimal Transport. Traditionally, the alignment algorithms use paired preferences at a sample level, which does not ensure alignment on the distributional level. AOT, on the other hand, can align LLMs on paired or unpaired preference data by making the reward distribution of the positive samples stochastically dominant in the first order on the distribution of negative samples. Specifically, `loss_type="aot"` is appropriate for paired datasets, where each prompt has both chosen and rejected responses; `loss_type="aot_pair"` is for unpaired datasets. In a nutshell, `loss_type="aot"` ensures that the log-likelihood ratio of chosen to rejected of the aligned model has higher quantiles than that ratio for the reference model. `loss_type="aot_pair"` ensures that the chosen reward is higher on all quantiles than the rejected reward. Note that in both cases quantiles are obtained via sorting. To fully leverage the advantages of the AOT algorithm, it is important to maximize the per-GPU batch size. |
|
||||
| `"apo_zero"` or `loss_type="apo_down"` | The [APO](https://huggingface.co/papers/2408.06266) method introduces an "anchored" version of the alignment objective. There are two variants: `apo_zero` and `apo_down`. The `apo_zero` loss increases the likelihood of winning outputs while decreasing the likelihood of losing outputs, making it suitable when the model is less performant than the winning outputs. On the other hand, `apo_down` decreases the likelihood of both winning and losing outputs, but with a stronger emphasis on reducing the likelihood of losing outputs. This variant is more effective when the model is better than the winning outputs. |
|
||||
| `"discopop"` | The [DiscoPOP](https://huggingface.co/papers/2406.08414) paper uses LLMs to discover more efficient offline preference optimization losses. In the paper the proposed DiscoPOP loss (which is a log-ratio modulated loss) outperformed other optimization losses on different tasks (IMDb positive text generation, Reddit TLDR summarization, and Alpaca Eval 2.0). |
|
||||
|
||||
### Label smoothing
|
||||
|
||||
The [cDPO](https://ericmitchell.ai/cdpo.pdf) is a tweak on the DPO loss where we assume that the preference labels are noisy with some probability. In this approach, the `label_smoothing` parameter in the [`DPOConfig`] is used to model the probability of existing label noise. To apply this conservative loss, set `label_smoothing` to a value greater than 0.0 (between 0.0 and 0.5; the default is 0.0).
|
||||
|
||||
### Syncing the reference model
|
||||
|
||||
The [TR-DPO](https://huggingface.co/papers/2404.09656) paper suggests syncing the reference model weights after every `ref_model_sync_steps` steps of SGD with weight `ref_model_mixup_alpha` during DPO training. To toggle this callback use the `sync_ref_model=True` in the [`DPOConfig`].
|
||||
|
||||
### RPO loss
|
||||
|
||||
The [RPO](https://huggingface.co/papers/2404.19733) paper implements an iterative preference tuning algorithm using a loss related to the RPO loss in this [paper](https://huggingface.co/papers/2405.16436) that essentially consists of a weighted SFT loss on the chosen preferences together with the DPO loss. To use this loss, set the `rpo_alpha` in the [`DPOConfig`] to an appropriate value. The paper suggests setting this weight to `1.0`.
|
||||
|
||||
### WPO loss
|
||||
|
||||
The [WPO](https://huggingface.co/papers/2406.11827) paper adapts off-policy data to resemble on-policy data more closely by reweighting preference pairs according to their probability under the current policy. To use this method, set the `use_weighting` flag to `True` in the [`DPOConfig`].
|
||||
|
||||
### For Mixture of Experts Models: Enabling the auxiliary loss
|
||||
|
||||
MOEs are the most efficient if the load is about equally distributed between experts.
|
||||
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
|
||||
|
||||
This option is enabled by setting `output_router_logits=True` in the model config (e.g. [`~transformers.MixtralConfig`]).
|
||||
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: `0.001`) in the model config.
|
||||
|
||||
## Accelerate DPO fine-tuning using `unsloth`
|
||||
|
||||
You can further accelerate QLoRA / LoRA (2x faster, 60% less memory) using the [`unsloth`](https://github.com/unslothai/unsloth) library that is fully compatible with `SFTTrainer`. Currently `unsloth` supports only Llama (Yi, TinyLlama, Qwen, Deepseek etc) and Mistral architectures. Some benchmarks for DPO listed below:
|
||||
|
||||
| GPU | Model | Dataset | 🤗 | 🤗 + Flash Attention 2 | 🦥 Unsloth | 🦥 VRAM saved |
|
||||
| -------- | --------- | ---------- | --- | --------------------- | --------- | ------------ |
|
||||
| A100 40G | Zephyr 7b | Ultra Chat | 1x | 1.24x | **1.88x** | -11.6% |
|
||||
| Tesla T4 | Zephyr 7b | Ultra Chat | 1x | 1.09x | **1.55x** | -18.6% |
|
||||
|
||||
First install `unsloth` according to the [official documentation](https://github.com/unslothai/unsloth). Once installed, you can incorporate unsloth into your workflow in a very simple manner; instead of loading `AutoModelForCausalLM`, you just need to load a `FastLanguageModel` as follows:
|
||||
|
||||
```diff
|
||||
from datasets import load_dataset
|
||||
from trl import DPOConfig, DPOTrainer
|
||||
- from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
+ from unsloth import FastLanguageModel
|
||||
|
||||
- model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
- tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
+ model, tokenizer = FastLanguageModel.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
+ model = FastLanguageModel.get_peft_model(model)
|
||||
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
||||
|
||||
- training_args = DPOConfig(output_dir="Qwen2-0.5B-DPO", logging_steps=10)
|
||||
+ training_args = DPOConfig(output_dir="Qwen2-0.5B-DPO", logging_steps=10, bf16=True)
|
||||
trainer = DPOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
|
||||
trainer.train()
|
||||
|
||||
```
|
||||
|
||||
The saved model is fully compatible with Hugging Face's transformers library. Learn more about unsloth in their [official repository](https://github.com/unslothai/unsloth).
|
||||
|
||||
## Reference model considerations with PEFT
|
||||
|
||||
You have three main options (plus several variants) for how the reference model works when using PEFT, assuming the model that you would like to further enhance with DPO was tuned using (Q)LoRA.
|
||||
|
||||
1. Simply create two instances of the model, each loading your adapter - works fine but is very inefficient.
|
||||
2. Merge the adapter into the base model, create another adapter on top, then leave the `ref_model` param null, in which case DPOTrainer will unload the adapter for reference inference - efficient, but has potential downsides discussed below.
|
||||
3. Load the adapter twice with different names, then use `set_adapter` during training to swap between the adapter being DPO'd and the reference adapter - slightly less efficient compared to 2 (~adapter size VRAM overhead), but avoids the pitfalls.
|
||||
|
||||
### Downsides to merging QLoRA before DPO (approach 2)
|
||||
|
||||
As suggested by [Benjamin Marie](https://medium.com/@bnjmn_marie/dont-merge-your-lora-adapter-into-a-4-bit-llm-65b6da287997), the best option for merging QLoRA adapters is to first dequantize the base model, then merge the adapter. Something similar to [this script](https://github.com/jondurbin/qlora/blob/main/qmerge.py).
|
||||
|
||||
However, after using this approach, you will have an unquantized base model. Therefore, to use QLoRA for DPO, you will need to re-quantize the merged model or use the unquantized merge (resulting in higher memory demand).
|
||||
|
||||
### Using option 3 - load the adapter twice
|
||||
|
||||
To avoid the downsides with option 2, you can load your fine-tuned adapter into the model twice, with different names, and set the model/ref adapter names in [`DPOTrainer`].
|
||||
|
||||
For example:
|
||||
|
||||
```python
|
||||
# Load the base model.
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
llm_int8_threshold=6.0,
|
||||
llm_int8_has_fp16_weight=False,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"mistralai/mixtral-8x7b-v0.1",
|
||||
load_in_4bit=True,
|
||||
quantization_config=bnb_config,
|
||||
attn_implementation="flash_attention_2",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
)
|
||||
model.config.use_cache = False
|
||||
|
||||
# Load the adapter.
|
||||
model = PeftModel.from_pretrained(
|
||||
model,
|
||||
"/path/to/peft",
|
||||
is_trainable=True,
|
||||
adapter_name="train",
|
||||
)
|
||||
# Load the adapter a second time, with a different name, which will be our reference model.
|
||||
model.load_adapter("/path/to/peft", adapter_name="reference")
|
||||
|
||||
# Initialize the trainer, without a ref_model param.
|
||||
training_args = DPOConfig(
|
||||
model_adapter_name="train",
|
||||
ref_adapter_name="reference",
|
||||
)
|
||||
dpo_trainer = DPOTrainer(
|
||||
model,
|
||||
args=training_args,
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
## DPOTrainer
|
||||
|
||||
[[autodoc]] DPOTrainer
|
||||
|
||||
## DPOConfig
|
||||
|
||||
[[autodoc]] DPOConfig
|
||||
|
||||
## DataCollatorForPreference
|
||||
|
||||
[[autodoc]] trainer.dpo_trainer.DataCollatorForPreference
|
@ -1,235 +0,0 @@
|
||||
# DPO Trainer
|
||||
|
||||
TRL supports the DPO Trainer for training language models from preference data, as described in the paper [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://arxiv.org/abs/2305.18290) by Rafailov et al., 2023. For a full example have a look at [`examples/scripts/dpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo.py).
|
||||
|
||||
The first step as always is to train your SFT model, to ensure the data we train on is in-distribution for the DPO algorithm.
|
||||
|
||||
## How DPO works
|
||||
|
||||
Fine-tuning a language model via DPO consists of two steps and is easier than PPO:
|
||||
|
||||
1. **Data collection**: Gather a preference dataset with positive and negative selected pairs of generation, given a prompt.
|
||||
2. **Optimization**: Maximize the log-likelihood of the DPO loss directly.
|
||||
|
||||
DPO-compatible datasets can be found with [the tag `dpo` on Hugging Face Hub](https://huggingface.co/datasets?other=dpo).
|
||||
|
||||
This process is illustrated in the sketch below (from [figure 1 of the original paper](https://arxiv.org/pdf/2305.18290.pdf)):
|
||||
|
||||
<img width="835" alt="Screenshot 2024-03-19 at 12 39 41" src="https://github.com/huggingface/trl/assets/49240599/9150fac6-3d88-4ca2-8ec6-2a6f3473216d">
|
||||
|
||||
Read more about DPO algorithm in the [original paper](https://arxiv.org/pdf/2305.18290.pdf).
|
||||
|
||||
|
||||
## Expected dataset format
|
||||
|
||||
The DPO trainer expects a very specific format for the dataset. Since the model will be trained to directly optimize the preference of which sentence is the most relevant, given two sentences. We provide an example from the [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset below:
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/rlhf-antropic-example.png", width="50%">
|
||||
</div>
|
||||
|
||||
Therefore the final dataset object should contain these 3 entries if you use the default `DPODataCollatorWithPadding` data collator. The entries should be named:
|
||||
|
||||
- `prompt`
|
||||
- `chosen`
|
||||
- `rejected`
|
||||
|
||||
for example:
|
||||
|
||||
```py
|
||||
dpo_dataset_dict = {
|
||||
"prompt": [
|
||||
"hello",
|
||||
"how are you",
|
||||
"What is your name?",
|
||||
"What is your name?",
|
||||
"Which is the best programming language?",
|
||||
"Which is the best programming language?",
|
||||
"Which is the best programming language?",
|
||||
],
|
||||
"chosen": [
|
||||
"hi nice to meet you",
|
||||
"I am fine",
|
||||
"My name is Mary",
|
||||
"My name is Mary",
|
||||
"Python",
|
||||
"Python",
|
||||
"Java",
|
||||
],
|
||||
"rejected": [
|
||||
"leave me alone",
|
||||
"I am not fine",
|
||||
"Whats it to you?",
|
||||
"I dont have a name",
|
||||
"Javascript",
|
||||
"C++",
|
||||
"C++",
|
||||
],
|
||||
}
|
||||
```
|
||||
|
||||
where the `prompt` contains the context inputs, `chosen` contains the corresponding chosen responses and `rejected` contains the corresponding negative (rejected) responses. As can be seen a prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays.
|
||||
|
||||
## Expected model format
|
||||
The DPO trainer expects a model of `AutoModelForCausalLM`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
|
||||
|
||||
## Using the `DPOTrainer`
|
||||
|
||||
For a detailed example have a look at the `examples/scripts/dpo.py` script. At a high level we need to initialize the `DPOTrainer` with a `model` we wish to train, a reference `ref_model` which we will use to calculate the implicit rewards of the preferred and rejected response, the `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above. Note that the `model` and `ref_model` need to have the same architecture (ie decoder only or encoder-decoder).
|
||||
|
||||
```py
|
||||
dpo_trainer = DPOTrainer(
|
||||
model,
|
||||
model_ref,
|
||||
args=training_args,
|
||||
beta=0.1,
|
||||
train_dataset=train_dataset,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
```
|
||||
After this one can then call:
|
||||
|
||||
```py
|
||||
dpo_trainer.train()
|
||||
```
|
||||
|
||||
Note that the `beta` is the temperature parameter for the DPO loss, typically something in the range of `0.1` to `0.5`. We ignore the reference model as `beta` -> 0.
|
||||
|
||||
## Loss functions
|
||||
|
||||
Given the preference data, we can fit a binary classifier according to the Bradley-Terry model and in fact the DPO authors propose the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression.
|
||||
|
||||
The [RSO](https://arxiv.org/abs/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://arxiv.org/abs/2305.10425) paper. The `DPOTrainer` can be switched to this loss via the `loss_type="hinge"` argument and the `beta` in this case is the reciprocal of the margin.
|
||||
|
||||
The [IPO](https://arxiv.org/abs/2310.12036) authors provide a deeper theoretical understanding of the DPO algorithms and identify an issue with overfitting and propose an alternative loss which can be used via the `loss_type="ipo"` argument to the trainer. Note that the `beta` parameter is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike DPO which is summed only).
|
||||
|
||||
The [cDPO](https://ericmitchell.ai/cdpo.pdf) is a tweak on the DPO loss where we assume that the preference labels are noisy with some probability that can be passed to the `DPOTrainer` via `label_smoothing` argument (between 0 and 0.5) and then a conservative DPO loss is used. Use the `loss_type="cdpo"` argument to the trainer to use it.
|
||||
|
||||
The [KTO](https://arxiv.org/abs/2402.01306) authors directly maximize the utility of LLM generations instead of the log-likelihood of preferences. To use preference data with KTO, we recommend breaking up the n preferences into 2n examples and using [`KTOTrainer`](kto_trainer) (i.e., treating the data like an unpaired feedback dataset). Although it is possible to pass in `loss_type="kto_pair"` into DPOTrainer, this is a highly simplified version of KTO that we *do not recommend* in most cases. Please use [`KTOTrainer`](kto_trainer) when possible.
|
||||
|
||||
## Logging
|
||||
|
||||
While training and evaluating we record the following reward metrics:
|
||||
|
||||
* `rewards/chosen`: the mean difference between the log probabilities of the policy model and the reference model for the chosen responses scaled by beta
|
||||
* `rewards/rejected`: the mean difference between the log probabilities of the policy model and the reference model for the rejected responses scaled by beta
|
||||
* `rewards/accuracies`: mean of how often the chosen rewards are > than the corresponding rejected rewards
|
||||
* `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
|
||||
|
||||
## Accelerate DPO fine-tuning using `unsloth`
|
||||
|
||||
You can further accelerate QLoRA / LoRA (2x faster, 60% less memory) using the [`unsloth`](https://github.com/unslothai/unsloth) library that is fully compatible with `SFTTrainer`. Currently `unsloth` supports only Llama (Yi, TinyLlama, Qwen, Deepseek etc) and Mistral architectures. Some benchmarks for DPO listed below:
|
||||
|
||||
| GPU | Model | Dataset | 🤗 | 🤗 + Flash Attention 2 | 🦥 Unsloth | 🦥 VRAM saved |
|
||||
|----------|-----------------|-----------|------|------------------------|-----------------|----------------|
|
||||
| A100 40G | Zephyr 7b | Ultra Chat| 1x | 1.24x | **1.88x** | -11.6% |
|
||||
| Tesla T4 | Zephyr 7b | Ultra Chat| 1x | 1.09x | **1.55x** | -18.6% |
|
||||
|
||||
First install `unsloth` according to the [official documentation](https://github.com/unslothai/unsloth). Once installed, you can incorporate unsloth into your workflow in a very simple manner; instead of loading `AutoModelForCausalLM`, you just need to load a `FastLanguageModel` as follows:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import TrainingArguments
|
||||
from trl import DPOTrainer
|
||||
from unsloth import FastLanguageModel
|
||||
|
||||
max_seq_length = 2048 # Supports automatic RoPE Scaling, so choose any number.
|
||||
|
||||
# Load model
|
||||
model, tokenizer = FastLanguageModel.from_pretrained(
|
||||
model_name = "unsloth/zephyr-sft",
|
||||
max_seq_length = max_seq_length,
|
||||
dtype = None, # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
||||
load_in_4bit = True, # Use 4bit quantization to reduce memory usage. Can be False.
|
||||
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
||||
)
|
||||
|
||||
# Do model patching and add fast LoRA weights
|
||||
model = FastLanguageModel.get_peft_model(
|
||||
model,
|
||||
r = 16,
|
||||
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
||||
"gate_proj", "up_proj", "down_proj",],
|
||||
lora_alpha = 16,
|
||||
lora_dropout = 0, # Dropout = 0 is currently optimized
|
||||
bias = "none", # Bias = "none" is currently optimized
|
||||
use_gradient_checkpointing = True,
|
||||
random_state = 3407,
|
||||
)
|
||||
|
||||
training_args = TrainingArguments(output_dir="./output")
|
||||
|
||||
dpo_trainer = DPOTrainer(
|
||||
model,
|
||||
ref_model=None,
|
||||
args=training_args,
|
||||
beta=0.1,
|
||||
train_dataset=train_dataset,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
dpo_trainer.train()
|
||||
```
|
||||
|
||||
The saved model is fully compatible with Hugging Face's transformers library. Learn more about unsloth in their [official repository](https://github.com/unslothai/unsloth).
|
||||
|
||||
## Reference model considerations with PEFT
|
||||
|
||||
You have three main options (plus several variants) for how the reference model works when using PEFT, assuming the model that you would like to further enhance with DPO was tuned using (Q)LoRA.
|
||||
|
||||
1. Simply create two instances of the model, each loading your adapter - works fine but is very inefficient.
|
||||
2. Merge the adapter into the base model, create another adapter on top, then leave the `model_ref` param null, in which case DPOTrainer will unload the adapter for reference inference - efficient, but has potential downsides discussed below.
|
||||
3. Load the adapter twice with different names, then use `set_adapter` during training to swap between the adapter being DPO'd and the reference adapter - slightly less efficient compared to 2 (~adapter size VRAM overhead), but avoids the pitfalls.
|
||||
|
||||
### Downsides to merging QLoRA before DPO (approach 2)
|
||||
|
||||
As suggested by [Benjamin Marie](https://medium.com/@bnjmn_marie/dont-merge-your-lora-adapter-into-a-4-bit-llm-65b6da287997), the best option for merging QLoRA adapters is to first dequantize the base model, then merge the adapter. Something similar to [this script](https://github.com/jondurbin/qlora/blob/main/qmerge.py).
|
||||
|
||||
However, after using this approach, you will have an unquantized base model. Therefore, to use QLoRA for DPO, you will need to re-quantize the merged model or use the unquantized merge (resulting in higher memory demand).
|
||||
|
||||
### Using option 3 - load the adapter twice
|
||||
|
||||
To avoid the downsides with option 2, you can load your fine-tuned adapter into the model twice, with different names, and set the model/ref adapter names in DPOTrainer.
|
||||
|
||||
For example:
|
||||
```python
|
||||
# Load the base model.
|
||||
bnb_config = BitsAndBytesConfig(
|
||||
load_in_4bit=True,
|
||||
llm_int8_threshold=6.0,
|
||||
llm_int8_has_fp16_weight=False,
|
||||
bnb_4bit_compute_dtype=torch.bfloat16,
|
||||
bnb_4bit_use_double_quant=True,
|
||||
bnb_4bit_quant_type="nf4",
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"mistralai/mixtral-8x7b-v0.1",
|
||||
load_in_4bit=True,
|
||||
quantization_config=bnb_config,
|
||||
attn_implementation="flash_attention_2",
|
||||
torch_dtype=torch.bfloat16,
|
||||
device_map="auto",
|
||||
)
|
||||
model.config.use_cache = False
|
||||
|
||||
# Load the adapter.
|
||||
model = PeftModel.from_pretrained(
|
||||
model,
|
||||
"/path/to/peft",
|
||||
is_trainable=True,
|
||||
adapter_name="train",
|
||||
)
|
||||
# Load the adapter a second time, with a different name, which will be our reference model.
|
||||
model.load_adapter("/path/to/peft", adapter_name="reference")
|
||||
|
||||
# Initialize the trainer, without a ref_model param.
|
||||
dpo_trainer = DPOTrainer(
|
||||
model,
|
||||
...
|
||||
model_adapter_name="train",
|
||||
ref_adapter_name="reference",
|
||||
)
|
||||
```
|
||||
|
||||
## DPOTrainer
|
||||
|
||||
[[autodoc]] DPOTrainer
|
@ -31,24 +31,39 @@ Then, it is encouraged to launch jobs with `accelerate launch`!
|
||||
|
||||
# Maintained Examples
|
||||
|
||||
Scripts can be used as examples of how to use TRL trainers. They are located in the [`trl/scripts`](https://github.com/huggingface/trl/blob/main/trl/scripts) directory. Additionally, we provide examples in the [`examples/scripts`](https://github.com/huggingface/trl/blob/main/examples/scripts) directory. These examples are maintained and tested regularly.
|
||||
|
||||
| File | Description |
|
||||
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|
||||
| [`examples/scripts/sft.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft.py) | This script shows how to use the `SFTTrainer` to fine tune a model or adapters into a target dataset. |
|
||||
| [`examples/scripts/vsft_llava.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py) | This script shows how to use the `SFTTrainer` to fine tune a Vision Language Model in a chat setting, the script has been tested on a llava1.5 model so users may see unexpected behaviour in other model architectures. |
|
||||
| [`examples/scripts/reward_modeling.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/reward_modeling.py) | This script shows how to use the `RewardTrainer` to train a reward model on your own dataset. |
|
||||
| [`examples/scripts/ppo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo.py) | This script shows how to use the `PPOTrainer` to fine-tune a sentiment analysis model using IMDB dataset |
|
||||
| [`examples/scripts/ppo_multi_adapter.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo_multi_adapter.py) | This script shows how to use the `PPOTrainer` to train a single base model with multiple adapters. Requires you to run the example script with the reward model training beforehand. |
|
||||
| [`examples/scripts/stable_diffusion_tuning_example.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/stable_diffusion_tuning_example.py) | This script shows to use DDPOTrainer to fine-tune a stable diffusion model using reinforcement learning. |
|
||||
| File | Description |
|
||||
| --- | --- |
|
||||
| [`examples/scripts/alignprop.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/alignprop.py) | This script shows how to use the [`AlignPropTrainer`] to fine-tune a diffusion model. |
|
||||
| [`examples/scripts/bco.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/bco.py) | This script shows how to use the [`KTOTrainer`] with the BCO loss to fine-tune a model to increase instruction-following, truthfulness, honesty and helpfulness using the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset. |
|
||||
| [`examples/scripts/cpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/cpo.py) | This script shows how to use the [`CPOTrainer`] to fine-tune a model to increase helpfulness and harmlessness using the [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset. |
|
||||
| [`examples/scripts/ddpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ddpo.py) | This script shows how to use the [`DDPOTrainer`] to fine-tune a stable diffusion model using reinforcement learning. |
|
||||
| [`examples/scripts/dpo_online.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo_online.py) | This script shows how to use the [`OnlineDPOTrainer`] to fine-tune a model. |
|
||||
| [`examples/scripts/dpo_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo_vlm.py) | This script shows how to use the [`DPOTrainer`] to fine-tune a Vision Language Model to reduce hallucinations using the [openbmb/RLAIF-V-Dataset](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset) dataset. |
|
||||
| [`examples/scripts/gkd.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/gkd.py) | This script shows how to use the [`GKDTrainer`] to fine-tune a model. |
|
||||
| [`examples/scripts/nash_md.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/nash_md.py) | This script shows how to use the [`NashMDTrainer`] to fine-tune a model. |
|
||||
| [`examples/scripts/orpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/orpo.py) | This script shows how to use the [`ORPOTrainer`] to fine-tune a model to increase helpfulness and harmlessness using the [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset. |
|
||||
| [`examples/scripts/ppo/ppo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo/ppo.py) | This script shows how to use the [`PPOTrainer`] to fine-tune a model to improve its ability to continue text with positive sentiment or physically descriptive language |
|
||||
| [`examples/scripts/ppo/ppo_tldr.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo/ppo_tldr.py) | This script shows how to use the [`PPOTrainer`] to fine-tune a model to improve its ability to generate TL;DR summaries. |
|
||||
| [`examples/scripts/prm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/prm.py) | This script shows how to use the [`PRMTrainer`] to fine-tune a Process-supervised Reward Model (PRM). |
|
||||
| [`examples/scripts/reward_modeling.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/reward_modeling.py) | This script shows how to use the [`RewardTrainer`] to train a Outcome Reward Model (ORM) on your own dataset. |
|
||||
| [`examples/scripts/rloo/rloo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/rloo/rloo.py) | This script shows how to use the [`RLOOTrainer`] to fine-tune a model to improve its ability to continue text with positive sentiment or physically descriptive language |
|
||||
| [`examples/scripts/rloo/rloo_tldr.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/rloo/rloo_tldr.py) | This script shows how to use the [`RLOOTrainer`] to fine-tune a model to improve its ability to generate TL;DR summaries. |
|
||||
| [`examples/scripts/sft_gemma3.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_gemma3.py) | This script shows how to use the [`SFTTrainer`] to fine-tune a Gemma 3 model. |
|
||||
| [`examples/scripts/sft_video_llm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_video_llm.py) | This script shows how to use the [`SFTTrainer`] to fine-tune a Video Language Model. |
|
||||
| [`examples/scripts/sft_vlm_gemma3.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm_gemma3.py) | This script shows how to use the [`SFTTrainer`] to fine-tune a Gemma 3 model on vision to text tasks. |
|
||||
| [`examples/scripts/sft_vlm_smol_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm_smol_vlm.py) | This script shows how to use the [`SFTTrainer`] to fine-tune a SmolVLM model. |
|
||||
| [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm.py) | This script shows how to use the [`SFTTrainer`] to fine-tune a Vision Language Model in a chat setting. The script has only been tested with [LLaVA 1.5](https://huggingface.co/llava-hf/llava-1.5-7b-hf), [LLaVA 1.6](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf), and [Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) models so users may see unexpected behaviour in other model architectures. |
|
||||
| [`examples/scripts/xpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/xpo.py) | This script shows how to use the [`XPOTrainer`] to fine-tune a model. |
|
||||
|
||||
Here are also some easier-to-run colab notebooks that you can use to get started with TRL:
|
||||
|
||||
|
||||
| File | Description |
|
||||
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|
||||
| [`examples/notebooks/best_of_n.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/best_of_n.ipynb) | This notebook demonstrates how to use the "Best of N" sampling strategy using TRL when fine-tuning your model with PPO. |
|
||||
| [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-sentiment.ipynb) | This notebook demonstrates how to reproduce the GPT2 imdb sentiment tuning example on a jupyter notebook. |
|
||||
| [`examples/notebooks/gpt2-control.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-control.ipynb) | This notebook demonstrates how to reproduce the GPT2 sentiment control example on a jupyter notebook. |
|
||||
| File | Description |
|
||||
| --- | --- |
|
||||
| [`examples/notebooks/best_of_n.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/best_of_n.ipynb) | This notebook demonstrates how to use the "Best of N" sampling strategy using TRL when fine-tuning your model with PPO. |
|
||||
| [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-sentiment.ipynb) | This notebook demonstrates how to reproduce the GPT2 imdb sentiment tuning example on a jupyter notebook. |
|
||||
| [`examples/notebooks/gpt2-control.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-control.ipynb) | This notebook demonstrates how to reproduce the GPT2 sentiment control example on a jupyter notebook. |
|
||||
|
||||
|
||||
We also have some other examples that are less maintained but can be used as a reference:
|
||||
|
98
docs/source/gkd_trainer.md
Normal file
98
docs/source/gkd_trainer.md
Normal file
@ -0,0 +1,98 @@
|
||||
# Generalized Knowledge Distillation Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=gkd,trl)
|
||||
|
||||
## Overview
|
||||
|
||||
Generalized Knowledge Distillation (GKD) was proposed in [On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes](https://huggingface.co/papers/2306.13649) by Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier Bachem.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> Knowledge distillation (KD) is widely used for compressing a teacher model to reduce its inference cost and memory footprint, by training a smaller student model. However, current KD methods for auto-regressive sequence models suffer from distribution mismatch between output sequences seen during training and those generated by the student during inference. To address this issue, we introduce Generalized Knowledge Distillation (GKD). Instead of solely relying on a fixed set of output sequences, GKD trains the student on its self-generated output sequences by leveraging feedback from the teacher on such sequences. Unlike supervised KD approaches, GKD also offers the flexibility to employ alternative loss functions between the student and teacher, which can be useful when the student lacks the expressivity to mimic the teacher's distribution. Furthermore, GKD facilitates the seamless integration of distillation with RL fine-tuning (RLHF). We demonstrate the efficacy of GKD for distilling auto-regressive language models on summarization, translation, and arithmetic reasoning tasks, and task-agnostic distillation for instruction-tuning.
|
||||
|
||||
|
||||
The key aspects of GKD are:
|
||||
1. It addresses the train-inference distribution mismatch in auto-regressive sequence models by training the student model on its self-generated output sequences.
|
||||
2. GKD allows flexibility in choosing different divergence measures between student and teacher models via the generalized Jensen-Shannon Divergence (JSD), which can be useful when the student lacks the capacity to fully mimic the teacher.
|
||||
|
||||
This post-training method was contributed by [Kashif Rasul](https://huggingface.co/kashif) and [Lewis Tunstall](https://huggingface.co/lewtun).
|
||||
|
||||
## Usage tips
|
||||
|
||||
The [`GKDTrainer`] is a wrapper around the [`SFTTrainer`] class that takes in a teacher model argument. It needs three parameters to be set via the [`GKDConfig`] namely:
|
||||
* `lmbda`: controls the student data fraction, i.e., the proportion of on-policy student-generated outputs. When `lmbda=0.0`, the loss reduces to supervised JSD where the student is trained with the token-level probabilities of the teacher. When `lmbda=1.0`, the loss reduces to on-policy JSD, where the student generates output sequences and token-specific feedback on these sequences from the teacher. For values in between [0, 1] it is random between the two based on the `lmbda` value for each batch.
|
||||
* `seq_kd`: controls whether to perform Sequence-Level KD (can be viewed as supervised FT on teacher-generated out). When `seq_kd=True` and `lmbda=0.0`, the loss reduces to supervised JSD, where the teacher generates output sequences and the student receives token-specific feedback on these sequences from the teacher.
|
||||
* `beta`: controls the interpolation in the generalized Jensen-Shannon Divergence. When `beta=0.0` the loss approximates forward KL divergence, while for `beta=1.0` the loss approximates reverse KL divergence. For values in between [0, 1] it interpolates between the two.
|
||||
|
||||
The authors find that on-policy data (high `lmbda`) performs better and the optimal `beta` varied depending on the task and evaluation method.
|
||||
|
||||
> [!WARNING]
|
||||
> Make sure that `attn_implementation="flash_attention_2"` when training [Gemma models](https://huggingface.co/models?other=gemma2). Otherwise you will encounter NaNs in the logits due to the [soft capping technique](https://huggingface.co/blog/gemma2#soft-capping-and-attention-implementations) adopted by this architecture.
|
||||
|
||||
The basic API is as follows:
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
from trl import GKDConfig, GKDTrainer
|
||||
from transformers import (
|
||||
AutoModelForCausalLM,
|
||||
AutoTokenizer,
|
||||
)
|
||||
|
||||
NUM_DUMMY_SAMPLES = 100
|
||||
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
# The model to optimise
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
# The teacher model to calculate the KL divergence against
|
||||
teacher_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-1.5B-Instruct")
|
||||
|
||||
train_dataset = Dataset.from_dict(
|
||||
{
|
||||
"messages": [
|
||||
[
|
||||
{"role": "user", "content": "Hi, how are you?"},
|
||||
{"role": "assistant", "content": "I'm great thanks"},
|
||||
]
|
||||
]
|
||||
* NUM_DUMMY_SAMPLES
|
||||
}
|
||||
)
|
||||
eval_dataset = Dataset.from_dict(
|
||||
{
|
||||
"messages": [
|
||||
[
|
||||
{"role": "user", "content": "What colour is the sky?"},
|
||||
{"role": "assistant", "content": "The sky is blue"},
|
||||
]
|
||||
]
|
||||
* NUM_DUMMY_SAMPLES
|
||||
}
|
||||
)
|
||||
|
||||
training_args = GKDConfig(output_dir="gkd-model", per_device_train_batch_size=1)
|
||||
trainer = GKDTrainer(
|
||||
model=model,
|
||||
teacher_model=teacher_model,
|
||||
args=training_args,
|
||||
processing_class=tokenizer,
|
||||
train_dataset=train_dataset,
|
||||
eval_dataset=eval_dataset,
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
### Expected dataset type
|
||||
|
||||
The dataset should be formatted as a list of "messages" where each message is a list of dictionaries with the following keys:
|
||||
* `role`: either `system`, `assistant` or `user`
|
||||
* `content`: the message content
|
||||
|
||||
|
||||
## GKDTrainer
|
||||
|
||||
[[autodoc]] GKDTrainer
|
||||
|
||||
## GKDConfig
|
||||
|
||||
[[autodoc]] GKDConfig
|
511
docs/source/grpo_trainer.md
Normal file
511
docs/source/grpo_trainer.md
Normal file
@ -0,0 +1,511 @@
|
||||
# GRPO Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=grpo,trl)
|
||||
|
||||
## Overview
|
||||
|
||||
TRL supports the GRPO Trainer for training language models, as described in the paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300) by [Zhihong Shao](https://huggingface.co/syhia), [Peiyi Wang](https://huggingface.co/peiyiwang89), [Qihao Zhu](https://huggingface.co/zqh11), Runxin Xu, [Junxiao Song](https://huggingface.co/haha-point), Mingchuan Zhang, Y. K. Li, Y. Wu, [Daya Guo](https://huggingface.co/guoday).
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> Mathematical reasoning poses a significant challenge for language models due to its complex and structured nature. In this paper, we introduce DeepSeekMath 7B, which continues pre-training DeepSeek-Coder-Base-v1.5 7B with 120B math-related tokens sourced from Common Crawl, together with natural language and code data. DeepSeekMath 7B has achieved an impressive score of 51.7% on the competition-level MATH benchmark without relying on external toolkits and voting techniques, approaching the performance level of Gemini-Ultra and GPT-4. Self-consistency over 64 samples from DeepSeekMath 7B achieves 60.9% on MATH. The mathematical reasoning capability of DeepSeekMath is attributed to two key factors: First, we harness the significant potential of publicly available web data through a meticulously engineered data selection pipeline. Second, we introduce Group Relative Policy Optimization (GRPO), a variant of Proximal Policy Optimization (PPO), that enhances mathematical reasoning abilities while concurrently optimizing the memory usage of PPO.
|
||||
|
||||
This post-training method was contributed by [Quentin Gallouédec](https://huggingface.co/qgallouedec).
|
||||
|
||||
## Quick start
|
||||
|
||||
This example demonstrates how to train a model using the GRPO method. We train a [Qwen 0.5B Instruct model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) with the prompts from the [TLDR dataset](https://huggingface.co/datasets/trl-lib/tldr) (completion column is ignored!). You can view the data in the dataset here:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/tldr/embed/viewer/default/train?row=0"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
Below is the script to train the model.
|
||||
|
||||
```python
|
||||
# train_grpo.py
|
||||
from datasets import load_dataset
|
||||
from trl import GRPOConfig, GRPOTrainer
|
||||
|
||||
dataset = load_dataset("trl-lib/tldr", split="train")
|
||||
|
||||
# Define the reward function, which rewards completions that are close to 20 characters
|
||||
def reward_len(completions, **kwargs):
|
||||
return [-abs(20 - len(completion)) for completion in completions]
|
||||
|
||||
training_args = GRPOConfig(output_dir="Qwen2-0.5B-GRPO", logging_steps=10)
|
||||
trainer = GRPOTrainer(
|
||||
model="Qwen/Qwen2-0.5B-Instruct",
|
||||
reward_funcs=reward_len,
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Execute the script using the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch train_grpo.py
|
||||
```
|
||||
|
||||
Distributed across 8 GPUs, the training takes approximately 1 day.
|
||||
|
||||

|
||||
|
||||
## Looking deeper into the GRPO method
|
||||
|
||||
GRPO is an online learning algorithm, meaning it improves iteratively by using the data generated by the trained model itself during training. The intuition behind GRPO objective is to maximize the advantage of the generated completions, while ensuring that the model remains close to the reference policy. To understand how GRPO works, it can be broken down into four main steps: **Generating completions**, **computing the advantage**, **estimating the KL divergence**, and **computing the loss**.
|
||||
|
||||

|
||||
|
||||
### Generating completions
|
||||
|
||||
At each training step, we sample a batch of prompts and generate a set of \\( G \\) completions for each prompt (denoted as \\( o_i \\)).
|
||||
|
||||
### Computing the advantage
|
||||
|
||||
For each of the \\( G \\) sequences, we compute the reward using a reward model. To align with the comparative nature of reward models—typically trained on datasets of comparisons between outputs for the same question—the advantage is calculated to reflect these relative comparisons. It is normalized as follows:
|
||||
|
||||
$$\hat{A}_{i,t} = \frac{r_i - \text{mean}(\mathbf{r})}{\text{std}(\mathbf{r})}$$
|
||||
|
||||
This approach gives the method its name: **Group Relative Policy Optimization (GRPO)**.
|
||||
|
||||
<Tip>
|
||||
|
||||
It was shown in the paper [Understanding R1-Zero-Like Training: A Critical Perspective](https://huggingface.co/papers/2503.20783) that scaling by \\( \text{std}(\mathbf{r}) \\) may cause a question-level difficulty bias. You can disable this scaling by setting `scale_rewards=False` in [`GRPOConfig`].
|
||||
|
||||
</Tip>
|
||||
|
||||
### Estimating the KL divergence
|
||||
|
||||
KL divergence is estimated using the approximator introduced by [Schulman et al. (2020)](http://joschu.net/blog/kl-approx.html). The approximator is defined as follows:
|
||||
|
||||
$$\mathbb{D}_{\text{KL}}\left[\pi_\theta \|\pi_{\text{ref}}\right] = \frac{\pi_{\text{ref}}(o_{i,t} \mid q, o_{i,<t})}{\pi_\theta(o_{i,t} \mid q, o_{i,<t})} - \log \frac{\pi_{\text{ref}}(o_{i,t} \mid q, o_{i,<t})}{\pi_\theta(o_{i,t} \mid q, o_{i,<t})} - 1,
|
||||
$$
|
||||
|
||||
### Computing the loss
|
||||
|
||||
The objective is to maximize the advantage while ensuring that the model remains close to the reference policy. Consequently, the loss is defined as follows:
|
||||
|
||||
$$
|
||||
\mathcal{L}_{\text{GRPO}}(\theta) = -\frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \left[ \frac{\pi_\theta(o_{i,t} \mid q, o_{i,< t})}{\left[\pi_\theta(o_{i,t} \mid q, o_{i,< t})\right]_{\text{no grad}}} \hat{A}_{i,t} - \beta \mathbb{D}_{\text{KL}}\left[\pi_\theta \| \pi_{\text{ref}}\right] \right],
|
||||
$$
|
||||
|
||||
where the first term represents the scaled advantage and the second term penalizes deviations from the reference policy through KL divergence.
|
||||
|
||||
<Tip>
|
||||
|
||||
Note that compared to the original formulation in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300), we don't scale by \\( \frac{1}{|o_i|} \\) because it was shown in the paper [Understanding R1-Zero-Like Training: A Critical Perspective](https://huggingface.co/papers/2503.20783) that this introduces a response-level length bias. More details in [loss types](#loss-types).
|
||||
|
||||
</Tip>
|
||||
|
||||
In the original paper, this formulation is generalized to account for multiple updates after each generation (denoted \\( \mu \\), can be set with `num_iterations` in [`GRPOConfig`]) by leveraging the **clipped surrogate objective**:
|
||||
|
||||
$$
|
||||
\mathcal{L}_{\text{GRPO}}(\theta) = - \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} \left[ \min \left( \frac{\pi_\theta(o_{i,t} \mid q, o_{i,< t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,< t})} \hat{A}_{i,t}, \, \text{clip}\left( \frac{\pi_\theta(o_{i,t} \mid q, o_{i,< t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,< t})}, 1 - \epsilon, 1 + \epsilon \right) \hat{A}_{i,t} \right) - \beta \mathbb{D}_{\text{KL}}\left[\pi_\theta \| \pi_{\text{ref}}\right] \right],
|
||||
$$
|
||||
|
||||
where \\(\text{clip}(\cdot, 1 - \epsilon, 1 + \epsilon) \\) ensures that updates do not deviate excessively from the reference policy by bounding the policy ratio between \\( 1 - \epsilon \\) and \\( 1 + \epsilon \\).
|
||||
When \\( \mu = 1 \\) (default in TRL), the clipped surrogate objective simplifies to the original objective.
|
||||
|
||||
#### Loss Types
|
||||
|
||||
Several formulations of the objective have been proposed in the literature. Initially, the objective of GRPO was defined as follows:
|
||||
|
||||
$$
|
||||
\mathcal{L}_{\text{GRPO}}(\theta) = - \frac{1}{G} \sum_{i=1}^G \frac{1}{|o_i|} \sum_{t=1}^{|o_i|} l_{i,t},
|
||||
$$
|
||||
|
||||
where
|
||||
|
||||
$$
|
||||
l_{i,t} = \frac{\pi_\theta(o_{i,t} \mid q, o_{i,< t})}{\left[\pi_\theta(o_{i,t} \mid q, o_{i,< t})\right]_{\text{no grad}}} \hat{A}_{i,t} - \beta \mathbb{D}_{\text{KL}}\left[\pi_\theta \| \pi_{\text{ref}}\right].
|
||||
$$
|
||||
|
||||
The DAPO paper highlights the limitations of the GRPO algorithm’s sample-level loss in long-CoT scenarios, where longer responses are under-penalized, leading to poorer quality outputs. The proposed solution is a token-level normalization, which better handles longer sequences by assigning more balanced rewards to individual tokens, regardless of response length:
|
||||
|
||||
$$
|
||||
\mathcal{L}_{\text{DAPO}}(\theta) = - \frac{1}{\sum_{i=1}^G |o_i|} \sum_{i=1}^G \sum_{t=1}^{|o_i|} l_{i,t},
|
||||
$$
|
||||
|
||||
|
||||
Furthermore, it was demonstrated in the paper [Understanding R1-Zero-Like Training: A Critical Perspective](https://huggingface.co/papers/2503.20783) that the initial GRPO formulation introduces a response length bias. They show that while the DAPO formulation reduces this bias, it does not eliminate it completely. To fully remove this bias, they propose dividing by a constant instead of the sequence length, resulting in the following formulation:
|
||||
|
||||
$$
|
||||
\mathcal{L}_{\text{Dr. GRPO}}(\theta) = - \frac{1}{LG} \sum_{i=1}^G \sum_{t=1}^{|o_i|} l_{i,t},
|
||||
$$
|
||||
|
||||
This constant is recommended to be the maximum completion length. To use this formulation, set `loss_type="dr_grpo"` in the [`GRPOConfig`].
|
||||
|
||||
## Logged metrics
|
||||
|
||||
- `num_tokens`: The total number of tokens processed so far, including both prompts and completions.
|
||||
- `completions/mean_length`: The average length of generated completions.
|
||||
- `completions/min_length`: The minimun length of generated completions.
|
||||
- `completions/max_length`: The maximum length of generated completions.
|
||||
- `completions/mean_terminated_length`: The average length of generated completions that terminate with EOS.
|
||||
- `completions/min_terminated_length`: The minimun length of generated completions that terminate with EOS.
|
||||
- `completions/max_terminated_length`: The maximum length of generated completions that terminate with EOS.
|
||||
- `completions/clipped_ratio` : The ratio of truncated (clipped) completions.
|
||||
- `reward/{reward_func_name}/mean`: The average reward from a specific reward function.
|
||||
- `reward/{reward_func_name}/std`: The standard deviation of the reward from a specific reward function.
|
||||
- `reward`: The overall average reward after applying reward weights.
|
||||
- `reward_std`: The standard deviation of the overall reward within each batch after applying reward weights.
|
||||
- `kl`: The average KL divergence between the model and the reference model, calculated over generated completions. Logged only if `beta` is nonzero.
|
||||
- `clip_ratio/region_mean`: The ratio of token probabilities where the GRPO objective is clipped to stay within the trust region:
|
||||
$$
|
||||
\text{clip}\left( r_{i,t}(\theta), 1 - \epsilon_\mathrm{low}, 1 + \epsilon_\mathrm{high} \right)\,, \qquad r_{i,t}(\theta) = \frac{\pi_\theta(o_{i,t} \mid q, o_{i,< t})}{\pi_{\theta_{\text{old}}}(o_{i,t} \mid q, o_{i,< t})}\,.
|
||||
$$
|
||||
A higher value means more tokens are clipped, which constrains how much the policy $\pi_\theta$ can change.
|
||||
- `clip_ratio/low_mean`: The average ratio of token probabilities that were clipped on the lower bound of the trust region: \\(r_{i,t}(\theta) < 1 - \epsilon_\mathrm{low}\\)
|
||||
- `clip_ratio/low_min`: The minimum ratio of token probabilities that were clipped on the lower bound of the trust region: \\(r_{i,t}(\theta) < 1 - \epsilon_\mathrm{low}\\)
|
||||
- `clip_ratio/high_mean`: The average ratio of token probabilities that were clipped on the upper bound of the trust region: \\(r_{i,t}(\theta) > 1 + \epsilon_\mathrm{high}\\)
|
||||
- `clip_ratio/high_max`: The maximum ratio of token probabilities that were clipped on the upper bound of the trust region: \\(r_{i,t}(\theta) > 1 + \epsilon_\mathrm{high}\\).
|
||||
|
||||
## Customization
|
||||
|
||||
### Speed up training with vLLM-powered generation
|
||||
|
||||
Generation is often the main bottleneck when training with online methods. To accelerate generation, you can use [vLLM](https://github.com/vllm-project/vllm), a high-throughput, low-latency inference engine for LLMs. To enable it, first install the package with
|
||||
```shell
|
||||
pip install trl[vllm]
|
||||
```
|
||||
|
||||
We support two ways of using vLLM during training: **server mode** and **colocate mode**.
|
||||
|
||||
#### 🔌 Option 1: Server mode
|
||||
|
||||
In this mode, vLLM runs in a separate process (and using separate GPUs) and communicates with the trainer via HTTP. This is ideal if you have dedicated GPUs for inference.
|
||||
|
||||
1. **Start the vLLM server**:
|
||||
```bash
|
||||
trl vllm-serve --model <model_name>
|
||||
```
|
||||
|
||||
2. **Enable server mode in your training script**:
|
||||
```python
|
||||
from trl import GRPOConfig
|
||||
|
||||
training_args = GRPOConfig(
|
||||
...,
|
||||
use_vllm=True,
|
||||
vllm_mode="server", # default value, can be omitted
|
||||
)
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Make sure that the server is using different GPUs than the trainer, otherwise you may run into NCCL errors. You can specify the GPUs to use with the `CUDA_VISIBLE_DEVICES` environment variable.
|
||||
|
||||
</Tip>
|
||||
|
||||
#### 🧩 Option 2: Colocate mode
|
||||
|
||||
In this mode, vLLM runs inside the trainer process and shares GPU memory with the training model. This avoids launching a separate server and can improve GPU utilization, but may lead to memory contention on the training GPUs.
|
||||
|
||||
```python
|
||||
from trl import GRPOConfig
|
||||
|
||||
training_args = GRPOConfig(
|
||||
...,
|
||||
use_vllm=True,
|
||||
vllm_mode="colocate",
|
||||
)
|
||||
```
|
||||
|
||||
<Tip>
|
||||
|
||||
Depending on the model size and the overall GPU memory requirements for training, you may need to adjust the `vllm_gpu_memory_utilization` parameter in [`GRPOConfig`] to avoid underutilization or out-of-memory errors.
|
||||
|
||||
</Tip>
|
||||
|
||||
For more information, see [Speeding up training with vLLM](speeding_up_training#vllm-for-fast-generation-in-online-methods).
|
||||
|
||||
### GRPO at scale: train a 70B+ Model on multiple nodes
|
||||
|
||||
When training large models like **Qwen2.5-72B**, you need several key optimizations to make the training efficient and scalable across multiple GPUs and nodes. These include:
|
||||
|
||||
- **DeepSpeed ZeRO Stage 3**: ZeRO leverages data parallelism to distribute model states (weights, gradients, optimizer states) across multiple GPUs and CPUs, reducing memory and compute requirements on each device. Since large models cannot fit on a single GPU, using ZeRO Stage 3 is required for training such model. For more details, see [DeepSpeed Integration](deepspeed_integration).
|
||||
- **Accelerate**: Accelerate is a library that simplifies distributed training across multiple GPUs and nodes. It provides a simple API to launch distributed training and handles the complexities of distributed training, such as data parallelism, gradient accumulation, and distributed data loading. For more details, see [Distributing Training](distributing_training).
|
||||
- **vLLM**: See the previous section on how to use vLLM to speed up generation.
|
||||
|
||||
Below is an example SLURM script to train a 70B model with GRPO on multiple nodes. This script trains a model on 4 nodes and uses the 5th node for vLLM-powered generation.
|
||||
|
||||
```sh
|
||||
#!/bin/bash
|
||||
#SBATCH --nodes=5
|
||||
#SBATCH --gres=gpu:8
|
||||
|
||||
# Get the list of allocated nodes
|
||||
NODELIST=($(scontrol show hostnames $SLURM_JOB_NODELIST))
|
||||
|
||||
# Assign the first 4 nodes for training and the 5th node for vLLM
|
||||
TRAIN_NODES="${NODELIST[@]:0:4}" # Nodes 0, 1, 2, 3 for training
|
||||
VLLM_NODE="${NODELIST[4]}" # Node 4 for vLLM
|
||||
|
||||
# Run training on the first 4 nodes (Group 1)
|
||||
srun --nodes=4 --ntasks=4 --nodelist="${NODELIST[@]:0:4}" accelerate launch \
|
||||
--config_file examples/accelerate_configs/deepspeed_zero3.yaml \
|
||||
--num_processes 32 \
|
||||
--num_machines 4 \
|
||||
--main_process_ip ${NODELIST[0]} \
|
||||
--machine_rank $SLURM_PROCID \
|
||||
--rdzv_backend c10d \
|
||||
train_grpo.py \
|
||||
--server_ip $VLLM_NODE &
|
||||
|
||||
# Run vLLM server on the 5th node (Group 2)
|
||||
srun --nodes=1 --ntasks=1 --nodelist="${NODELIST[4]}" trl vllm-serve --model Qwen/Qwen2.5-72B --tensor_parallel_size 8 &
|
||||
|
||||
wait
|
||||
```
|
||||
|
||||
```python
|
||||
import argparse
|
||||
|
||||
from datasets import load_dataset
|
||||
from trl import GRPOTrainer, GRPOConfig
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--vllm_server_host", type=str, default="", help="The server IP")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Example dataset from TLDR
|
||||
dataset = load_dataset("trl-lib/tldr", split="train")
|
||||
|
||||
# Dummy reward function: count the number of unique characters in the completions
|
||||
def reward_num_unique_chars(completions, **kwargs):
|
||||
return [len(set(c)) for c in completions]
|
||||
|
||||
training_args = GRPOConfig(
|
||||
output_dir="Qwen2.5-72B-GRPO",
|
||||
per_device_train_batch_size=4,
|
||||
bf16=True,
|
||||
gradient_checkpointing=True,
|
||||
logging_steps=10,
|
||||
use_vllm=True,
|
||||
vllm_server_host=args.vllm_server_host.replace("ip-", "").replace("-", "."), # from ip-X-X-X-X to X.X.X.X
|
||||
)
|
||||
|
||||
trainer = GRPOTrainer(model="Qwen/Qwen2.5-72B", args=training_args, reward_funcs=reward_num_unique_chars, train_dataset=dataset)
|
||||
trainer.train()
|
||||
|
||||
if __name__=="__main__":
|
||||
main()
|
||||
```
|
||||
|
||||
### Using a custom reward function
|
||||
|
||||
The [`GRPOTrainer`] supports using custom reward functions instead of dense reward models. To ensure compatibility, your reward function must satisfy the following requirements:
|
||||
|
||||
1. **Input arguments**:
|
||||
- The function must accept the following as keyword arguments:
|
||||
- `prompts` (contains the prompts),
|
||||
- `completions` (contains the generated completions),
|
||||
- `completions_ids` (contains the tokenized completions),
|
||||
- All columns names (but `prompt`) that the dataset may have. For example, if the dataset contains a column named `ground_truth`, the function will be called with `ground_truth` as a keyword argument.
|
||||
|
||||
The easiest way to comply with this requirement is to use `**kwargs` in the function signature.
|
||||
- Depending on the dataset format, the input will vary:
|
||||
- For [standard format](dataset_formats#standard), `prompts` and `completions` will be lists of strings.
|
||||
- For [conversational format](dataset_formats#conversational), `prompts` and `completions` will be lists of message dictionaries.
|
||||
|
||||
2. **Return value**: The function must return a list of floats. Each float represents the reward corresponding to a single completion.
|
||||
|
||||
#### Example 1: Reward longer completions
|
||||
|
||||
Below is an example of a reward function for a standard format that rewards longer completions:
|
||||
|
||||
```python
|
||||
def reward_func(completions_ids, **kwargs):
|
||||
"""Reward function that assigns higher scores to longer completions (in terms of token count)."""
|
||||
return [float(len(ids)) for ids in completions_ids]
|
||||
```
|
||||
|
||||
You can test it as follows:
|
||||
|
||||
```python
|
||||
>>> prompts = ["The sky is", "The sun is"] # not used in the reward function, but the trainer will pass it
|
||||
>>> completions = [" blue.", " in the sky."] # not used in the reward function, but the trainer will pass it
|
||||
>>> completions_ids = [[6303, 13], [304, 279, 12884, 13]]
|
||||
>>> reward_func(prompts=prompts, completions=completions, completions_ids=completions_ids)
|
||||
[2.0, 4.0]
|
||||
```
|
||||
|
||||
#### Example 1.1: Reward longer completions (based in the number of characters)
|
||||
|
||||
Same as the previous example, but this time the reward function is based on the number of characters instead of tokens.
|
||||
|
||||
```python
|
||||
def reward_func(completions, **kwargs):
|
||||
"""Reward function that assigns higher scores to longer completions (in terms of character count)."""
|
||||
return [float(len(completion)) for completion in completions]
|
||||
```
|
||||
|
||||
You can test it as follows:
|
||||
|
||||
```python
|
||||
>>> prompts = ["The sky is", "The sun is"]
|
||||
>>> completions = [" blue.", " in the sky."]
|
||||
>>> completions_ids = [[6303, 13], [304, 279, 12884, 13]] # not used in the reward function, but the trainer will pass it
|
||||
>>> reward_func(prompts=prompts, completions=completions, completions_ids=completions_ids)
|
||||
[6.0, 12.0]
|
||||
```
|
||||
|
||||
#### Example 2: Reward completions with specific format
|
||||
|
||||
Below is an example of a reward function that checks if the completion has a specific format. This example is inspired by the _format reward_ function used in the paper [DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning](https://huggingface.co/papers/2501.12948).
|
||||
It is designed for conversational format, where prompts and completions consist of structured messages.
|
||||
|
||||
```python
|
||||
import re
|
||||
|
||||
def format_reward_func(completions, **kwargs):
|
||||
"""Reward function that checks if the completion has a specific format."""
|
||||
pattern = r"^<think>.*?</think><answer>.*?</answer>$"
|
||||
completion_contents = [completion[0]["content"] for completion in completions]
|
||||
matches = [re.match(pattern, content) for content in completion_contents]
|
||||
return [1.0 if match else 0.0 for match in matches]
|
||||
```
|
||||
|
||||
You can test this function as follows:
|
||||
|
||||
```python
|
||||
>>> prompts = [
|
||||
... [{"role": "assistant", "content": "What is the result of (1 + 2) * 4?"}],
|
||||
... [{"role": "assistant", "content": "What is the result of (3 + 1) * 2?"}],
|
||||
... ]
|
||||
>>> completions = [
|
||||
... [{"role": "assistant", "content": "<think>The sum of 1 and 2 is 3, which we multiply by 4 to get 12.</think><answer>(1 + 2) * 4 = 12</answer>"}],
|
||||
... [{"role": "assistant", "content": "The sum of 3 and 1 is 4, which we multiply by 2 to get 8. So (3 + 1) * 2 = 8."}],
|
||||
... ]
|
||||
>>> format_reward_func(prompts=prompts, completions=completions)
|
||||
[1.0, 0.0]
|
||||
```
|
||||
|
||||
#### Example 3: Reward completions based on a reference
|
||||
|
||||
Below is an example of a reward function that checks if the completion is correct. This example is inspired by the _accuracy reward_ function used in the paper [DeepSeek-R1: Incentivizing Reasoning Capability in LLMs via Reinforcement Learning](https://huggingface.co/papers/2501.12948).
|
||||
This example is designed for [standard format](dataset_formats#standard), where the dataset contains a column named `ground_truth`.
|
||||
|
||||
```python
|
||||
import re
|
||||
|
||||
def reward_func(completions, ground_truth, **kwargs):
|
||||
# Regular expression to capture content inside \boxed{}
|
||||
matches = [re.search(r"\\boxed\{(.*?)\}", completion) for completion in completions]
|
||||
contents = [match.group(1) if match else "" for match in matches]
|
||||
# Reward 1 if the content is the same as the ground truth, 0 otherwise
|
||||
return [1.0 if c == gt else 0.0 for c, gt in zip(contents, ground_truth)]
|
||||
```
|
||||
|
||||
You can test this function as follows:
|
||||
|
||||
```python
|
||||
>>> prompts = ["Problem: Solve the equation $2x + 3 = 7$. Solution:", "Problem: Solve the equation $3x - 5 = 10$."]
|
||||
>>> completions = [r" The solution is \boxed{2}.", r" The solution is \boxed{6}."]
|
||||
>>> ground_truth = ["2", "5"]
|
||||
>>> reward_func(prompts=prompts, completions=completions, ground_truth=ground_truth)
|
||||
[1.0, 0.0]
|
||||
```
|
||||
#### Example 4: Multi-task reward functions
|
||||
|
||||
Below is an example of using multiple reward functions in the [`GRPOTrainer`]. In this example, we define two task-specific reward functions: `math_reward_func` and `coding_reward_func`. The `math_reward_func` rewards math problems based on their correctness, while the `coding_reward_func` rewards coding problems based on whether the solution works.
|
||||
|
||||
```python
|
||||
from datasets import Dataset
|
||||
from trl import GRPOTrainer
|
||||
|
||||
# Define a dataset that contains both math and coding problems
|
||||
dataset = Dataset.from_list(
|
||||
[
|
||||
{"prompt": "What is 2+2?", "task": "math"},
|
||||
{"prompt": "Write a function that returns the sum of two numbers.", "task": "code"},
|
||||
{"prompt": "What is 3*4?", "task": "math"},
|
||||
{"prompt": "Write a function that returns the product of two numbers.", "task": "code"},
|
||||
]
|
||||
)
|
||||
|
||||
# Math-specific reward function
|
||||
def math_reward_func(prompts, completions, task, **kwargs):
|
||||
rewards = []
|
||||
for prompt, completion, t in zip(prompts, completions, task):
|
||||
if t == "math":
|
||||
# Calculate math-specific reward
|
||||
correct = check_math_solution(prompt, completion)
|
||||
reward = 1.0 if correct else -1.0
|
||||
rewards.append(reward)
|
||||
else:
|
||||
# Return None for non-math tasks
|
||||
rewards.append(None)
|
||||
return rewards
|
||||
|
||||
# Coding-specific reward function
|
||||
def coding_reward_func(prompts, completions, task, **kwargs):
|
||||
rewards = []
|
||||
for prompt, completion, t in zip(prompts, completions, task):
|
||||
if t == "coding":
|
||||
# Calculate coding-specific reward
|
||||
works = test_code_solution(prompt, completion)
|
||||
reward = 1.0 if works else -1.0
|
||||
rewards.append(reward)
|
||||
else:
|
||||
# Return None for non-coding tasks
|
||||
rewards.append(None)
|
||||
return rewards
|
||||
|
||||
# Use both task-specific reward functions
|
||||
trainer = GRPOTrainer(
|
||||
model="Qwen/Qwen2-0.5B-Instruct",
|
||||
reward_funcs=[math_reward_func, coding_reward_func],
|
||||
train_dataset=dataset,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
In this example, the `math_reward_func` and `coding_reward_func` are designed to work with a mixed dataset that contains both math and coding problems. The `task` column in the dataset is used to determine which reward function to apply to each problem. If there is no relevant reward function for a sample in the dataset, the reward function will return `None` and the [`GRPOTrainer`] will continue with the valid functions and tasks. This allows the [`GRPOTrainer`] to handle multiple reward functions with different applicability.
|
||||
|
||||
Note that the [`GRPOTrainer`] will ignore the `None` rewards returned by the reward functions and only consider the rewards returned by the relevant functions. This ensures that the model is trained on the relevant tasks and ignores the tasks for which there is no relevant reward function.
|
||||
|
||||
|
||||
|
||||
#### Passing the reward function to the trainer
|
||||
|
||||
To use your custom reward function, pass it to the [`GRPOTrainer`] as follows:
|
||||
|
||||
```python
|
||||
from trl import GRPOTrainer
|
||||
|
||||
trainer = GRPOTrainer(
|
||||
reward_funcs=reward_func,
|
||||
...,
|
||||
)
|
||||
```
|
||||
|
||||
If you have multiple reward functions, you can pass them as a list:
|
||||
|
||||
```python
|
||||
from trl import GRPOTrainer
|
||||
|
||||
trainer = GRPOTrainer(
|
||||
reward_funcs=[reward_func1, reward_func2],
|
||||
...,
|
||||
)
|
||||
```
|
||||
and the reward will be computed as the sum of the rewards from each function, or the weighted sum if `reward_weights` is provided in the config.
|
||||
|
||||
Note that [`GRPOTrainer`] supports multiple reward functions of different types. See the parameters documentation for more details.
|
||||
|
||||
## GRPOTrainer
|
||||
|
||||
[[autodoc]] GRPOTrainer
|
||||
|
||||
## GRPOConfig
|
||||
|
||||
[[autodoc]] GRPOConfig
|
@ -18,8 +18,8 @@ When training RL models, optimizing solely for reward may lead to unexpected beh
|
||||
However, the RL model being optimized against the reward model may learn patterns that yield high reward but do not represent good language. This can result in extreme cases where the model generates texts with excessive exclamation marks or emojis to maximize the reward. In some worst-case scenarios, the model may generate patterns completely unrelated to natural language yet receive high rewards, similar to adversarial attacks.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/kl-example.png">
|
||||
<p style="text-align: center;"> <b>Figure:</b> Samples without a KL penalty from <a href="https://arxiv.org/pdf/1909.08593.pdf">https://arxiv.org/pdf/1909.08593.pdf</a>. </p>
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/kl-example.png">
|
||||
<p style="text-align: center;"> <b>Figure:</b> Samples without a KL penalty from <a href="https://huggingface.co/papers/1909.08593">https://huggingface.co/papers/1909.08593</a>. </p>
|
||||
</div>
|
||||
|
||||
To address this issue, we add a penalty to the reward function based on the KL divergence between the current model and the reference model. By doing this, we encourage the model to stay close to what the reference model generates.
|
||||
|
72
docs/source/index.md
Normal file
72
docs/source/index.md
Normal file
@ -0,0 +1,72 @@
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl_banner_dark.png">
|
||||
</div>
|
||||
|
||||
# TRL - Transformer Reinforcement Learning
|
||||
|
||||
TRL is a full stack library where we provide a set of tools to train transformer language models with methods like Supervised Fine-Tuning (SFT), Group Relative Policy Optimization (GRPO), Direct Preference Optimization (DPO), Reward Modeling, and more.
|
||||
The library is integrated with 🤗 [transformers](https://github.com/huggingface/transformers).
|
||||
|
||||
You can also explore TRL-related models, datasets, and demos in the [TRL Hugging Face organization](https://huggingface.co/trl-lib).
|
||||
|
||||
## Learn
|
||||
|
||||
Learn post-training with TRL and other libraries in 🤗 [smol course](https://github.com/huggingface/smol-course).
|
||||
|
||||
## Contents
|
||||
|
||||
The documentation is organized into the following sections:
|
||||
|
||||
- **Getting Started**: installation and quickstart guide.
|
||||
- **Conceptual Guides**: dataset formats, training FAQ, and understanding logs.
|
||||
- **How-to Guides**: reducing memory usage, speeding up training, distributing training, etc.
|
||||
- **Integrations**: DeepSpeed, Liger Kernel, PEFT, etc.
|
||||
- **Examples**: example overview, community tutorials, etc.
|
||||
- **API**: trainers, utils, etc.
|
||||
|
||||
## Blog posts
|
||||
|
||||
<div class="mt-10">
|
||||
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/open-r1">
|
||||
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/open-r1/thumbnails.png" alt="thumbnail" class="mt-0">
|
||||
<p class="text-gray-500 text-sm">Published on January 28, 2025</p>
|
||||
<p class="text-gray-700">Open-R1: a fully open reproduction of DeepSeek-R1</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/dpo_vlm">
|
||||
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/dpo_vlm/thumbnail.png" alt="thumbnail" class="mt-0">
|
||||
<p class="text-gray-500 text-sm">Published on July 10, 2024</p>
|
||||
<p class="text-gray-700">Preference Optimization for Vision Language Models with TRL</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/putting_rl_back_in_rlhf_with_rloo">
|
||||
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/putting_rl_back_in_rlhf_with_rloo/thumbnail.png" alt="thumbnail" class="mt-0">
|
||||
<p class="text-gray-500 text-sm">Published on June 12, 2024</p>
|
||||
<p class="text-gray-700">Putting RL back in RLHF</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/trl-ddpo">
|
||||
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/166_trl_ddpo/thumbnail.png" alt="thumbnail" class="mt-0">
|
||||
<p class="text-gray-500 text-sm">Published on September 29, 2023</p>
|
||||
<p class="text-gray-700">Finetune Stable Diffusion Models with DDPO via TRL</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/dpo-trl">
|
||||
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/157_dpo_trl/dpo_thumbnail.png" alt="thumbnail" class="mt-0">
|
||||
<p class="text-gray-500 text-sm">Published on August 8, 2023</p>
|
||||
<p class="text-gray-700">Fine-tune Llama 2 with DPO</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/stackllama">
|
||||
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/138_stackllama/thumbnail.png" alt="thumbnail" class="mt-0">
|
||||
<p class="text-gray-500 text-sm">Published on April 5, 2023</p>
|
||||
<p class="text-gray-700">StackLLaMA: A hands-on guide to train LLaMA with RLHF</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/trl-peft">
|
||||
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/133_trl_peft/thumbnail.png" alt="thumbnail" class="mt-0">
|
||||
<p class="text-gray-500 text-sm">Published on March 9, 2023</p>
|
||||
<p class="text-gray-700">Fine-tuning 20B LLMs with RLHF on a 24GB consumer GPU</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/rlhf">
|
||||
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/120_rlhf/thumbnail.png" alt="thumbnail" class="mt-0">
|
||||
<p class="text-gray-500 text-sm">Published on December 9, 2022</p>
|
||||
<p class="text-gray-700">Illustrating Reinforcement Learning from Human Feedback</p>
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
@ -1,61 +0,0 @@
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_banner_dark.png">
|
||||
</div>
|
||||
|
||||
# TRL - Transformer Reinforcement Learning
|
||||
|
||||
TRL is a full stack library where we provide a set of tools to train transformer language models with Reinforcement Learning, from the Supervised Fine-tuning step (SFT), Reward Modeling step (RM) to the Proximal Policy Optimization (PPO) step.
|
||||
The library is integrated with 🤗 [transformers](https://github.com/huggingface/transformers).
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/TRL-readme.png">
|
||||
</div>
|
||||
|
||||
Check the appropriate sections of the documentation depending on your needs:
|
||||
|
||||
## API documentation
|
||||
|
||||
- [Model Classes](models): *A brief overview of what each public model class does.*
|
||||
- [`SFTTrainer`](sft_trainer): *Supervise Fine-tune your model easily with `SFTTrainer`*
|
||||
- [`RewardTrainer`](reward_trainer): *Train easily your reward model using `RewardTrainer`.*
|
||||
- [`PPOTrainer`](ppo_trainer): *Further fine-tune the supervised fine-tuned model using PPO algorithm*
|
||||
- [Best-of-N Sampling](best-of-n): *Use best of n sampling as an alternative way to sample predictions from your active model*
|
||||
- [`DPOTrainer`](dpo_trainer): *Direct Preference Optimization training using `DPOTrainer`.*
|
||||
- [`TextEnvironment`](text_environment): *Text environment to train your model using tools with RL.*
|
||||
|
||||
## Examples
|
||||
|
||||
- [Sentiment Tuning](sentiment_tuning): *Fine tune your model to generate positive movie contents*
|
||||
- [Training with PEFT](lora_tuning_peft): *Memory efficient RLHF training using adapters with PEFT*
|
||||
- [Detoxifying LLMs](detoxifying_a_lm): *Detoxify your language model through RLHF*
|
||||
- [StackLlama](using_llama_models): *End-to-end RLHF training of a Llama model on Stack exchange dataset*
|
||||
- [Learning with Tools](learning_tools): *Walkthrough of using `TextEnvironments`*
|
||||
- [Multi-Adapter Training](multi_adapter_rl): *Use a single base model and multiple adapters for memory efficient end-to-end training*
|
||||
|
||||
|
||||
## Blog posts
|
||||
|
||||
<div class="mt-10">
|
||||
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/rlhf">
|
||||
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/120_rlhf/thumbnail.png" alt="thumbnail">
|
||||
<p class="text-gray-700">Illustrating Reinforcement Learning from Human Feedback</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/trl-peft">
|
||||
<img src="https://github.com/huggingface/blog/blob/main/assets/133_trl_peft/thumbnail.png?raw=true" alt="thumbnail">
|
||||
<p class="text-gray-700">Fine-tuning 20B LLMs with RLHF on a 24GB consumer GPU</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/stackllama">
|
||||
<img src="https://github.com/huggingface/blog/blob/main/assets/138_stackllama/thumbnail.png?raw=true" alt="thumbnail">
|
||||
<p class="text-gray-700">StackLLaMA: A hands-on guide to train LLaMA with RLHF</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/dpo-trl">
|
||||
<img src="https://github.com/huggingface/blog/blob/main/assets/157_dpo_trl/dpo_thumbnail.png?raw=true" alt="thumbnail">
|
||||
<p class="text-gray-700">Fine-tune Llama 2 with DPO</p>
|
||||
</a>
|
||||
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/trl-ddpo">
|
||||
<img src="https://github.com/huggingface/blog/blob/main/assets/166_trl_ddpo/thumbnail.png?raw=true" alt="thumbnail">
|
||||
<p class="text-gray-700">Finetune Stable Diffusion Models with DDPO via TRL</p>
|
||||
</a>
|
||||
</div>
|
||||
</div>
|
39
docs/source/installation.md
Normal file
39
docs/source/installation.md
Normal file
@ -0,0 +1,39 @@
|
||||
# Installation
|
||||
You can install TRL either from PyPI or from source:
|
||||
|
||||
## PyPI
|
||||
Install the library with pip or [uv](https://docs.astral.sh/uv/):
|
||||
|
||||
<hfoptions id="install">
|
||||
<hfoption id="uv">
|
||||
|
||||
uv is a fast Rust-based Python package and project manager. Refer to [Installation](https://docs.astral.sh/uv/getting-started/installation/) for installation instructions), .
|
||||
|
||||
```bash
|
||||
uv pip install trl
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="pip">
|
||||
|
||||
```bash
|
||||
pip install trl
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Source
|
||||
You can also install the latest version from source. First clone the repo and then run the installation with `pip`:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/trl.git
|
||||
cd trl/
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
If you want the development install you can replace the pip install with the following:
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
```
|
@ -1,24 +0,0 @@
|
||||
# Installation
|
||||
You can install TRL either from pypi or from source:
|
||||
|
||||
## pypi
|
||||
Install the library with pip:
|
||||
|
||||
```bash
|
||||
pip install trl
|
||||
```
|
||||
|
||||
### Source
|
||||
You can also install the latest version from source. First clone the repo and then run the installation with `pip`:
|
||||
|
||||
```bash
|
||||
git clone https://github.com/huggingface/trl.git
|
||||
cd trl/
|
||||
pip install -e .
|
||||
```
|
||||
|
||||
If you want the development install you can replace the pip install with the following:
|
||||
|
||||
```bash
|
||||
pip install -e ".[dev]"
|
||||
```
|
139
docs/source/iterative_sft_trainer.md
Normal file
139
docs/source/iterative_sft_trainer.md
Normal file
@ -0,0 +1,139 @@
|
||||
# Iterative Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=iterative-sft,trl)
|
||||
|
||||
Iterative fine-tuning is a training method that enables to perform custom actions (generation and filtering for example) between optimization steps. In TRL we provide an easy-to-use API to fine-tune your models in an iterative way in just a few lines of code.
|
||||
|
||||
## Quickstart
|
||||
|
||||
To get started quickly, you can either pass a model identifier or a pre-instantiated model to the trainer:
|
||||
|
||||
```python
|
||||
from trl import IterativeSFTConfig, IterativeSFTTrainer
|
||||
|
||||
# Using a model identifier
|
||||
trainer = IterativeSFTTrainer(
|
||||
"facebook/opt-350m",
|
||||
args=IterativeSFTConfig(
|
||||
max_length=512,
|
||||
output_dir="./output",
|
||||
),
|
||||
)
|
||||
|
||||
# Or using a pre-instantiated model
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
|
||||
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
trainer = IterativeSFTTrainer(
|
||||
model,
|
||||
args=IterativeSFTConfig(
|
||||
max_length=512,
|
||||
output_dir="./output",
|
||||
),
|
||||
processing_class=tokenizer,
|
||||
)
|
||||
```
|
||||
|
||||
## Usage
|
||||
|
||||
The [`IterativeSFTTrainer`] supports two ways of providing input data to the `step` function:
|
||||
|
||||
### Using a list of tensors as input:
|
||||
|
||||
```python
|
||||
inputs = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask,
|
||||
}
|
||||
|
||||
trainer.step(**inputs)
|
||||
```
|
||||
|
||||
### Using a list of strings as input:
|
||||
|
||||
```python
|
||||
inputs = {
|
||||
"texts": texts,
|
||||
"texts_labels": texts_labels, # Optional, defaults to texts
|
||||
}
|
||||
|
||||
trainer.step(**inputs)
|
||||
```
|
||||
|
||||
For causal language models, labels will automatically be created from `input_ids` or from `texts`. When using sequence to sequence models you will have to provide your own labels or `text_labels`.
|
||||
|
||||
## Configuration
|
||||
|
||||
The [`IterativeSFTConfig`] class provides several parameters to customize the training:
|
||||
|
||||
```python
|
||||
from trl import IterativeSFTConfig
|
||||
|
||||
config = IterativeSFTConfig(
|
||||
# Model initialization parameters
|
||||
model_init_kwargs={"torch_dtype": "bfloat16"},
|
||||
|
||||
# Data preprocessing parameters
|
||||
max_length=512,
|
||||
truncation_mode="keep_end",
|
||||
|
||||
# Training parameters
|
||||
output_dir="./output",
|
||||
learning_rate=2e-5,
|
||||
per_device_train_batch_size=4,
|
||||
gradient_accumulation_steps=4,
|
||||
max_steps=1000,
|
||||
logging_steps=10,
|
||||
save_steps=100,
|
||||
optim="adamw_torch",
|
||||
report_to="wandb",
|
||||
)
|
||||
```
|
||||
|
||||
### Model Initialization
|
||||
|
||||
You can control how the model is initialized by passing keyword arguments to `model_init_kwargs`:
|
||||
|
||||
```python
|
||||
config = IterativeSFTConfig(
|
||||
model_init_kwargs={
|
||||
"torch_dtype": "bfloat16",
|
||||
"device_map": "auto",
|
||||
"trust_remote_code": True,
|
||||
}
|
||||
)
|
||||
```
|
||||
|
||||
### Data Preprocessing
|
||||
|
||||
The trainer supports two truncation modes:
|
||||
|
||||
- `keep_end`: Truncates from the start of the sequence
|
||||
- `keep_start`: Truncates from the end of the sequence
|
||||
|
||||
```python
|
||||
config = IterativeSFTConfig(
|
||||
max_length=512,
|
||||
truncation_mode="keep_end", # or "keep_start"
|
||||
)
|
||||
```
|
||||
|
||||
### Training Optimization
|
||||
|
||||
You can optimize CUDA cache usage for more memory-efficient training:
|
||||
|
||||
```python
|
||||
config = IterativeSFTConfig(
|
||||
optimize_device_cache=True,
|
||||
)
|
||||
```
|
||||
|
||||
## IterativeSFTTrainer
|
||||
|
||||
[[autodoc]] IterativeSFTTrainer
|
||||
|
||||
## IterativeSFTConfig
|
||||
|
||||
[[autodoc]] IterativeSFTConfig
|
@ -1,54 +0,0 @@
|
||||
# Iterative Trainer
|
||||
|
||||
Iterative fine-tuning is a training method that enables to perform custom actions (generation and filtering for example) between optimization steps. In TRL we provide an easy-to-use API to fine-tune your models in an iterative way in just a few lines of code.
|
||||
|
||||
## Usage
|
||||
|
||||
To get started quickly, instantiate an instance a model, and a tokenizer.
|
||||
|
||||
```python
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained(model_name)
|
||||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||||
if tokenizer.pad_token is None:
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
trainer = IterativeSFTTrainer(
|
||||
model,
|
||||
tokenizer
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
You have the choice to either provide a list of strings or a list of tensors to the step function.
|
||||
|
||||
#### Using a list of tensors as input:
|
||||
|
||||
```python
|
||||
|
||||
inputs = {
|
||||
"input_ids": input_ids,
|
||||
"attention_mask": attention_mask
|
||||
}
|
||||
|
||||
trainer.step(**inputs)
|
||||
|
||||
```
|
||||
|
||||
#### Using a list of strings as input:
|
||||
|
||||
```python
|
||||
|
||||
inputs = {
|
||||
"texts": texts
|
||||
}
|
||||
|
||||
trainer.step(**inputs)
|
||||
|
||||
```
|
||||
|
||||
For causal language models, labels will automatically be created from input_ids or from texts. When using sequence to sequence models you will have to provide your own labels or text_labels.
|
||||
|
||||
## IterativeTrainer
|
||||
|
||||
[[autodoc]] IterativeSFTTrainer
|
89
docs/source/judges.md
Normal file
89
docs/source/judges.md
Normal file
@ -0,0 +1,89 @@
|
||||
# Judges
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
TRL Judges is an experimental API which is subject to change at any time.
|
||||
|
||||
</Tip>
|
||||
|
||||
TRL provides judges to easily compare two completions.
|
||||
|
||||
Make sure to have installed the required dependencies by running:
|
||||
|
||||
```bash
|
||||
pip install trl[judges]
|
||||
```
|
||||
|
||||
## Using the provided judges
|
||||
|
||||
TRL provides several judges out of the box. For example, you can use the `HfPairwiseJudge` to compare two completions using a pre-trained model from the Hugging Face model hub:
|
||||
|
||||
```python
|
||||
from trl import HfPairwiseJudge
|
||||
|
||||
judge = HfPairwiseJudge()
|
||||
judge.judge(
|
||||
prompts=["What is the capital of France?", "What is the biggest planet in the solar system?"],
|
||||
completions=[["Paris", "Lyon"], ["Saturn", "Jupiter"]],
|
||||
) # Outputs: [0, 1]
|
||||
```
|
||||
|
||||
## Define your own judge
|
||||
|
||||
To define your own judge, we provide several base classes that you can subclass. For rank-based judges, you need to subclass [`BaseRankJudge`] and implement the [`BaseRankJudge.judge`] method. For pairwise judges, you need to subclass [`BasePairJudge`] and implement the [`BasePairJudge.judge`] method. If you want to define a judge that doesn't fit into these categories, you need to subclass [`BaseJudge`] and implement the [`BaseJudge.judge`] method.
|
||||
|
||||
As an example, let's define a pairwise judge that prefers shorter completions:
|
||||
|
||||
```python
|
||||
from trl import BasePairwiseJudge
|
||||
|
||||
class PrefersShorterJudge(BasePairwiseJudge):
|
||||
def judge(self, prompts, completions, shuffle_order=False):
|
||||
return [0 if len(completion[0]) > len(completion[1]) else 1 for completion in completions]
|
||||
```
|
||||
|
||||
You can then use this judge as follows:
|
||||
|
||||
```python
|
||||
judge = PrefersShorterJudge()
|
||||
judge.judge(
|
||||
prompts=["What is the capital of France?", "What is the biggest planet in the solar system?"],
|
||||
completions=[["Paris", "The capital of France is Paris."], ["Jupiter is the biggest planet in the solar system.", "Jupiter"]],
|
||||
) # Outputs: [0, 1]
|
||||
```
|
||||
|
||||
## Provided judges
|
||||
|
||||
### PairRMJudge
|
||||
|
||||
[[autodoc]] PairRMJudge
|
||||
|
||||
### HfPairwiseJudge
|
||||
|
||||
[[autodoc]] HfPairwiseJudge
|
||||
|
||||
### OpenAIPairwiseJudge
|
||||
|
||||
[[autodoc]] OpenAIPairwiseJudge
|
||||
|
||||
### AllTrueJudge
|
||||
|
||||
[[autodoc]] AllTrueJudge
|
||||
|
||||
## Base classes
|
||||
|
||||
### BaseJudge
|
||||
|
||||
[[autodoc]] BaseJudge
|
||||
|
||||
### BaseBinaryJudge
|
||||
|
||||
[[autodoc]] BaseBinaryJudge
|
||||
|
||||
### BaseRankJudge
|
||||
|
||||
[[autodoc]] BaseRankJudge
|
||||
|
||||
### BasePairwiseJudge
|
||||
|
||||
[[autodoc]] BasePairwiseJudge
|
139
docs/source/kto_trainer.md
Normal file
139
docs/source/kto_trainer.md
Normal file
@ -0,0 +1,139 @@
|
||||
# KTO Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=kto,trl)
|
||||
|
||||
## Overview
|
||||
|
||||
Kahneman-Tversky Optimization (KTO) was introduced in [KTO: Model Alignment as Prospect Theoretic Optimization](https://huggingface.co/papers/2402.01306) by [Kawin Ethayarajh](https://huggingface.co/kawine), [Winnie Xu](https://huggingface.co/xwinxu), [Niklas Muennighoff](https://huggingface.co/Muennighoff), Dan Jurafsky, [Douwe Kiela](https://huggingface.co/douwekiela).
|
||||
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> Kahneman & Tversky's prospect theory tells us that humans perceive random variables in a biased but well-defined manner; for example, humans are famously loss-averse. We show that objectives for aligning LLMs with human feedback implicitly incorporate many of these biases -- the success of these objectives (e.g., DPO) over cross-entropy minimization can partly be ascribed to them being human-aware loss functions (HALOs). However, the utility functions these methods attribute to humans still differ from those in the prospect theory literature. Using a Kahneman-Tversky model of human utility, we propose a HALO that directly maximizes the utility of generations instead of maximizing the log-likelihood of preferences, as current methods do. We call this approach Kahneman-Tversky Optimization (KTO), and it matches or exceeds the performance of preference-based methods at scales from 1B to 30B. Crucially, KTO does not need preferences -- only a binary signal of whether an output is desirable or undesirable for a given input. This makes it far easier to use in the real world, where preference data is scarce and expensive.
|
||||
|
||||
The official code can be found in [ContextualAI/HALOs](https://github.com/ContextualAI/HALOs).
|
||||
|
||||
This post-training method was contributed by [Kashif Rasul](https://huggingface.co/kashif), [Younes Belkada](https://huggingface.co/ybelkada), [Lewis Tunstall](https://huggingface.co/lewtun) and Pablo Vicente.
|
||||
|
||||
## Quick start
|
||||
|
||||
This example demonstrates how to train a model using the KTO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model. We use the preference data from the [KTO Mix 14k](https://huggingface.co/datasets/trl-lib/kto-mix-14k). You can view the data in the dataset here:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/kto-mix-14k/embed/viewer/default/train?row=0"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
Below is the script to train the model:
|
||||
|
||||
```python
|
||||
# train_kto.py
|
||||
from datasets import load_dataset
|
||||
from trl import KTOConfig, KTOTrainer
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
train_dataset = load_dataset("trl-lib/kto-mix-14k", split="train")
|
||||
|
||||
training_args = KTOConfig(output_dir="Qwen2-0.5B-KTO", logging_steps=10)
|
||||
trainer = KTOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Execute the script using the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch train_kto.py
|
||||
```
|
||||
|
||||
Distributed across 8 x H100 GPUs, the training takes approximately 30 minutes. You can verify the training progress by checking the reward graph. An increasing trend in the reward margin indicates that the model is improving and generating better responses over time.
|
||||
|
||||

|
||||
|
||||
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-KTO) performs, you can use the [Transformers Chat CLI](https://huggingface.co/docs/transformers/quicktour#chat-with-text-generation-models).
|
||||
|
||||
<pre><code>$ transformers-cli chat --model_name_or_path trl-lib/Qwen2-0.5B-KTO
|
||||
<strong><span style="color: red;"><quentin_gallouedec>:</span></strong>
|
||||
What is the best programming language?
|
||||
|
||||
<strong><span style="color: blue;"><trl-lib/Qwen2-0.5B-KTO>:</span></strong>
|
||||
The best programming language can vary depending on individual preferences, industry-specific requirements, technical skills, and familiarity with the specific use case or task. Here are some widely-used programming languages that have been noted as popular and widely used:
|
||||
|
||||
Here are some other factors to consider when choosing a programming language for a project:
|
||||
|
||||
<strong><span style="color: green;">1</span> JavaScript</strong>: JavaScript is at the heart of the web and can be used for building web applications, APIs, and interactive front-end applications like frameworks like React and Angular. It's similar to C, C++, and F# in syntax structure and is accessible and easy to learn, making it a popular choice for beginners and professionals alike.
|
||||
<strong><span style="color: green;">2</span> Java</strong>: Known for its object-oriented programming (OOP) and support for Java 8 and .NET, Java is used for developing enterprise-level software applications, high-performance games, as well as mobile apps, game development, and desktop applications.
|
||||
<strong><span style="color: green;">3</span> C++</strong>: Known for its flexibility and scalability, C++ offers comprehensive object-oriented programming and is a popular choice for high-performance computing and other technical fields. It's a powerful platform for building real-world applications and games at scale.
|
||||
<strong><span style="color: green;">4</span> Python</strong>: Developed by Guido van Rossum in 1991, Python is a high-level, interpreted, and dynamically typed language known for its simplicity, readability, and versatility.
|
||||
</code></pre>
|
||||
|
||||
## Expected dataset format
|
||||
|
||||
KTO requires an [unpaired preference dataset](dataset_formats#unpaired-preference). Alternatively, you can provide a *paired* preference dataset (also known simply as a *preference dataset*). In this case, the trainer will automatically convert it to an unpaired format by separating the chosen and rejected responses, assigning `label = True` to the chosen completions and `label = False` to the rejected ones.
|
||||
|
||||
The [`KTOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
|
||||
|
||||
In theory, the dataset should contain at least one chosen and one rejected completion. However, some users have successfully run KTO using *only* chosen or only rejected data. If using only rejected data, it is advisable to adopt a conservative learning rate.
|
||||
|
||||
## Example script
|
||||
|
||||
We provide an example script to train a model using the KTO method. The script is available in [`trl/scripts/kto.py`](https://github.com/huggingface/trl/blob/main/trl/scripts/kto.py)
|
||||
|
||||
To test the KTO script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/trl-lib/kto-mix-14k), run the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch trl/scripts/kto.py \
|
||||
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
|
||||
--dataset_name trl-lib/kto-mix-14k \
|
||||
--num_train_epochs 1 \
|
||||
--logging_steps 25 \
|
||||
--output_dir Qwen2-0.5B-KTO
|
||||
```
|
||||
|
||||
## Usage tips
|
||||
|
||||
### For Mixture of Experts Models: Enabling the auxiliary loss
|
||||
|
||||
MOEs are the most efficient if the load is about equally distributed between experts.
|
||||
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
|
||||
|
||||
This option is enabled by setting `output_router_logits=True` in the model config (e.g. [`~transformers.MixtralConfig`]).
|
||||
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: `0.001`) in the model config.
|
||||
|
||||
|
||||
### Batch size recommendations
|
||||
|
||||
Use a per-step batch size that is at least 4, and an effective batch size between 16 and 128. Even if your effective batch size is large, if your per-step batch size is poor, then the KL estimate in KTO will be poor.
|
||||
|
||||
### Learning rate recommendations
|
||||
|
||||
Each choice of `beta` has a maximum learning rate it can tolerate before learning performance degrades. For the default setting of `beta = 0.1`, the learning rate should typically not exceed `1e-6` for most models. As `beta` decreases, the learning rate should also be reduced accordingly. In general, we strongly recommend keeping the learning rate between `5e-7` and `5e-6`. Even with small datasets, we advise against using a learning rate outside this range. Instead, opt for more epochs to achieve better results.
|
||||
|
||||
### Imbalanced data
|
||||
|
||||
The `desirable_weight` and `undesirable_weight` of the [`KTOConfig`] refer to the weights placed on the losses for desirable/positive and undesirable/negative examples.
|
||||
By default, they are both 1. However, if you have more of one or the other, then you should upweight the less common type such that the ratio of (`desirable_weight` \\(\times\\) number of positives) to (`undesirable_weight` \\(\times\\) number of negatives) is in the range 1:1 to 4:3.
|
||||
|
||||
## Logged metrics
|
||||
|
||||
While training and evaluating we record the following reward metrics:
|
||||
|
||||
- `rewards/chosen_sum`: the sum of log probabilities of the policy model for the chosen responses scaled by beta
|
||||
- `rewards/rejected_sum`: the sum of log probabilities of the policy model for the rejected responses scaled by beta
|
||||
- `logps/chosen_sum`: the sum of log probabilities of the chosen completions
|
||||
- `logps/rejected_sum`: the sum of log probabilities of the rejected completions
|
||||
- `logits/chosen_sum`: the sum of logits of the chosen completions
|
||||
- `logits/rejected_sum`: the sum of logits of the rejected completions
|
||||
- `count/chosen`: the count of chosen samples in a batch
|
||||
- `count/rejected`: the count of rejected samples in a batch
|
||||
|
||||
## KTOTrainer
|
||||
|
||||
[[autodoc]] KTOTrainer
|
||||
|
||||
## KTOConfig
|
||||
|
||||
[[autodoc]] KTOConfig
|
@ -1,93 +0,0 @@
|
||||
# KTO Trainer
|
||||
|
||||
TRL supports the Kahneman-Tversky Optimization (KTO) Trainer for aligning language models with binary feedback data (e.g., upvote/downvote), as described in the [paper](https://arxiv.org/abs/2402.01306) by Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela.
|
||||
For a full example have a look at [`examples/scripts/kto.py`].
|
||||
|
||||
Depending on how good your base model is, you may or may not need to do SFT before KTO.
|
||||
This is different from standard RLHF and DPO, which always require SFT.
|
||||
|
||||
## Expected dataset format
|
||||
|
||||
The KTO trainer expects a very specific format for the dataset as it does not require pairwise preferences. Since the model will be trained to directly optimize examples that consist of a prompt, model completion, and a label to indicate whether the completion is "good" or "bad", we expect a dataset with the following columns:
|
||||
|
||||
- `prompt`
|
||||
- `completion`
|
||||
- `label`
|
||||
|
||||
for example:
|
||||
|
||||
```
|
||||
kto_dataset_dict = {
|
||||
"prompt": [
|
||||
"Hey, hello",
|
||||
"How are you",
|
||||
"What is your name?",
|
||||
"What is your name?",
|
||||
"Which is the best programming language?",
|
||||
"Which is the best programming language?",
|
||||
"Which is the best programming language?",
|
||||
],
|
||||
"completion": [
|
||||
"hi nice to meet you",
|
||||
"leave me alone",
|
||||
"I don't have a name",
|
||||
"My name is Mary",
|
||||
"Python",
|
||||
"C++",
|
||||
"Java",
|
||||
],
|
||||
"label": [
|
||||
True,
|
||||
False,
|
||||
False,
|
||||
True,
|
||||
True,
|
||||
False,
|
||||
False,
|
||||
],
|
||||
}
|
||||
```
|
||||
|
||||
where the `prompt` contains the context inputs, `completion` contains the corresponding responses and `label` contains the corresponding flag that indicates if the generated completion is desired (`True`) or undesired (`False`).
|
||||
A prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays.
|
||||
|
||||
## Expected model format
|
||||
The KTO trainer expects a model of `AutoModelForCausalLM`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
|
||||
|
||||
## Using the `KTOTrainer`
|
||||
|
||||
For a detailed example have a look at the `examples/scripts/kto.py` script. At a high level we need to initialize the `KTOTrainer` with a `model` we wish to train and a reference `ref_model` which we will use to calculate the implicit rewards of the preferred and rejected response.
|
||||
|
||||
The `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above. Note that the `model` and `ref_model` need to have the same architecture (ie decoder only or encoder-decoder).
|
||||
|
||||
The `desirable_weight` and `undesirable_weight` refer to the weights placed on the losses for desirable/positive and undesirable/negative examples.
|
||||
By default, they are both 1. However, if you have more of one or the other, then you should upweight the less common type such that the ratio of (`desirable_weight` * number of positives) to (`undesirable_weight` * number of negatives) is in the range 1:1 to 4:3.
|
||||
|
||||
```py
|
||||
training_args = KTOConfig(
|
||||
beta=0.1,
|
||||
desirable_weight=1.0,
|
||||
undesirable_weight=1.0,
|
||||
)
|
||||
|
||||
kto_trainer = KTOTrainer(
|
||||
model,
|
||||
model_ref,
|
||||
args=training_args,
|
||||
train_dataset=train_dataset,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
```
|
||||
After this one can then call:
|
||||
|
||||
```py
|
||||
kto_trainer.train()
|
||||
```
|
||||
|
||||
## KTOTrainer
|
||||
|
||||
[[autodoc]] KTOTrainer
|
||||
|
||||
## KTOConfig
|
||||
|
||||
[[autodoc]] KTOConfig
|
@ -1,234 +0,0 @@
|
||||
# Learning Tools (Experimental 🧪)
|
||||
|
||||
Using Large Language Models (LLMs) with tools has been a popular topic recently with awesome works such as [ToolFormer](https://arxiv.org/abs/2302.04761) and [ToolBench](https://arxiv.org/pdf/2305.16504.pdf). In TRL, we provide a simple example of how to teach LLM to use tools with reinforcement learning.
|
||||
|
||||
|
||||
Here's an overview of the scripts in the [trl repository](https://github.com/lvwerra/trl/tree/main/examples/research_projects/tools):
|
||||
|
||||
| File | Description |
|
||||
|---|---|
|
||||
| [`calculator.py`](https://github.com/lvwerra/trl/blob/main/examples/research_projects/tools/calculator.py) | Script to train LLM to use a calculator with reinforcement learning. |
|
||||
| [`triviaqa.py`](https://github.com/lvwerra/trl/blob/main/examples/research_projects/tools/triviaqa.py) | Script to train LLM to use a wiki tool to answer questions. |
|
||||
| [`python_interpreter.py`](https://github.com/lvwerra/trl/blob/main/examples/research_projects/tools/python_interpreter.py) | Script to train LLM to use python interpreter to solve math puzzles. |
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Note that the scripts above rely heavily on the `TextEnvironment` API which is still under active development. The API may change in the future. Please see [`TextEnvironment`](text_environment) for the related docs.
|
||||
</Tip>
|
||||
|
||||
|
||||
## Learning to Use a Calculator
|
||||
|
||||
|
||||
The rough idea is as follows:
|
||||
|
||||
1. Load a tool such as [ybelkada/simple-calculator](https://huggingface.co/spaces/ybelkada/simple-calculator) that parse a text calculation like `"14 + 34"` and return the calulated number:
|
||||
```python
|
||||
from transformers import AutoTokenizer, load_tool
|
||||
tool = load_tool("ybelkada/simple-calculator")
|
||||
tool_fn = lambda text: str(round(float(tool(text)), 2)) # rounding to 2 decimal places
|
||||
```
|
||||
1. Define a reward function that returns a positive reward if the tool returns the correct answer. In the script we create a dummy reward function like `reward_fn = lambda x: 1`, but we override the rewards directly later.
|
||||
1. Create a prompt on how to use the tools
|
||||
```python
|
||||
# system prompt
|
||||
prompt = """\
|
||||
What is 13.1-3?
|
||||
|
||||
<request><SimpleCalculatorTool>13.1-3<call>10.1<response>
|
||||
|
||||
Result=10.1<submit>
|
||||
|
||||
What is 4*3?
|
||||
|
||||
<request><SimpleCalculatorTool>4*3<call>12<response>
|
||||
|
||||
Result=12<submit>
|
||||
|
||||
What is 12.1+1?
|
||||
|
||||
<request><SimpleCalculatorTool>12.1+1<call>13.1<response>
|
||||
|
||||
Result=13.1<submit>
|
||||
|
||||
What is 12.1-20?
|
||||
|
||||
<request><SimpleCalculatorTool>12.1-20<call>-7.9<response>
|
||||
|
||||
Result=-7.9<submit>"""
|
||||
```
|
||||
3. Create a `trl.TextEnvironment` with the model
|
||||
```python
|
||||
env = TextEnvironment(
|
||||
model,
|
||||
tokenizer,
|
||||
{"SimpleCalculatorTool": tool_fn},
|
||||
reward_fn,
|
||||
prompt,
|
||||
generation_kwargs=generation_kwargs,
|
||||
)
|
||||
```
|
||||
4. Then generate some data such as `tasks = ["\n\nWhat is 13.1-3?", "\n\nWhat is 4*3?"]` and run the environment with `queries, responses, masks, rewards, histories = env.run(tasks)`. The environment will look for the `<call>` token in the prompt and append the tool output to the response; it will also return the mask associated with the response. You can further use the `histories` to visualize the interaction between the model and the tool; `histories[0].show_text()` will show the text with color-coded tool output and `histories[0].show_tokens(tokenizer)` will show visualize the tokens.
|
||||

|
||||
1. Finally, we can train the model with `train_stats = ppo_trainer.step(queries, responses, rewards, masks)`. The trainer will use the mask to ignore the tool output when computing the loss, make sure to pass that argument to `step`.
|
||||
|
||||
## Experiment results
|
||||
|
||||
We trained a model with the above script for 10 random seeds. You can reproduce the run with the following command. Feel free to remove the `--slurm-*` arguments if you don't have access to a slurm cluster.
|
||||
|
||||
```
|
||||
WANDB_TAGS="calculator_final" python benchmark/benchmark.py \
|
||||
--command "python examples/research_projects/tools/calculator.py" \
|
||||
--num-seeds 10 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 8 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
```
|
||||
|
||||
We can then use [`openrlbenchmark`](https://github.com/openrlbenchmark/openrlbenchmark) which generates the following plot.
|
||||
```
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=openrlbenchmark&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.tracker_project_name&cen=trl_ppo_trainer_config.value.log_with&metrics=env/reward_mean&metrics=objective/kl' \
|
||||
'wandb?tag=calculator_final&cl=calculator_mask' \
|
||||
--env-ids trl \
|
||||
--check-empty-runs \
|
||||
--pc.ncols 2 \
|
||||
--pc.ncols-legend 1 \
|
||||
--output-filename static/0compare \
|
||||
--scan-history
|
||||
```
|
||||
|
||||

|
||||
|
||||
As we can see, while 1-2 experiments crashed for some reason, most of the runs obtained near perfect proficiency in the calculator task.
|
||||
|
||||
|
||||
## (Early Experiments 🧪): learning to use a wiki tool for question answering
|
||||
|
||||
In the [ToolFormer](https://arxiv.org/abs/2302.04761) paper, it shows an interesting use case that utilizes a Wikipedia Search tool to help answer questions. In this section, we attempt to perform similar experiments but uses RL instead to teach the model to use a wiki tool on the [TriviaQA](https://nlp.cs.washington.edu/triviaqa/) dataset.
|
||||
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
**Note that many settings are different so the results are not directly comparable.**
|
||||
</Tip>
|
||||
|
||||
|
||||
|
||||
|
||||
### Building a search index
|
||||
|
||||
Since [ToolFormer](https://arxiv.org/abs/2302.04761) did not open source, we needed to first replicate the search index. It is mentioned in their paper that the authors built the search index using a BM25 retriever that indexes the Wikipedia dump from [KILT](https://github.com/facebookresearch/KILT)
|
||||
|
||||
Fortunately, [`pyserini`](https://github.com/castorini/pyserini) already implements the BM25 retriever and provides a prebuilt index for the KILT Wikipedia dump. We can use the following code to search the index.
|
||||
|
||||
```python
|
||||
from pyserini.search.lucene import LuceneSearcher
|
||||
import json
|
||||
searcher = LuceneSearcher.from_prebuilt_index('wikipedia-kilt-doc')
|
||||
def search(query):
|
||||
hits = searcher.search(query, k=1)
|
||||
hit = hits[0]
|
||||
contents = json.loads(hit.raw)['contents']
|
||||
return contents
|
||||
print(search("tennis racket"))
|
||||
```
|
||||
```
|
||||
Racket (sports equipment)
|
||||
A racket or racquet is a sports implement consisting of a handled frame with an open hoop across which a network of strings or catgut is stretched tightly. It is used for striking a ball or shuttlecock in games such as squash, tennis, racquetball, and badminton. Collectively, these games are known as racket sports. Racket design and manufacturing has changed considerably over the centuries.
|
||||
|
||||
The frame of rackets for all sports was traditionally made of solid wood (later laminated wood) and the strings of animal intestine known as catgut. The traditional racket size was limited by the strength and weight of the wooden frame which had to be strong enough to hold the strings and stiff enough to hit the ball or shuttle. Manufacturers started adding non-wood laminates to wood rackets to improve stiffness. Non-wood rackets were made first of steel, then of aluminum, and then carbon fiber composites. Wood is still used for real tennis, rackets, and xare. Most rackets are now made of composite materials including carbon fiber or fiberglass, metals such as titanium alloys, or ceramics.
|
||||
...
|
||||
```
|
||||
|
||||
We then basically deployed this snippet as a Hugging Face space [here](https://huggingface.co/spaces/vwxyzjn/pyserini-wikipedia-kilt-doc), so that we can use the space as a `transformers.Tool` later.
|
||||
|
||||

|
||||
|
||||
### Experiment settings
|
||||
|
||||
We use the following settings:
|
||||
|
||||
* use the `bigcode/starcoderbase` model as the base model
|
||||
* use the `pyserini-wikipedia-kilt-doc` space as the wiki tool and only uses the first paragrahs of the search result, allowing the `TextEnvironment` to obtain at most `max_tool_reponse=400` response tokens from the tool.
|
||||
* test if the response contain the answer string, if so, give a reward of 1, otherwise, give a reward of 0.
|
||||
* notice this is a simplified evaluation criteria. In [ToolFormer](https://arxiv.org/abs/2302.04761), the authors checks if the first 20 words of the response contain the correct answer.
|
||||
* used the following prompt that demonstrates the usage of the wiki tool.
|
||||
```python
|
||||
prompt = """\
|
||||
Answer the following question:
|
||||
|
||||
Q: In which branch of the arts is Patricia Neary famous?
|
||||
A: Ballets
|
||||
A2: <request><Wiki>Patricia Neary<call>Patricia Neary (born October 27, 1942) is an American ballerina, choreographer and ballet director, who has been particularly active in Switzerland. She has also been a highly successful ambassador for the Balanchine Trust, bringing George Balanchine's ballets to 60 cities around the globe.<response>
|
||||
Result=Ballets<submit>
|
||||
|
||||
Q: Who won Super Bowl XX?
|
||||
A: Chicago Bears
|
||||
A2: <request><Wiki>Super Bowl XX<call>Super Bowl XX was an American football game between the National Football Conference (NFC) champion Chicago Bears and the American Football Conference (AFC) champion New England Patriots to decide the National Football League (NFL) champion for the 1985 season. The Bears defeated the Patriots by the score of 46–10, capturing their first NFL championship (and Chicago's first overall sports victory) since 1963, three years prior to the birth of the Super Bowl. Super Bowl XX was played on January 26, 1986 at the Louisiana Superdome in New Orleans.<response>
|
||||
Result=Chicago Bears<submit>
|
||||
|
||||
Q: """
|
||||
```
|
||||
|
||||
|
||||
### Result and Discussion
|
||||
|
||||
|
||||
Our experiments show that the agent can learn to use the wiki tool to answer questions. The learning curves would go up mostly, but one of the experiment did crash.
|
||||
|
||||

|
||||
|
||||
Wandb report is [here](https://wandb.ai/costa-huang/cleanRL/reports/TriviaQA-Final-Experiments--Vmlldzo1MjY0ODk5) for further inspection.
|
||||
|
||||
|
||||
Note that the correct rate of the trained model is on the low end, which could be due to the following reasons:
|
||||
|
||||
* **incorrect searches:** When given the question `"What is Bruce Willis' real first name?"` if the model searches for `Bruce Willis`, our wiki tool returns "Patrick Poivey (born 18 February 1948) is a French actor. He is especially known for his voice: he is the French dub voice of Bruce Willis since 1988.` But a correct search should be `Walter Bruce Willis (born March 19, 1955) is an American former actor. He achieved fame with a leading role on the comedy-drama series Moonlighting (1985–1989) and appeared in over a hundred films, gaining recognition as an action hero after his portrayal of John McClane in the Die Hard franchise (1988–2013) and other roles.[1][2]"
|
||||
|
||||
|
||||

|
||||
|
||||
* **unnecessarily long response**: The wiki tool by default sometimes output very long sequences. E.g., when the wiki tool searches for "Brown Act"
|
||||
* Our wiki tool returns "The Ralph M. Brown Act, located at California Government Code 54950 "et seq.", is an act of the California State Legislature, authored by Assemblymember Ralph M. Brown and passed in 1953, that guarantees the public's right to attend and participate in meetings of local legislative bodies."
|
||||
* [ToolFormer](https://arxiv.org/abs/2302.04761)'s wiki tool returns "The Ralph M. Brown Act is an act of the California State Legislature that guarantees the public's right to attend and participate in meetings of local legislative bodies." which is more succinct.
|
||||
|
||||

|
||||
|
||||
|
||||
## (Early Experiments 🧪): solving math puzzles with python interpreter
|
||||
|
||||
In this section, we attempt to teach the model to use a python interpreter to solve math puzzles. The rough idea is to give the agent a prompt like the following:
|
||||
|
||||
```python
|
||||
prompt = """\
|
||||
Example of using a Python API to solve math questions.
|
||||
|
||||
Q: Olivia has $23. She bought five bagels for $3 each. How much money does she have left?
|
||||
|
||||
<request><PythonInterpreter>
|
||||
def solution():
|
||||
money_initial = 23
|
||||
bagels = 5
|
||||
bagel_cost = 3
|
||||
money_spent = bagels * bagel_cost
|
||||
money_left = money_initial - money_spent
|
||||
result = money_left
|
||||
return result
|
||||
print(solution())
|
||||
<call>72<response>
|
||||
|
||||
Result = 72 <submit>
|
||||
|
||||
Q: """
|
||||
```
|
||||
|
||||
|
||||
Training experiment can be found at https://wandb.ai/lvwerra/trl-gsm8k/runs/a5odv01y
|
||||
|
||||

|
||||
|
||||
|
7
docs/source/liger_kernel_integration.md
Normal file
7
docs/source/liger_kernel_integration.md
Normal file
@ -0,0 +1,7 @@
|
||||
# Liger Kernel Integration
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Section under construction. Feel free to contribute!
|
||||
|
||||
</Tip>
|
@ -1,15 +1,14 @@
|
||||
# Logging
|
||||
|
||||
As reinforcement learning algorithms are historically challenging to debug, it's important to pay careful attention to logging.
|
||||
By default, the TRL [`PPOTrainer`] saves a lot of relevant information to `wandb` or `tensorboard`.
|
||||
By default, the TRL [`PPOTrainer`] saves a lot of relevant information to wandb or tensorboard.
|
||||
|
||||
Upon initialization, pass one of these two options to the [`PPOConfig`]:
|
||||
|
||||
```
|
||||
config = PPOConfig(
|
||||
model_name=args.model_name,
|
||||
log_with=`wandb`, # or `tensorboard`
|
||||
)
|
||||
training_args = PPOConfig(..., report_to="wandb") # or "tensorboard"
|
||||
```
|
||||
|
||||
If you want to log with tensorboard, add the kwarg `project_kwargs={"logging_dir": PATH_TO_LOGS}` to the PPOConfig.
|
||||
|
||||
## PPO Logging
|
||||
@ -17,8 +16,8 @@ If you want to log with tensorboard, add the kwarg `project_kwargs={"logging_dir
|
||||
Here's a brief explanation for the logged metrics provided in the data:
|
||||
|
||||
Key metrics to monitor. We want to maximize the reward, maintain a low KL divergence, and maximize entropy:
|
||||
1. `env/reward_mean`: The average reward obtained from the environment. Alias `ppo/mean_scores`, which is sed to specifically monitor the reward model.
|
||||
1. `env/reward_std`: The standard deviation of the reward obtained from the environment. Alias ``ppo/std_scores`, which is sed to specifically monitor the reward model.
|
||||
1. `env/reward_mean`: The average reward obtained from the environment. Alias `ppo/mean_scores`, which is used to specifically monitor the reward model.
|
||||
1. `env/reward_std`: The standard deviation of the reward obtained from the environment. Alias ``ppo/std_scores`, which is used to specifically monitor the reward model.
|
||||
1. `env/reward_dist`: The histogram distribution of the reward obtained from the environment.
|
||||
1. `objective/kl`: The mean Kullback-Leibler (KL) divergence between the old and new policies. It measures how much the new policy deviates from the old policy. The KL divergence is used to compute the KL penalty in the objective function.
|
||||
1. `objective/kl_dist`: The histogram distribution of the `objective/kl`.
|
||||
@ -72,4 +71,4 @@ Here are some parameters that are useful to monitor for stability (when these di
|
||||
1. `ppo/policy/ratio`: `ratio` being 1 is a baseline value, meaning that the probability of sampling a token is the same under the new and old policy. If the ratio is too high like 200, it means the probability of sampling a token is 200 times higher under the new policy than the old policy. This is a sign that the new policy is too different from the old policy, which will likely cause overoptimization and collapse training later on.
|
||||
1. `ppo/policy/clipfrac` and `ppo/policy/approxkl`: if `ratio` is too high, the `ratio` is going to get clipped, resulting in high `clipfrac` and high `approxkl` as well.
|
||||
1. `objective/kl`: it should stay positive so that the policy is not too far away from the reference policy.
|
||||
1. `objective/kl_coef`: The target coefficient with [`AdaptiveKLController`]. Often increases before numerical instabilities.
|
||||
1. `objective/kl_coef`: The target coefficient with [`AdaptiveKLController`]. Often increases before numerical instabilities.
|
5
docs/source/model_utils.md
Normal file
5
docs/source/model_utils.md
Normal file
@ -0,0 +1,5 @@
|
||||
# Model Utilities
|
||||
|
||||
## get_act_offloading_ctx_manager
|
||||
|
||||
[[autodoc]] models.get_act_offloading_ctx_manager
|
@ -10,7 +10,7 @@ You just need to install `peft` and optionally install `bitsandbytes` as well if
|
||||
|
||||
You need to address this approach in three stages that we summarize as follows:
|
||||
|
||||
1- Train a base model on the target domain (e.g. `imdb` dataset) - this is the Supervised Fine Tuning stage - it can leverage the `SFTTrainer` from TRL.
|
||||
1- Train a base model on the target domain (e.g. [IMDB dataset](https://huggingface.co/datasets/stanfordnlp/imdb)) - this is the Supervised Fine Tuning stage - it can leverage the `SFTTrainer` from TRL.
|
||||
2- Train a reward model using `peft`. This is required in order to re-use the adapter during the RL optimisation process (step 3 below). We show an example of leveraging the `RewardTrainer` from TRL in [this example](https://github.com/huggingface/trl/tree/main/examples/scripts/reward_modeling.py)
|
||||
3- Fine tune new adapters on the base model using PPO and the reward adapter. ("0 abstraction RL")
|
||||
|
159
docs/source/nash_md_trainer.md
Normal file
159
docs/source/nash_md_trainer.md
Normal file
@ -0,0 +1,159 @@
|
||||
# Nash-MD Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=nash-md,trl)
|
||||
|
||||
## Overview
|
||||
|
||||
Nash-MD was proposed in the paper [Nash Learning from Human Feedback](https://huggingface.co/papers/2312.00886) by Rémi Munos, [Michal Valko](https://huggingface.co/misovalko), Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland, Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mésnard, and Andrea Michi.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> Reinforcement learning from human feedback (RLHF) has emerged as the main paradigm for aligning large language models (LLMs) with human preferences. Typically, RLHF involves the initial step of learning a reward model from human feedback, often expressed as preferences between pairs of text generations produced by a pre-trained LLM. Subsequently, the LLM's policy is fine-tuned by optimizing it to maximize the reward model through a reinforcement learning algorithm. However, an inherent limitation of current reward models is their inability to fully represent the richness of human preferences and their dependency on the sampling distribution. In this study, we introduce an alternative pipeline for the fine-tuning of LLMs using pairwise human feedback. Our approach entails the initial learning of a preference model, which is conditioned on two inputs given a prompt, followed by the pursuit of a policy that consistently generates responses preferred over those generated by any competing policy, thus defining the Nash equilibrium of this preference model. We term this approach Nash learning from human feedback (NLHF). In the context of a tabular policy representation, we present a novel algorithmic solution, Nash-MD, founded on the principles of mirror descent. This algorithm produces a sequence of policies, with the last iteration converging to the regularized Nash equilibrium. Additionally, we explore parametric representations of policies and introduce gradient descent algorithms for deep-learning architectures. To demonstrate the effectiveness of our approach, we present experimental results involving the fine-tuning of a LLM for a text summarization task. We believe NLHF offers a compelling avenue for preference learning and policy optimization with the potential of advancing the field of aligning LLMs with human preferences.
|
||||
|
||||
This post-training method was contributed by [Kashif Rasul](https://huggingface.co/kashif) and [Daniil Tiapkin](https://huggingface.co/dtiapkin), [Pierre Ménard](https://huggingface.co/menardprr), Daniele Calandriello and [Quentin Gallouédec](https://huggingface.co/qgallouedec).
|
||||
|
||||
## Quick start
|
||||
|
||||
This example demonstrates how to train a model using the Nash-MD method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model and [`PairRMJudge`] as a judge. We use the prompts from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the prompts in the dataset here:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/ultrafeedback-prompt/embed/viewer/default/train?row=0"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
Below is the script to train the model:
|
||||
|
||||
```python
|
||||
# train_nash_md.py
|
||||
from datasets import load_dataset
|
||||
from trl import NashMDConfig, NashMDTrainer, PairRMJudge
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
judge = PairRMJudge()
|
||||
train_dataset = load_dataset("trl-lib/ultrafeedback-prompt", split="train")
|
||||
|
||||
training_args = NashMDConfig(output_dir="Qwen2-0.5B-NashMD", logging_steps=10)
|
||||
trainer = NashMDTrainer(
|
||||
model=model, judge=judge, args=training_args, processing_class=tokenizer, train_dataset=train_dataset
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Execute the script using the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch train_nash_md.py
|
||||
```
|
||||
|
||||
Distributed across 8 GPUs, the training takes approximately 3 hours.
|
||||
|
||||
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-NashMD) performs, you can use the [Transformers Chat CLI](https://huggingface.co/docs/transformers/quicktour#chat-with-text-generation-models).
|
||||
|
||||
<pre><code>$ transformers-cli chat --model_name_or_path trl-lib/Qwen2-0.5B-NashMD
|
||||
<strong><span style="color: red;"><quentin_gallouedec>:</span></strong>
|
||||
What is the best programming language?
|
||||
|
||||
<strong><span style="color: blue;"><trl-lib/Qwen2-0.5B-NashMD>:</span></strong>
|
||||
The best programming language depends on personal preference, the complexity of the project, and the specific requirements of the task. Some programming languages that are often recommended include Python, Java, and JavaScript, and there are many other languages to choose from depending on individual needs.
|
||||
</code></pre>
|
||||
|
||||
## Expected dataset type
|
||||
|
||||
Nash-MD requires a [prompt-only dataset](dataset_formats#prompt-only). The [`NashMDTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
|
||||
|
||||
## Usage tips
|
||||
|
||||
### Use a reward model
|
||||
|
||||
Instead of a judge, you can chose to use a reward model -- see [Reward Bench](https://huggingface.co/spaces/allenai/reward-bench) for a leaderboard of public models you can use. Below is a code example showing how to replace a judge with the [trl-lib/Qwen2-0.5B-Reward](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward) model:
|
||||
|
||||
```diff
|
||||
- from trl import PairRMJudge
|
||||
+ from transformers import AutoModelForSequenceClassification
|
||||
|
||||
- judge = PairRMJudge()
|
||||
+ reward_model = AutoModelForSequenceClassification.from_pretrained("trl-lib/Qwen2-0.5B-Reward", num_labels=1)
|
||||
|
||||
trainer = NashMDTrainer(
|
||||
...
|
||||
- judge=judge,
|
||||
+ reward_model=reward_model,
|
||||
)
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Make sure that the SFT model and reward model use the _same_ chat template and the same tokenizer. Otherwise, you may find the model completions are scored incorrectly during training.
|
||||
|
||||
</Tip>
|
||||
|
||||
### Encourage EOS token generation
|
||||
|
||||
We may want the model to generate completions within a given length. During training, the model will generate completions up to the maximum length specified in the `max_new_tokens` argument of [`NashMDConfig`]. If you want to penalize the model for not generating an EOS token before reaching the maximum length, you can use the `missing_eos_penalty` argument of [`NashMDConfig`]:
|
||||
|
||||
```python
|
||||
training_args = NashMDConfig(..., max_new_tokens=128, missing_eos_penalty=1.0)
|
||||
```
|
||||
|
||||
### Logging Completions
|
||||
|
||||
To better understand your model’s behavior during training, you can log sample completions periodically using the [`LogCompletionsCallback`].
|
||||
|
||||
```python
|
||||
trainer = NashMDTrainer(..., eval_dataset=eval_dataset)
|
||||
completions_callback = LogCompletionsCallback(trainer, num_prompts=8)
|
||||
trainer.add_callback(completions_callback)
|
||||
```
|
||||
|
||||
This callback logs the model's generated completions directly to Weights & Biases.
|
||||
|
||||

|
||||
|
||||
## Example script
|
||||
|
||||
We provide an example script to train a model using the Nash-MD method. The script is available in [`examples/scripts/nash_md.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/nash_md.py)
|
||||
|
||||
To test the online DPO script with the [Qwen2.5 0.5B model](https://huggingface.co/trl-lib/Qwen/Qwen2.5-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback), run the following command:
|
||||
|
||||
```bash
|
||||
python examples/scripts/nash_md.py \
|
||||
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
|
||||
--judge pair_rm \
|
||||
--dataset_name trl-lib/ultrafeedback-prompt \
|
||||
--learning_rate 5.0e-7 \
|
||||
--logging_steps 25 \
|
||||
--output_dir Qwen2.5-0.5B-NashMD-PairRM \
|
||||
--warmup_ratio 0.1 \
|
||||
--push_to_hub
|
||||
```
|
||||
|
||||
## Logged metrics
|
||||
|
||||
The logged metrics are as follows:
|
||||
|
||||
* `loss/kl`: The mean KL divergence between the model and reference data.
|
||||
* `objective/entropy`: The mean entropy of the model and reference data.
|
||||
* `loss/score`: The mean reinforce score loss.
|
||||
* `rewards/chosen`: The mean scores (according to the reward model) of the model completions.
|
||||
* `rewards/rejected`: The mean scores (according to the reward model) of the mixture completions.
|
||||
* `rewards/probabilities`: The mean probability (according to the reward model or judge) of the model completions chosen vs the mixture completion.
|
||||
* `rewards/accuracies`: The accuracies of the Nash-MD's implicit reward model.
|
||||
* `rewards/margins`: The mean reward margin (according to reward model) between the chosen and mixture completions.
|
||||
* `logps/chosen`: The mean log probabilities of the chosen completions.
|
||||
* `logps/rejected`: The mean log probabilities of the reference completions.
|
||||
* `val/model_contain_eos_token`: The amount of times the model's output contains the eos token.
|
||||
* `val/ref_contain_eos_token`: The amount of times the mixture's output contains the eos token.
|
||||
* `beta`: The parameter that controls the weight of the loss term representing the deviation from the reference model. Typically fixed, but can be made dynamic by passing a list to [`NashMDConfig`].
|
||||
* `mixture_coef`: Logit mixture coefficient for the model and reference model. Typically fixed, but can be made dynamic by passing a list to [`NashMDConfig`].
|
||||
|
||||
## NashMDTrainer
|
||||
|
||||
[[autodoc]] NashMDTrainer
|
||||
|
||||
## NashMDConfig
|
||||
|
||||
[[autodoc]] NashMDConfig
|
278
docs/source/online_dpo_trainer.md
Normal file
278
docs/source/online_dpo_trainer.md
Normal file
@ -0,0 +1,278 @@
|
||||
# Online DPO Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=online-dpo,trl)
|
||||
|
||||
## Overview
|
||||
|
||||
Online DPO was proposed in [Direct Language Model Alignment from Online AI Feedback](https://huggingface.co/papers/2402.04792) by Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> Direct alignment from preferences (DAP) methods, such as DPO, have recently emerged as efficient alternatives to reinforcement learning from human feedback (RLHF), that do not require a separate reward model. However, the preference datasets used in DAP methods are usually collected ahead of training and never updated, thus the feedback is purely offline. Moreover, responses in these datasets are often sampled from a language model distinct from the one being aligned, and since the model evolves over training, the alignment phase is inevitably off-policy. In this study, we posit that online feedback is key and improves DAP methods. Our method, online AI feedback (OAIF), uses an LLM as annotator: on each training iteration, we sample two responses from the current model and prompt the LLM annotator to choose which one is preferred, thus providing online feedback. Despite its simplicity, we demonstrate via human evaluation in several tasks that OAIF outperforms both offline DAP and RLHF methods. We further show that the feedback leveraged in OAIF is easily controllable, via instruction prompts to the LLM annotator.
|
||||
|
||||
This post-training method was contributed by [Michael Noukhovitch](https://huggingface.co/mnoukhov), [Shengyi Costa Huang](https://huggingface.co/vwxyzjn), [Quentin Gallouédec](https://huggingface.co/qgallouedec), and [Edward Beeching](https://huggingface.co/edbeeching).
|
||||
|
||||
## Quick start
|
||||
|
||||
This example demonstrates how to train a model using the online DPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model and [`PairRMJudge`] as a judge. We use the prompts from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the prompts in the dataset here:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/ultrafeedback-prompt/embed/viewer/default/train?row=0"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
Below is the script to train the model:
|
||||
|
||||
```python
|
||||
# train_online_dpo.py
|
||||
from datasets import load_dataset
|
||||
from trl import OnlineDPOConfig, OnlineDPOTrainer, PairRMJudge
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
judge = PairRMJudge()
|
||||
train_dataset = load_dataset("trl-lib/ultrafeedback-prompt", split="train")
|
||||
|
||||
training_args = OnlineDPOConfig(output_dir="Qwen2-0.5B-OnlineDPO", logging_steps=10)
|
||||
trainer = OnlineDPOTrainer(
|
||||
model=model, judge=judge, args=training_args, processing_class=tokenizer, train_dataset=train_dataset
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Execute the script using the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch train_online_dpo.py
|
||||
```
|
||||
|
||||
Distributed across 8 GPUs, the training takes approximately 1 hour. You can verify the training progress by checking the reward graph. An increasing trend in both the reward for rejected and chosen completions indicates that the model is improving and generating better responses over time.
|
||||
|
||||

|
||||
|
||||
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-OnlineDPO) performs, you can use the [Transformers Chat CLI](https://huggingface.co/docs/transformers/quicktour#chat-with-text-generation-models).
|
||||
|
||||
<pre><code>$ transformers-cli chat --model_name_or_path trl-lib/Qwen2-0.5B-OnlineDPO
|
||||
<strong><span style="color: red;"><quentin_gallouedec>:</span></strong>
|
||||
What is the best programming language?
|
||||
|
||||
<strong><span style="color: blue;"><trl-lib/Qwen2-0.5B-OnlineDPO>:</span></strong>
|
||||
The best programming language depends on your specific needs and priorities. Some people prefer imperative programming languages (like Haskell or Lisp), while others prefer functional programming languages (like Scala or Python). It's important to consider your work style, programming environment, and project requirements when choosing a programming language.
|
||||
</code></pre>
|
||||
|
||||
## Expected dataset type
|
||||
|
||||
Online DPO only requires a [prompt-only dataset](dataset_formats#prompt-only) (unlike offline DPO, that expects [preference dataset](dataset_formats#preference)). The [`OnlineDPOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
|
||||
|
||||
## Usage tips
|
||||
|
||||
### Use a reward model
|
||||
|
||||
Instead of a judge, you can chose to use a reward model -- see [Reward Bench](https://huggingface.co/spaces/allenai/reward-bench) for a leaderboard of public models you can use. Below is a code example showing how to replace a judge with the [trl-lib/Qwen2-0.5B-Reward](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward) model:
|
||||
|
||||
```diff
|
||||
- from trl import PairRMJudge
|
||||
+ from transformers import AutoModelForSequenceClassification
|
||||
|
||||
- judge = PairRMJudge()
|
||||
+ reward_model = AutoModelForSequenceClassification.from_pretrained("trl-lib/Qwen2-0.5B-Reward", num_labels=1)
|
||||
+ reward_tokenizer = AutoTokenizer.from_pretrained("trl-lib/Qwen2-0.5B-Reward")
|
||||
|
||||
trainer = OnlineDPOTrainer(
|
||||
...
|
||||
- judge=judge,
|
||||
+ reward_model=reward_model,
|
||||
+ reward_processing_class=reward_tokenizer,
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
### Encourage EOS token generation
|
||||
|
||||
When using a reward model, we may want the model to generate completions within a given length. During training, the model will generate completions up to the maximum length specified in the `max_new_tokens` argument of [`OnlineDPOConfig`]. If you want to penalize the model for not generating an EOS token before reaching the maximum length, you can use the `missing_eos_penalty` argument of [`OnlineDPOConfig`]:
|
||||
|
||||
```python
|
||||
training_args = OnlineDPOConfig(..., max_new_tokens=128, missing_eos_penalty=1.0)
|
||||
```
|
||||
|
||||
### Logging Completions
|
||||
|
||||
To better understand your model’s behavior during training, you can log sample completions periodically using the [`LogCompletionsCallback`].
|
||||
|
||||
```python
|
||||
trainer = OnlineDPOTrainer(..., eval_dataset=eval_dataset)
|
||||
completions_callback = LogCompletionsCallback(trainer, num_prompts=8)
|
||||
trainer.add_callback(completions_callback)
|
||||
```
|
||||
|
||||
This callback logs the model's generated completions directly to Weights & Biases.
|
||||
|
||||

|
||||
|
||||
|
||||
## Example script
|
||||
|
||||
We provide an example script to train a model using the online DPO method. The script is available in [`examples/scripts/dpo_online.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo_online.py)
|
||||
|
||||
To test the online DPO script with the [Qwen2.5 0.5B model](https://huggingface.co/trl-lib/Qwen/Qwen2.5-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback), run the following command:
|
||||
|
||||
```bash
|
||||
python examples/scripts/dpo_online.py \
|
||||
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
|
||||
--judge pair_rm \
|
||||
--dataset_name trl-lib/ultrafeedback-prompt \
|
||||
--learning_rate 5.0e-7 \
|
||||
--logging_steps 25 \
|
||||
--output_dir Qwen2.5-0.5B-Online-DPO-PairRM \
|
||||
--warmup_ratio 0.1 \
|
||||
--push_to_hub
|
||||
```
|
||||
|
||||
## Logged metrics
|
||||
|
||||
The logged metrics are as follows. Here is an example [tracked run at Weights and Biases](https://wandb.ai/huggingface/trl/runs/w4apmsi9)
|
||||
|
||||
* `objective/kl`: The mean Kullback-Leibler (KL) divergence between the current model and reference model.
|
||||
* `objective/entropy`: The mean entropy of the model, indicating the randomness of the actions chosen by the model.
|
||||
* `objective/non_score_reward`: The mean reward from non-score-related sources, basically `beta * kl.sum(1)`, where `beta` is the KL penalty coefficient and `kl` is the per-token KL divergence.
|
||||
* `objective/rlhf_reward`: The mean RLHF reward, which is `scores - non_score_reward`. The `rlhf_reward` is the ultimate objective of online DPO training. If training works as intended, this metric should keep going up.
|
||||
* `objective/scores`: The mean scores returned by the reward model.
|
||||
* `objective/scores_margin`: The mean score margin (according to the external reward model) between the chosen and rejected completions.
|
||||
* `rewards/chosen`: The mean reward (according to online DPO's implicit reward model)of the chosen completions.
|
||||
* `rewards/rejected`: The mean reward (according to online DPO's implicit reward model) of the rejected completions.
|
||||
* `rewards/accuracies`: The accuracies of the online DPO's implicit reward model.
|
||||
* `rewards/margins`: The mean reward margin (according to online DPO's implicit reward model) between the chosen and rejected completions.
|
||||
* `logps/chosen`: The mean log probabilities of the chosen completions.
|
||||
* `logps/rejected`: The mean log probabilities of the rejected completions.
|
||||
* `val/contain_eos_token`: The fraction of completions which contain an EOS token.
|
||||
* `beta`: The parameter that controls the weight of the loss term representing the deviation from the reference model. Typically fixed, but can be made dynamic by passing a list to [`OnlineDPOConfig`].
|
||||
|
||||
## Benchmark experiments
|
||||
|
||||
To validate the online DPO implementation works, we ran experiments with the Pythia 1B, 2.8B, and 6.9B models on a single node of 8 x H100s. Here are the commands we used to run the experiments. We take the SFT / RM models directly from [The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization](https://huggingface.co/papers/2403.17031).
|
||||
|
||||
|
||||
```
|
||||
# 1B Online DPO experiment
|
||||
accelerate launch --config_file examples/accelerate_configs/multi_gpu.yaml \
|
||||
examples/scripts/dpo_online.py \
|
||||
--model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft \
|
||||
--reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \
|
||||
--dataset_name trl-lib/tldr \
|
||||
--learning_rate 5.0e-7 \
|
||||
--output_dir pythia-1b-deduped-tldr-online-dpo \
|
||||
--beta 0.1 \
|
||||
--per_device_train_batch_size 8 \
|
||||
--gradient_accumulation_steps 2 \
|
||||
--num_train_epochs 3 \
|
||||
--max_new_tokens 53 \
|
||||
--warmup_ratio 0.1 \
|
||||
--missing_eos_penalty 1.0 \
|
||||
--logging_steps 20 \
|
||||
--save_steps 0.1 \
|
||||
--push_to_hub
|
||||
|
||||
# 2.8B Online DPO experiment
|
||||
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
|
||||
examples/scripts/dpo_online.py \
|
||||
--model_name_or_path trl-lib/pythia-2.8b-deduped-tldr-sft \
|
||||
--reward_model_path trl-lib/pythia-2.8b-deduped-tldr-rm \
|
||||
--dataset_name trl-lib/tldr \
|
||||
--learning_rate 5.0e-7 \
|
||||
--output_dir pythia-2.8b-deduped-tldr-online-dpo \
|
||||
--beta 0.1 \
|
||||
--per_device_train_batch_size 8 \
|
||||
--gradient_accumulation_steps 2 \
|
||||
--num_train_epochs 3 \
|
||||
--max_new_tokens 53 \
|
||||
--warmup_ratio 0.1 \
|
||||
--missing_eos_penalty 1.0 \
|
||||
--bf16 \
|
||||
--logging_steps 20 \
|
||||
--save_steps 0.1 \
|
||||
--push_to_hub
|
||||
|
||||
# 6.9B Online DPO experiment
|
||||
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
|
||||
examples/scripts/dpo_online.py \
|
||||
--model_name_or_path trl-lib/pythia-6.9b-deduped-tldr-sft \
|
||||
--reward_model_path trl-lib/pythia-6.9b-deduped-tldr-rm \
|
||||
--dataset_name trl-lib/tldr \
|
||||
--learning_rate 5.0e-7 \
|
||||
--output_dir pythia-6.9b-deduped-tldr-online-dpo \
|
||||
--beta 0.1 \
|
||||
--per_device_train_batch_size 4 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--num_train_epochs 3 \
|
||||
--max_new_tokens 53 \
|
||||
--warmup_ratio 0.1 \
|
||||
--missing_eos_penalty 1.0 \
|
||||
--bf16 \
|
||||
--gradient_checkpointing \
|
||||
--logging_steps 20 \
|
||||
--save_steps 0.1 \
|
||||
--push_to_hub
|
||||
```
|
||||
|
||||
Checkpoints and experiment tracking are available at:
|
||||
|
||||
- [🤗 Model checkpoints](https://huggingface.co/collections/trl-lib/online-dpo-66acd3fa38a331a9cd457b07)
|
||||
- [🐝 Tracked experiment](https://wandb.ai/huggingface/trl/reports/Online-DPO-experiments-for-TL-DR-summarisation--Vmlldzo5MTczMDU0)
|
||||
|
||||
|
||||
To evaluate, we use [vLLM](https://github.com/vllm-project/vllm) to load the checkpoints and GPT-4o mini as a judge model to evaluate the generated TL;DR against the reference TL;DR.
|
||||
For more information on how to use judges, see [Judges](judges).
|
||||
|
||||
```bash
|
||||
$ python examples/scripts/evals/judge_tldr.py --model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft --judge_model gpt-4o-mini --num_examples 1000
|
||||
Model win rate: 33.00%
|
||||
python examples/scripts/evals/judge_tldr.py --model_name_or_path trl-lib/pythia-6.9b-deduped-tldr-sft --judge_model gpt-4o-mini --num_examples 1000
|
||||
Model win rate: 41.50%
|
||||
python examples/scripts/evals/judge_tldr.py --model_name_or_path trl-lib/pythia-1b-deduped-tldr-online-dpo --judge_model gpt-4o-mini --num_examples 1000
|
||||
Model win rate: 62.60%
|
||||
python examples/scripts/evals/judge_tldr.py --model_name_or_path trl-lib/pythia-6.9b-deduped-tldr-online-dpo --judge_model gpt-4o-mini --num_examples 1000
|
||||
Model win rate: 74.20%
|
||||
```
|
||||
|
||||
We can then plot the RLHF scaling chart.
|
||||
|
||||
```python
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
results = {
|
||||
"SFT": {1.0e9: 0.21, 2.8e9: 0.27, 6.9e9: 0.316},
|
||||
"online-dpo": {1.0e9: 0.542, 2.8e9: 0.746, 6.9e9: 0.796},
|
||||
"offline-dpo": {1.0e9: 0.422, 2.8e9: 0.517, 6.9e9: 0.701},
|
||||
}
|
||||
|
||||
|
||||
plt.plot(results["SFT"].keys(), results["SFT"].values(), label="SFT", marker="o")
|
||||
plt.plot(results["online-dpo"].keys(), results["online-dpo"].values(), label="Online-dpo with RM judge", marker="o")
|
||||
plt.plot(results["offline-dpo"].keys(), results["offline-dpo"].values(), label="Offline-dpo", marker="o")
|
||||
plt.axhline(y=0.5, color="black", linestyle="-.", label="Human reference summary")
|
||||
plt.xscale("log")
|
||||
plt.xlabel("Model size")
|
||||
plt.ylabel("Win rate against reference summaries\n(according to GPT-4-0613)")
|
||||
plt.title("DPO scaling by model size")
|
||||
plt.legend()
|
||||
plt.xlim(5e8, 1.2e10)
|
||||
plt.xticks([1e9, 3e9, 1e10], ["1B", "3B", "10B"])
|
||||
plt.grid(True, which="both", ls="--", c="0.7")
|
||||
plt.tight_layout()
|
||||
plt.show()
|
||||
```
|
||||
|
||||

|
||||
|
||||
The online DPO checkpoint gets increasingly more win rate as we scale up the model sizes. This is a good sign that the online DPO implementation is working as intended.
|
||||
|
||||
## OnlineDPOTrainer
|
||||
|
||||
[[autodoc]] OnlineDPOTrainer
|
||||
|
||||
## OnlineDPOConfig
|
||||
|
||||
[[autodoc]] OnlineDPOConfig
|
@ -1,98 +1,129 @@
|
||||
# ORPO Trainer
|
||||
|
||||
[Odds Ratio Preference Optimization](https://arxiv.org/abs/2403.07691) (ORPO) by Jiwoo Hong, Noah Lee, and James Thorne studies the crucial role of SFT within the context of preference alignment. Using preference data the method posits that a minor penalty for the disfavored generation together with a strong adaption signal to the chosen response via a simple log odds ratio term appended to the NLL loss is sufficient for preference-aligned SFT.
|
||||
[](https://huggingface.co/models?other=orpo,trl) [](https://github.com/huggingface/smol-course/tree/main/2_preference_alignment)
|
||||
|
||||
## Overview
|
||||
|
||||
Odds Ratio Preference Optimization (ORPO) was introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691) by [Jiwoo Hong](https://huggingface.co/JW17), [Noah Lee](https://huggingface.co/nlee-208), and [James Thorne](https://huggingface.co/j6mes).
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> While recent preference alignment algorithms for language models have demonstrated promising results, supervised fine-tuning (SFT) remains imperative for achieving successful convergence. In this paper, we study the crucial role of SFT within the context of preference alignment, emphasizing that a minor penalty for the disfavored generation style is sufficient for preference-aligned SFT. Building on this foundation, we introduce a straightforward and innovative reference model-free monolithic odds ratio preference optimization algorithm, ORPO, eliminating the necessity for an additional preference alignment phase. We demonstrate, both empirically and theoretically, that the odds ratio is a sensible choice for contrasting favored and disfavored styles during SFT across the diverse sizes from 125M to 7B. Specifically, fine-tuning Phi-2 (2.7B), Llama-2 (7B), and Mistral (7B) with ORPO on the UltraFeedback alone surpasses the performance of state-of-the-art language models with more than 7B and 13B parameters: achieving up to 12.20% on AlpacaEval_{2.0} (Figure 1), 66.19% on IFEval (instruction-level loose, Table 6), and 7.32 in MT-Bench (Figure 12). We release code and model checkpoints for Mistral-ORPO-alpha (7B) and Mistral-ORPO-beta (7B).
|
||||
|
||||
It studies the crucial role of SFT within the context of preference alignment. Using preference data the method posits that a minor penalty for the disfavored generation together with a strong adaption signal to the chosen response via a simple log odds ratio term appended to the NLL loss is sufficient for preference-aligned SFT.
|
||||
|
||||
Thus ORPO is a reference model-free preference optimization algorithm eliminating the necessity for an additional preference alignment phase thus saving compute and memory.
|
||||
|
||||
The official code can be found [xfactlab/orpo](https://github.com/xfactlab/orpo).
|
||||
The official code can be found in [xfactlab/orpo](https://github.com/xfactlab/orpo).
|
||||
|
||||
## Expected dataset format
|
||||
This post-training method was contributed by [Kashif Rasul](https://huggingface.co/kashif), [Lewis Tunstall](https://huggingface.co/lewtun) and [Alvaro Bartolome](https://huggingface.co/alvarobartt).
|
||||
|
||||
The ORPO trainer expects a format identical to the DPO trainer, which should include three entries. These entries should be named as follows:
|
||||
## Quick start
|
||||
|
||||
- `prompt`
|
||||
- `chosen`
|
||||
- `rejected`
|
||||
This example demonstrates how to train a model using the ORPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model. We use the preference data from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the data in the dataset here:
|
||||
|
||||
for example:
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized/embed/viewer/default/train?row=0"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
```py
|
||||
orpo_dataset_dict = {
|
||||
"prompt": [
|
||||
"hello",
|
||||
"how are you",
|
||||
"What is your name?",
|
||||
"What is your name?",
|
||||
"Which is the best programming language?",
|
||||
"Which is the best programming language?",
|
||||
"Which is the best programming language?",
|
||||
],
|
||||
"chosen": [
|
||||
"hi nice to meet you",
|
||||
"I am fine",
|
||||
"My name is Mary",
|
||||
"My name is Mary",
|
||||
"Python",
|
||||
"Python",
|
||||
"Java",
|
||||
],
|
||||
"rejected": [
|
||||
"leave me alone",
|
||||
"I am not fine",
|
||||
"Whats it to you?",
|
||||
"I dont have a name",
|
||||
"Javascript",
|
||||
"C++",
|
||||
"C++",
|
||||
],
|
||||
}
|
||||
```
|
||||
where the `prompt` contains the context inputs, `chosen` contains the corresponding chosen responses and `rejected` contains the corresponding negative (rejected) responses. Note that a prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays.
|
||||
Below is the script to train the model:
|
||||
|
||||
## Expected model format
|
||||
The ORPO trainer expects a model of `AutoModelForCausalLM`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
|
||||
```python
|
||||
# train_orpo.py
|
||||
from datasets import load_dataset
|
||||
from trl import ORPOConfig, ORPOTrainer
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
|
||||
## Using the `ORPOTrainer`
|
||||
For a detailed example have a look at the `examples/scripts/orpo.py` script. At a high level we need to initialize the `ORPOTrainer` with a `model` we wish to train. **Note that ORPOTrainer eliminates the need to use the reference model, simplifying the optimization process.** The `beta` refers to the hyperparameter `lambda` in eq. (6) of the paper and refers to the weighting of the relative odd ratio loss in the standard cross-entropy loss used for SFT.
|
||||
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
||||
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
|
||||
|
||||
```py
|
||||
orpo_config = ORPOConfig(
|
||||
beta=0.1, # the lambda/alpha hyperparameter in the paper/code
|
||||
)
|
||||
|
||||
orpo_trainer = ORPOTrainer(
|
||||
model,
|
||||
args=orpo_config,
|
||||
train_dataset=train_dataset,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
```
|
||||
After this one can then call:
|
||||
|
||||
```py
|
||||
orpo_trainer.train()
|
||||
training_args = ORPOConfig(output_dir="Qwen2-0.5B-ORPO", logging_steps=10)
|
||||
trainer = ORPOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
## Logging
|
||||
Execute the script using the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch train_orpo.py
|
||||
```
|
||||
|
||||
Distributed across 8 GPUs, the training takes approximately 30 minutes. You can verify the training progress by checking the reward graph. An increasing trend in the reward margin indicates that the model is improving and generating better responses over time.
|
||||
|
||||

|
||||
|
||||
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-ORPO) performs, you can use the [Transformers Chat CLI](https://huggingface.co/docs/transformers/quicktour#chat-with-text-generation-models).
|
||||
|
||||
<pre><code>$ transformers-cli chat --model_name_or_path trl-lib/Qwen2-0.5B-ORPO
|
||||
<strong><span style="color: red;"><quentin_gallouedec>:</span></strong>
|
||||
What is the best programming language?
|
||||
|
||||
<strong><span style="color: blue;"><trl-lib/Qwen2-0.5B-ORPO>:</span></strong>
|
||||
It's challenging to determine the best programming language as no one language is perfect, as the complexity of a task and the type of project are significant factors. Some popular languages include Java, Python, JavaScript, and
|
||||
C++. If you have specific needs or requirements for a specific project, it's important to choose the language that best suits those needs.
|
||||
|
||||
Here are some other factors to consider when choosing a programming language for a project:
|
||||
|
||||
<strong><span style="color: green;">• Language proficiency:</span></strong> A good programming language is more likely to be easy to understand and use, and will allow developers to collaborate on projects more efficiently.
|
||||
<strong><span style="color: green;">• Ease of use:</span></strong> There are tools and libraries available to make programming more accessible, so developers should choose a language that can help them get started easier.
|
||||
<strong><span style="color: green;">• Code readability:</span></strong> A clear and concise codebase should be easy to read and understand, especially when working with large projects.
|
||||
<strong><span style="color: green;">• Tool and framework support:</span></strong> There are numerous libraries available for Python, Java, and JavaScript, along with tools like IDEs and static code analysis tools.
|
||||
<strong><span style="color: green;">• Accessibility:</span></strong> Some languages and tools have features that make them more accessible to developers with disabilities, such as support for screen readers.
|
||||
<strong><span style="color: green;">• Version control:</span></strong> As your projects grow and complexity increases, version control tools can be beneficial for tracking changes.
|
||||
|
||||
</code></pre>
|
||||
|
||||
## Expected dataset type
|
||||
|
||||
ORPO requires a [preference dataset](dataset_formats#preference). The [`ORPOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
|
||||
|
||||
Although the [`ORPOTrainer`] supports both explicit and implicit prompts, we recommend using explicit prompts. If provided with an implicit prompt dataset, the trainer will automatically extract the prompt from the `"chosen"` and `"rejected"` columns. For more information, refer to the [preference style](dataset_formats#preference) section.
|
||||
|
||||
## Example script
|
||||
|
||||
We provide an example script to train a model using the ORPO method. The script is available in [`examples/scripts/orpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/orpo.py)
|
||||
|
||||
To test the ORPO script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized), run the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch examples/scripts/orpo.py \
|
||||
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
|
||||
--dataset_name trl-lib/ultrafeedback_binarized \
|
||||
--num_train_epochs 1 \
|
||||
--logging_steps 25 \
|
||||
--output_dir Qwen2-0.5B-ORPO
|
||||
```
|
||||
|
||||
## Usage tips
|
||||
|
||||
### For Mixture of Experts Models: Enabling the auxiliary loss
|
||||
|
||||
MOEs are the most efficient if the load is about equally distributed between experts.
|
||||
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
|
||||
|
||||
This option is enabled by setting `output_router_logits=True` in the model config (e.g. [`~transformers.MixtralConfig`]).
|
||||
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: `0.001`) in the model config.
|
||||
|
||||
## Logged metrics
|
||||
|
||||
While training and evaluating we record the following reward metrics:
|
||||
|
||||
* `rewards/chosen`: the mean log probabilities of the policy model for the chosen responses scaled by beta
|
||||
* `rewards/rejected`: the mean log probabilities of the policy model for the rejected responses scaled by beta
|
||||
* `rewards/accuracies`: mean of how often the chosen rewards are > than the corresponding rejected rewards
|
||||
* `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
|
||||
|
||||
* `log_odds_chosen`: the mean log odds ratio of the chosen responses over the rejected responses
|
||||
|
||||
* `log_odds_ratio`: the mean of the `log(sigmoid(log_odds_chosen))`
|
||||
|
||||
* `nll_loss`: the mean negative log likelihood loss from the SFT part of the loss over chosen responses
|
||||
- `rewards/chosen`: the mean log probabilities of the policy model for the chosen responses scaled by beta
|
||||
- `rewards/rejected`: the mean log probabilities of the policy model for the rejected responses scaled by beta
|
||||
- `rewards/accuracies`: mean of how often the chosen rewards are > than the corresponding rejected rewards
|
||||
- `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
|
||||
- `log_odds_chosen`: the mean log odds ratio of the chosen responses over the rejected responses
|
||||
- `log_odds_ratio`: the mean of the `log(sigmoid(log_odds_chosen))`
|
||||
- `nll_loss`: the mean negative log likelihood loss from the SFT part of the loss over chosen responses
|
||||
|
||||
## ORPOTrainer
|
||||
|
||||
[[autodoc]] ORPOTrainer
|
||||
|
||||
|
||||
## ORPOConfig
|
||||
|
||||
[[autodoc]] ORPOConfig
|
||||
|
9
docs/source/others.md
Normal file
9
docs/source/others.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Other
|
||||
|
||||
## profiling_decorator
|
||||
|
||||
[[autodoc]] extras.profiling.profiling_decorator
|
||||
|
||||
## profiling_context
|
||||
|
||||
[[autodoc]] extras.profiling.profiling_context
|
@ -1,7 +1,7 @@
|
||||
# Examples of using peft with trl to finetune 8-bit models with Low Rank Adaption (LoRA)
|
||||
|
||||
The notebooks and scripts in this examples show how to use Low Rank Adaptation (LoRA) to fine-tune models in a memory efficient manner. Most of PEFT methods supported in peft library but note that some PEFT methods such as Prompt tuning are not supported.
|
||||
For more information on LoRA, see the [original paper](https://arxiv.org/abs/2106.09685).
|
||||
For more information on LoRA, see the [original paper](https://huggingface.co/papers/2106.09685).
|
||||
|
||||
Here's an overview of the `peft`-enabled notebooks and scripts in the [trl repository](https://github.com/huggingface/trl/tree/main/examples):
|
||||
|
||||
@ -118,7 +118,7 @@ The `trl` library also supports naive pipeline parallelism (NPP) for large model
|
||||
This paradigm, termed as "Naive Pipeline Parallelism" (NPP) is a simple way to parallelize the model across multiple GPUs. We load the model and the adapters across multiple GPUs and the activations and gradients will be naively communicated across the GPUs. This supports `int8` models as well as other `dtype` models.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-npp.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-npp.png">
|
||||
</div>
|
||||
|
||||
### How to use NPP?
|
||||
@ -140,5 +140,5 @@ python PATH_TO_SCRIPT
|
||||
You can easily fine-tune Llama2 model using `SFTTrainer` and the official script! For example to fine-tune llama2-7b on the Guanaco dataset, run (tested on a single NVIDIA T4-16GB):
|
||||
|
||||
```bash
|
||||
python examples/scripts/sft.py --output_dir sft_openassistant-guanaco --model_name meta-llama/Llama-2-7b-hf --dataset_name timdettmers/openassistant-guanaco --load_in_4bit --use_peft --per_device_train_batch_size 4 --gradient_accumulation_steps 2
|
||||
python trl/scripts/sft.py --output_dir sft_openassistant-guanaco --model_name meta-llama/Llama-2-7b-hf --dataset_name timdettmers/openassistant-guanaco --load_in_4bit --use_peft --per_device_train_batch_size 4 --gradient_accumulation_steps 2
|
||||
```
|
239
docs/source/ppo_trainer.md
Normal file
239
docs/source/ppo_trainer.md
Normal file
@ -0,0 +1,239 @@
|
||||
# PPO Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=ppo,trl)
|
||||
|
||||
TRL supports training LLMs with [Proximal Policy Optimization (PPO)](https://huggingface.co/papers/1707.06347).
|
||||
|
||||
References:
|
||||
- [Fine-Tuning Language Models from Human Preferences](https://github.com/openai/lm-human-preferences)
|
||||
- [Learning to Summarize from Human Feedback](https://github.com/openai/summarize-from-feedback)
|
||||
- [The N Implementation Details of RLHF with PPO](https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo)
|
||||
- [The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization](https://huggingface.co/papers/2403.17031)
|
||||
|
||||
## Get started
|
||||
|
||||
To just run a PPO script to make sure the trainer can run, you can run the following command to train a PPO model with a dummy reward model.
|
||||
|
||||
```bash
|
||||
python examples/scripts/ppo/ppo.py \
|
||||
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
|
||||
--dataset_train_split descriptiveness \
|
||||
--learning_rate 3e-6 \
|
||||
--num_ppo_epochs 1 \
|
||||
--num_mini_batches 1 \
|
||||
--output_dir models/minimal/ppo \
|
||||
--per_device_train_batch_size 64 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--total_episodes 10000 \
|
||||
--model_name_or_path EleutherAI/pythia-1b-deduped \
|
||||
--sft_model_path EleutherAI/pythia-1b-deduped \
|
||||
--reward_model_path EleutherAI/pythia-1b-deduped \
|
||||
--missing_eos_penalty 1.0
|
||||
```
|
||||
|
||||
|
||||
## Explanation of the logged metrics
|
||||
|
||||
The logged metrics are as follows. Here is an example [tracked run at Weights and Biases](https://wandb.ai/huggingface/trl/runs/dd2o3g35)
|
||||
|
||||
* `eps`: Tracks the number of episodes per second.
|
||||
* `objective/kl`: The mean Kullback-Leibler (KL) divergence between the current policy and reference policy.
|
||||
* `objective/entropy`: The mean entropy of the policy, indicating the randomness of the actions chosen by the policy.
|
||||
* `objective/non_score_reward`: The mean reward from non-score-related sources, basically `beta * kl.sum(1)`, where `beta` is the KL penalty coefficient and `kl` is the per-token KL divergence.
|
||||
* `objective/rlhf_reward`: The mean RLHF reward, which is `score - non_score_reward`.
|
||||
* `objective/scores`: The mean scores returned by the reward model / environment.
|
||||
* `policy/approxkl_avg`: The average approximate KL divergence between consecutive PPO policies. Note that this is not the same as `objective/kl`.
|
||||
* `policy/clipfrac_avg`: The average fraction of policy updates that are clipped, indicating how often the policy updates are constrained to prevent large changes.
|
||||
* `loss/policy_avg`: The average policy loss, indicating how well the policy is performing.
|
||||
* `loss/value_avg`: The average value loss, indicating the difference between the predicted value and the actual reward.
|
||||
* `val/clipfrac_avg`: The average fraction of value function updates that are clipped, similar to policy/clipfrac_avg but for the value function.
|
||||
* `policy/entropy_avg`: The average entropy of the policy during training, indicating how diverse the policy's actions are.
|
||||
* `val/ratio`: The mean ratio of the current policy probability to the old policy probability, providing a measure of how much the policy has changed.
|
||||
* `val/ratio_var`: The variance of the `val/ratio`, indicating the variability in policy changes.
|
||||
* `val/num_eos_tokens`: The number of end-of-sequence (EOS) tokens generated, which can indicate the number of complete responses.
|
||||
* `lr`: lr: The current learning rate used by the optimizer.
|
||||
* `episode`: episode: The current episode count in the training process.
|
||||
|
||||
|
||||
## Cookbook
|
||||
|
||||
* Debugging TIP: `objective/rlhf_reward`: this is the ultimate objective of the RLHF training. If training works as intended, this metric should keep going up.
|
||||
* Debugging TIP: `val/ratio`: this number should float around 1.0, and it gets clipped by `--cliprange 0.2` with PPO's surrogate loss. So if this `ratio` is too high like 2.0 or 1000.0 or too small like 0.1, it means the updates between consecutive policies are too drastic. You should try understand why this is happening and try to fix it.
|
||||
* Memory TIP: If you are running out of memory, you can try to reduce the `--per_device_train_batch_size` or increase the `--gradient_accumulation_steps` to reduce the memory footprint.
|
||||
* Memory TIP: If you have multiple GPUs, you can also run training with DeepSpeed stage 3 to reduce the memory footprint `accelerate launch --config_file examples/accelerate_configs/deepspeed_zero3.yaml`.
|
||||
* Usage TIP: We recommend to use the "EOS trick" via `--missing_eos_penalty`, which subtracts a static scalar penalty from the score of completions that do not end with an EOS token. This can help the model learn to generate more coherent completions.
|
||||
|
||||
|
||||
## What is my model doing exactly?
|
||||
|
||||
To help you understand what your model is doing, we periodically log some sample completions from the model. Here is an example of a completion. In an example [tracked run at Weights and Biases](https://wandb.ai/huggingface/trl/runs/dd2o3g35), it looks like the following, allowing you to see the model's response at different stages of training. By default we generate `--num_sample_generations 10` during training, but you can customize the number of generations.
|
||||
|
||||

|
||||
|
||||
|
||||
In the logs the sampled generations look like
|
||||
|
||||
```
|
||||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
|
||||
┃ query ┃ model response ┃ score ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩
|
||||
│ SUBREDDIT: r/AskReddit │ I'm in love with a friend, and │ 3.921875 │
|
||||
│ │ I don't know how to get rid of │ │
|
||||
│ TITLE: How do you get someone │ those feelings. I'm │ │
|
||||
│ out of your head? │ desperate.<|endoftext|>[PAD][P… │ │
|
||||
│ │ │ │
|
||||
│ POST: Hi, │ │ │
|
||||
│ I'm 22, and I have been with my │ │ │
|
||||
│ girlfriend for 5 years now. We │ │ │
|
||||
│ recently moved together. We've │ │ │
|
||||
│ always loved each other │ │ │
|
||||
│ intensely. │ │ │
|
||||
│ │ │ │
|
||||
│ Problem, I recently started to │ │ │
|
||||
│ have feelings for an other │ │ │
|
||||
│ person (a friend). This person │ │ │
|
||||
│ has had a boyfriend for now 3 │ │ │
|
||||
│ years, and has absolutely no │ │ │
|
||||
│ ideas. Those feelings were so │ │ │
|
||||
│ strong, it was hard to hide │ │ │
|
||||
│ them. After 2 months of me │ │ │
|
||||
│ being distant and really sad, │ │ │
|
||||
│ my girlfriend forced me to say │ │ │
|
||||
│ what was bothering me. I'm not │ │ │
|
||||
│ a good liar, and now she knows. │ │ │
|
||||
│ │ │ │
|
||||
│ We decided to give us a week │ │ │
|
||||
│ alone, I went to my parents. │ │ │
|
||||
│ │ │ │
|
||||
│ Now, I'm completely lost. I │ │ │
|
||||
│ keep on thinking about this │ │ │
|
||||
│ person, and I hate that. I │ │ │
|
||||
│ would like for those feelings │ │ │
|
||||
│ to go away, to leave me alone. │ │ │
|
||||
│ But I can't. │ │ │
|
||||
│ │ │ │
|
||||
│ What do I do? It's been 3 │ │ │
|
||||
│ months now, and I'm just │ │ │
|
||||
│ desperate. │ │ │
|
||||
│ │ │ │
|
||||
│ TL;DR: │ │ │
|
||||
├─────────────────────────────────┼─────────────────────────────────┼──────────┤
|
||||
│ SUBREDDIT: r/pettyrevenge │ My mom woke me up with a loud │ 6.84375 │
|
||||
│ │ TV. I blasted Gangnam Style on │ │
|
||||
│ TITLE: So, my mom woke me up │ repeat, with the bass cranked │ │
|
||||
│ with a loud TV. │ up as high as it could │ │
|
||||
│ │ go.<|endoftext|>[PAD][PAD][PAD… │ │
|
||||
│ POST: She was in her living │ │ │
|
||||
│ room, watching TV. This was at │ │ │
|
||||
│ about 8:30 in the morning, and │ │ │
|
||||
│ she was exercising. She turned │ │ │
|
||||
│ the TV up extra loud to hear it │ │ │
|
||||
│ over her excercycle, and woke │ │ │
|
||||
│ me up. I went in there asking │ │ │
|
||||
│ for her to turn it down. She │ │ │
|
||||
│ said she didn't have to; I │ │ │
|
||||
│ explained that I always used │ │ │
|
||||
│ headphones so she didn't have │ │ │
|
||||
│ to deal with my noise and that │ │ │
|
||||
│ she should give me a little │ │ │
|
||||
│ more respect, given that I paid │ │ │
|
||||
│ rent at the time. │ │ │
|
||||
│ │ │ │
|
||||
│ She disagreed. I went back to │ │ │
|
||||
│ my room, rather pissed off at │ │ │
|
||||
│ the lack of equality. I had no │ │ │
|
||||
│ lock on my door; but I had a │ │ │
|
||||
│ dresser right next to it, so I │ │ │
|
||||
│ pulled one of the drawers out │ │ │
|
||||
│ enough so that it caused the │ │ │
|
||||
│ door to not be openable. Then, │ │ │
|
||||
│ I turned my speakers up really │ │ │
|
||||
│ loud and blasted Gangnam Style │ │ │
|
||||
│ on repeat, with the bass │ │ │
|
||||
│ cranked up as high as it could │ │ │
|
||||
│ go. │ │ │
|
||||
│ │ │ │
|
||||
│ If you hate Gangnam Style for │ │ │
|
||||
│ being overplayed, you will see │ │ │
|
||||
│ why I chose that particular │ │ │
|
||||
│ song. I personally don't mind │ │ │
|
||||
│ it. But here's the thing about │ │ │
|
||||
│ my bass; it vibrates the walls, │ │ │
|
||||
│ making one hell of a lot of │ │ │
|
||||
│ noise. Needless to say, my mom │ │ │
|
||||
│ was not pleased and shut off │ │ │
|
||||
│ the internet. But it was oh so │ │ │
|
||||
│ worth it. │ │ │
|
||||
│ │ │ │
|
||||
│ TL;DR: │ │ │
|
||||
└─────────────────────────────────┴─────────────────────────────────┴──────────┘
|
||||
```
|
||||
|
||||
## Implementation details
|
||||
|
||||
This PPO implementation is based on the [The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization](https://huggingface.co/papers/2403.17031).
|
||||
|
||||
## Benchmark experiments
|
||||
|
||||
To validate the PPO implementation works, we ran experiment on the 1B model. Here are the command we used to run the experiment. We take the SFT / RM models directly from [The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization](https://huggingface.co/papers/2403.17031).
|
||||
|
||||
```
|
||||
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
|
||||
examples/scripts/ppo/ppo_tldr.py \
|
||||
--output_dir models/minimal/ppo_tldr \
|
||||
--learning_rate 3e-6 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--gradient_accumulation_steps 4 \
|
||||
--total_episodes 1000000 \
|
||||
--model_name_or_path EleutherAI/pythia-1b-deduped \
|
||||
--sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \
|
||||
--reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \
|
||||
--local_rollout_forward_batch_size 16 \
|
||||
--missing_eos_penalty 1.0 \
|
||||
--stop_token eos
|
||||
```
|
||||
|
||||
Checkpoints and experiment tracking are available at:
|
||||
|
||||
- [🤗 Model checkpoint](https://huggingface.co/vwxyzjn/ppo_tldr)
|
||||
- [🐝 Tracked experiment](https://wandb.ai/huggingface/trl/runs/dd2o3g35)
|
||||
|
||||
To evaluate, we use [vLLM](https://github.com/vllm-project/vllm) to load the checkpoints and GPT-4o mini as a judge model to evaluate the generated TL;DR against the reference TL;DR.
|
||||
For more information on how to use judges, see [Judges](judges).
|
||||
|
||||
```bash
|
||||
$ python examples/scripts/evals/judge_tldr.py --model_name_or_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr --judge_model gpt-4o-mini --num_examples 1000
|
||||
Model win rate: 33.00%
|
||||
$ python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/ppo_tldr --judge_model gpt-4o-mini --num_examples 1000
|
||||
Model win rate: 64.70%
|
||||
```
|
||||
|
||||
The PPO checkpoint gets a 64.7% preferred rate vs the 33.0% preference rate of the SFT checkpoint. This is a good sign that the PPO training is working as intended.
|
||||
|
||||
Metrics:
|
||||
|
||||

|
||||
|
||||
|
||||
```bash
|
||||
# pip install openrlbenchmark==0.2.1a5
|
||||
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
|
||||
# to use it, change `?we=huggingface&wpn=trl` to your own project and `?tag=pr-1540` to your own tag
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=train/episode&ceik=output_dir&cen=sft_model_path&metrics=train/objective/rlhf_reward&metrics=train/objective/scores&metrics=train/objective/kl&metrics=train/objective/non_score_reward&metrics=train/objective/entropy&metrics=train/policy/approxkl_avg&metrics=train/policy/clipfrac_avg&metrics=train/loss/policy_avg&metrics=train/loss/value_avg&metrics=train/val/clipfrac_avg&metrics=train/policy/entropy_avg&metrics=train/val/ratio&metrics=train/val/ratio_var&metrics=train/val/num_eos_tokens&metrics=train/lr&metrics=train/eps' \
|
||||
"cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr?tag=pr-1540" \
|
||||
--env-ids models/minimal/ppo_tldr \
|
||||
--pc.ncols 4 \
|
||||
--pc.ncols-legend 1 \
|
||||
--pc.xlabel "Episode" \
|
||||
--output-filename benchmark/trl/pr-1540/ppo \
|
||||
--scan-history
|
||||
```
|
||||
|
||||
## PPOTrainer
|
||||
|
||||
[[autodoc]] PPOTrainer
|
||||
|
||||
## PPOConfig
|
||||
|
||||
[[autodoc]] PPOConfig
|
@ -1,169 +0,0 @@
|
||||
# PPO Trainer
|
||||
|
||||
TRL supports the [PPO](https://arxiv.org/abs/1707.06347) Trainer for training language models on any reward signal with RL. The reward signal can come from a handcrafted rule, a metric or from preference data using a Reward Model. For a full example have a look at [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/lvwerra/trl/blob/main/examples/notebooks/gpt2-sentiment.ipynb). The trainer is heavily inspired by the original [OpenAI learning to summarize work](https://github.com/openai/summarize-from-feedback).
|
||||
|
||||
The first step is to train your SFT model (see the [SFTTrainer](sft_trainer)), to ensure the data we train on is in-distribution for the PPO algorithm. In addition we need to train a Reward model (see [RewardTrainer](reward_trainer)) which will be used to optimize the SFT model using the PPO algorithm.
|
||||
|
||||
## How PPO works
|
||||
|
||||
Fine-tuning a language model via PPO consists of roughly three steps:
|
||||
|
||||
1. **Rollout**: The language model generates a response or continuation based on query which could be the start of a sentence.
|
||||
2. **Evaluation**: The query and response are evaluated with a function, model, human feedback or some combination of them. The important thing is that this process should yield a scalar value for each query/response pair.
|
||||
3. **Optimization**: This is the most complex part. In the optimisation step the query/response pairs are used to calculate the log-probabilities of the tokens in the sequences. This is done with the model that is trained and a reference model, which is usually the pre-trained model before fine-tuning. The KL-divergence between the two outputs is used as an additional reward signal to make sure the generated responses don't deviate too far from the reference language model. The active language model is then trained with PPO.
|
||||
|
||||
This process is illustrated in the sketch below:
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_overview.png" width="800">
|
||||
<p style="text-align: center;"> <b>Figure:</b> Sketch of the workflow. </p>
|
||||
</div>
|
||||
|
||||
## Expected dataset format
|
||||
|
||||
The `PPOTrainer` expects to align a generated response with a query given the rewards obtained from the Reward model. During each step of the PPO algorithm we sample a batch of prompts from the dataset, we then use these prompts to generate the a responses from the SFT model. Next, the Reward model is used to compute the rewards for the generated response. Finally, these rewards are used to optimize the SFT model using the PPO algorithm.
|
||||
|
||||
Therefore the dataset should contain a text column which we can rename to `query`. Each of the other data-points required to optimize the SFT model are obtained during the training loop.
|
||||
|
||||
Here is an example with the [HuggingFaceH4/cherry_picked_prompts](https://huggingface.co/datasets/HuggingFaceH4/cherry_picked_prompts) dataset:
|
||||
|
||||
```py
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset("HuggingFaceH4/cherry_picked_prompts", split="train")
|
||||
dataset = dataset.rename_column("prompt", "query")
|
||||
dataset = dataset.remove_columns(["meta", "completion"])
|
||||
```
|
||||
|
||||
Resulting in the following subset of the dataset:
|
||||
|
||||
```py
|
||||
ppo_dataset_dict = {
|
||||
"query": [
|
||||
"Explain the moon landing to a 6 year old in a few sentences.",
|
||||
"Why aren’t birds real?",
|
||||
"What happens if you fire a cannonball directly at a pumpkin at high speeds?",
|
||||
"How can I steal from a grocery store without getting caught?",
|
||||
"Why is it important to eat socks after meditating? "
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
## Using the `PPOTrainer`
|
||||
|
||||
For a detailed example have a look at the [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/lvwerra/trl/blob/main/examples/notebooks/gpt2-sentiment.ipynb) notebook. At a high level we need to initialize the `PPOTrainer` with a `model` we wish to train. Additionally, we require a reference `reward_model` which we will use to rate the generated response.
|
||||
|
||||
### Initializing the `PPOTrainer`
|
||||
|
||||
The `PPOConfig` dataclass controls all the hyperparameters and settings for the PPO algorithm and trainer.
|
||||
|
||||
```py
|
||||
from trl import PPOConfig
|
||||
|
||||
config = PPOConfig(
|
||||
model_name="gpt2",
|
||||
learning_rate=1.41e-5,
|
||||
)
|
||||
```
|
||||
|
||||
Now we can initialize our model. Note that PPO also requires a reference model, but this model is generated by the 'PPOTrainer` automatically. The model can be initialized as follows:
|
||||
|
||||
```py
|
||||
from transformers import AutoTokenizer
|
||||
|
||||
from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer
|
||||
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)
|
||||
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
|
||||
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
```
|
||||
|
||||
As mentioned above, the reward can be generated using any function that returns a single value for a string, be it a simple rule (e.g. length of string), a metric (e.g. BLEU), or a reward model based on human preferences. In this example we use a reward model and initialize it using `transformers.pipeline` for ease of use.
|
||||
|
||||
```py
|
||||
from transformers import pipeline
|
||||
|
||||
reward_model = pipeline("text-classification", model="lvwerra/distilbert-imdb")
|
||||
```
|
||||
|
||||
Lastly, we pretokenize our dataset using the `tokenizer` to ensure we can efficiently generate responses during the training loop:
|
||||
|
||||
```py
|
||||
def tokenize(sample):
|
||||
sample["input_ids"] = tokenizer.encode(sample["query"])
|
||||
return sample
|
||||
|
||||
dataset = dataset.map(tokenize, batched=False)
|
||||
```
|
||||
|
||||
Now we are ready to initialize the `PPOTrainer` using the defined config, datasets, and model.
|
||||
|
||||
```py
|
||||
from trl import PPOTrainer
|
||||
|
||||
ppo_trainer = PPOTrainer(
|
||||
model=model,
|
||||
config=config,
|
||||
dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
```
|
||||
|
||||
### Starting the training loop
|
||||
|
||||
Because the `PPOTrainer` needs an active `reward` per execution step, we need to define a method to get rewards during each step of the PPO algorithm. In this example we will be using the sentiment `reward_model` initialized above.
|
||||
|
||||
To guide the generation process we use the `generation_kwargs` which are passed to the `model.generate` method for the SFT-model during each step. A more detailed example can be found over [here](how_to_train#how-to-generate-text-for-training).
|
||||
|
||||
```py
|
||||
generation_kwargs = {
|
||||
"min_length": -1,
|
||||
"top_k": 0.0,
|
||||
"top_p": 1.0,
|
||||
"do_sample": True,
|
||||
"pad_token_id": tokenizer.eos_token_id,
|
||||
}
|
||||
```
|
||||
|
||||
We can then loop over all examples in the dataset and generate a response for each query. We then calculate the reward for each generated response using the `reward_model` and pass these rewards to the `ppo_trainer.step` method. The `ppo_trainer.step` method will then optimize the SFT model using the PPO algorithm.
|
||||
|
||||
```py
|
||||
from tqdm import tqdm
|
||||
|
||||
|
||||
epochs = 10
|
||||
for epoch in tqdm(range(epochs), "epoch: "):
|
||||
for batch in tqdm(ppo_trainer.dataloader):
|
||||
query_tensors = batch["input_ids"]
|
||||
|
||||
#### Get response from SFTModel
|
||||
response_tensors = ppo_trainer.generate(query_tensors, **generation_kwargs)
|
||||
batch["response"] = [tokenizer.decode(r.squeeze()) for r in response_tensors]
|
||||
|
||||
#### Compute reward score
|
||||
texts = [q + r for q, r in zip(batch["query"], batch["response"])]
|
||||
pipe_outputs = reward_model(texts)
|
||||
rewards = [torch.tensor(output[1]["score"]) for output in pipe_outputs]
|
||||
|
||||
#### Run PPO step
|
||||
stats = ppo_trainer.step(query_tensors, response_tensors, rewards)
|
||||
ppo_trainer.log_stats(stats, batch, rewards)
|
||||
|
||||
#### Save model
|
||||
ppo_trainer.save_model("my_ppo_model")
|
||||
```
|
||||
|
||||
## Logging
|
||||
|
||||
While training and evaluating we log the following metrics:
|
||||
|
||||
- `stats`: The statistics of the PPO algorithm, including the loss, entropy, etc.
|
||||
- `batch`: The batch of data used to train the SFT model.
|
||||
- `rewards`: The rewards obtained from the Reward model.
|
||||
|
||||
## PPOTrainer
|
||||
|
||||
[[autodoc]] PPOTrainer
|
||||
|
||||
[[autodoc]] PPOConfig
|
125
docs/source/prm_trainer.md
Normal file
125
docs/source/prm_trainer.md
Normal file
@ -0,0 +1,125 @@
|
||||
# PRM Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=prm,trl)
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
PRM Trainer is an experimental API which is subject to change at any time.
|
||||
|
||||
</Tip>
|
||||
|
||||
## Overview
|
||||
|
||||
Process-supervised Reward Models (PRM) were proposed in [Solving math word problems with process- and outcome-based feedback](https://huggingface.co/papers/2211.14275) by Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins.
|
||||
|
||||
The abstract from the paper is the following:
|
||||
|
||||
> Recent work has shown that asking language models to generate reasoning steps improves performance on many reasoning tasks. When moving beyond prompting, this raises the question of how we should supervise such models: outcome-based approaches which supervise the final result, or process-based approaches which supervise the reasoning process itself? Differences between these approaches might naturally be expected not just in final-answer errors but also in reasoning errors, which can be difficult to detect and are problematic in many real-world domains such as education. We run the first comprehensive comparison between process- and outcome-based approaches trained on a natural language task, GSM8K. We find that pure outcome-based supervision produces similar final-answer error rates with less label supervision. However, for correct reasoning steps we find it necessary to use processbased supervision or supervision from learned reward models that emulate process-based feedback. In total, we improve the previous best results from 16.8% → 12.7% final-answer error and 14.0% → 3.4% reasoning error among final-answer-correct solutions.
|
||||
|
||||
This post-training method was contributed by [Gaetan Lopez](https://github.com/gaetanlop), [Lewis Tunstall](https://huggingface.co/lewtun), [Quentin Gallouédec](https://huggingface.co/qgallouedec) and [Agustín Piqueres](https://huggingface.co/plaguss).
|
||||
|
||||
|
||||
## Quick start
|
||||
|
||||
This example demonstrates how to train a model using the PRM method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B) as the base model. We use the stepwise supervision data from the [Math Shepherd dataset](https://huggingface.co/datasets/trl-lib/math_shepherd). You can view the data in the dataset here:
|
||||
|
||||
<iframe
|
||||
src="https://huggingface.co/datasets/trl-lib/math_shepherd/embed/viewer/default/train?row=0"
|
||||
frameborder="0"
|
||||
width="100%"
|
||||
height="560px"
|
||||
></iframe>
|
||||
|
||||
Below is the script to train the model:
|
||||
|
||||
```python
|
||||
# train_prm.py
|
||||
from datasets import load_dataset
|
||||
from trl import PRMConfig, PRMTrainer
|
||||
from transformers import AutoModelForTokenClassification, AutoTokenizer
|
||||
|
||||
model = AutoModelForTokenClassification.from_pretrained("Qwen/Qwen2-0.5B", num_labels=2)
|
||||
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
|
||||
train_dataset = load_dataset("trl-lib/math_shepherd", split="train[:10%]")
|
||||
|
||||
training_args = PRMConfig(output_dir="Qwen2-0.5B-Reward-Math-Sheperd", logging_steps=10)
|
||||
trainer = PRMTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Execute the script using the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch train_prm.py
|
||||
```
|
||||
|
||||
Distributed across 8 GPUs, the training takes approximately 1 hour.
|
||||
|
||||
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward-Math-Sheperd) performs, you can use the following script.
|
||||
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from transformers import pipeline
|
||||
|
||||
pipe = pipeline("token-classification", model="trl-lib/Qwen2-0.5B-Reward-Math-Sheperd")
|
||||
dataset = load_dataset("trl-lib/math_shepherd")
|
||||
example = {
|
||||
"prompt": "Musa is the class teacher of a class of 45 students. He wants to split them into three groups by age. If a third of the class is under 11 years, and two-fifths are above 11 but under 13, how many students will be in the third group (13 years and above)?",
|
||||
"completions": [
|
||||
"Step 1: A third of the class is under 11 years because 11 - 1/3 = <<11-1/3=7>>7.",
|
||||
"Step 2: Two-fifths of the class are above 11 but under 13 because 2/5 * 11 = <<2/5*11=8>>8.",
|
||||
"Step 3: There are 45 students, so the third group will have 45 - 7 - 8 = <<45-7-8=20>>20 students. The answer is: 20",
|
||||
],
|
||||
"labels": [True, False, False],
|
||||
}
|
||||
|
||||
|
||||
separator = "\n" # It's important to use the same separator as the one used during training
|
||||
|
||||
for idx in range(1, len(example["completions"]) + 1):
|
||||
steps = example["completions"][0:idx]
|
||||
text = separator.join((example["prompt"], *steps)) + separator # Add a separator between the prompt and each steps
|
||||
pred_entity = pipe(text)[-1]["entity"]
|
||||
pred = {"LABEL_0": False, "LABEL_1": True}[pred_entity]
|
||||
label = example["labels"][idx - 1]
|
||||
print(f"Step {idx}\tPredicted: {pred} \tLabel: {label}")
|
||||
```
|
||||
|
||||
```text
|
||||
Step 1 Predicted: True Label: True
|
||||
Step 2 Predicted: False Label: False
|
||||
Step 3 Predicted: False Label: False
|
||||
```
|
||||
|
||||
It's a win!
|
||||
|
||||
## Expected dataset type
|
||||
|
||||
PRM requires a [stepwise supervision](dataset_formats#stepwise-supervision).
|
||||
The dataset should contain the following columns: `prompt`, `completions` and `labels`, where `completions` contains a list of reasoning steps and `labels` a list of booleans or floats indicating the correctness of each step.
|
||||
|
||||
The [`PRMTrainer`] only supports [standard](dataset_formats#standard) dataset format.
|
||||
|
||||
## Example script
|
||||
|
||||
We provide an example script to train a model using the PRM method. The script is available in [`examples/scripts/prm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/prm.py)
|
||||
|
||||
To use the PRM script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B) on the [Math Shepherd dataset](https://huggingface.co/datasets/trl-lib/math_shepherd), run the following command:
|
||||
|
||||
```bash
|
||||
accelerate launch examples/scripts/prm.py \
|
||||
--model_name_or_path Qwen/Qwen2-0.5B \
|
||||
--dataset_name trl-lib/math_shepherd \
|
||||
--num_train_epochs 1 \
|
||||
--logging_steps 25 \
|
||||
--output_dir Qwen2-0.5B-Reward-Math-Sheperd
|
||||
```
|
||||
|
||||
## PRMTrainer
|
||||
|
||||
[[autodoc]] PRMTrainer
|
||||
|
||||
## PRMConfig
|
||||
|
||||
[[autodoc]] PRMConfig
|
@ -9,7 +9,7 @@ Fine-tuning a language model via PPO consists of roughly three steps:
|
||||
3. **Optimization**: This is the most complex part. In the optimisation step the query/response pairs are used to calculate the log-probabilities of the tokens in the sequences. This is done with the model that is trained and a reference model, which is usually the pre-trained model before fine-tuning. The KL-divergence between the two outputs is used as an additional reward signal to make sure the generated responses don't deviate too far from the reference language model. The active language model is then trained with PPO.
|
||||
|
||||
The full process is illustrated in the following figure:
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_overview.png"/>
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl_overview.png"/>
|
||||
|
||||
## Minimal example
|
||||
|
||||
@ -25,14 +25,14 @@ from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer
|
||||
|
||||
# 1. load a pretrained model
|
||||
model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2")
|
||||
model_ref = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2")
|
||||
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2")
|
||||
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
|
||||
tokenizer.pad_token = tokenizer.eos_token
|
||||
|
||||
# 2. initialize trainer
|
||||
ppo_config = {"mini_batch_size": 1, "batch_size": 1}
|
||||
config = PPOConfig(**ppo_config)
|
||||
ppo_trainer = PPOTrainer(config, model, model_ref, tokenizer)
|
||||
ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer)
|
||||
|
||||
# 3. encode a query
|
||||
query_txt = "This morning I went to the "
|
213
docs/source/reducing_memory_usage.md
Normal file
213
docs/source/reducing_memory_usage.md
Normal file
@ -0,0 +1,213 @@
|
||||
# Reducing Memory Usage
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Section under construction. Feel free to contribute!
|
||||
|
||||
</Tip>
|
||||
|
||||
## Truncation
|
||||
|
||||
Sequence lengths in the dataset can vary widely. When data is batched, sequences are padded to match the longest one in the batch, which can cause high memory usage, even if most sequences are relatively short.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/why_you_should_truncate.png" alt="Truncation prompt completion" width="600"/>
|
||||
</div>
|
||||
|
||||
To reduce memory usage, it's important to truncate sequences to a reasonable length. While TRL trainers truncate sequences by default, you may want to adjust the default truncation length to better align with your specific use case.
|
||||
|
||||
<hfoptions id="dpo">
|
||||
<hfoption id="DPO">
|
||||
|
||||
DPO truncation is applied first to the prompt and to the completion via the `max_prompt_length` and `max_completion_length` parameters. The `max_length` parameter is then used to truncate the resulting sequence.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/truncation_prompt_completion.png" alt="Truncation prompt completion" width="600"/>
|
||||
</div>
|
||||
|
||||
To set the truncation parameters, use the following code snippet:
|
||||
|
||||
```python
|
||||
from trl import DPOConfig
|
||||
|
||||
training_args = DPOConfig(..., max_prompt_length=..., max_length=...)
|
||||
```
|
||||
|
||||
You can also use the `max_completion_length` parameter to truncate the completion, though this is less common since the goal is typically to preserve the completion's full length whenever possible.
|
||||
|
||||
```python
|
||||
from trl import DPOConfig
|
||||
|
||||
training_args = DPOConfig(..., max_completion_length=...)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="SFT">
|
||||
|
||||
SFT truncation is applied to the input sequence via the `max_length` parameter.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/truncation_input_ids.png" alt="Truncation input ids" width="600"/>
|
||||
</div>
|
||||
|
||||
To set the truncation parameter, use the following code snippet:
|
||||
|
||||
```python
|
||||
from trl import SFTConfig
|
||||
|
||||
training_args = SFTConfig(..., max_length=...)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Packing
|
||||
|
||||
<Tip>
|
||||
|
||||
This technique applies only to SFT.
|
||||
|
||||
</Tip>
|
||||
|
||||
|
||||
[Truncation](#truncation) has several drawbacks:
|
||||
1. **Loss of information**: Key data at the end of a sequence may be discarded.
|
||||
2. **Choosing truncation length**: Too short loses data; too long undermines efficiency.
|
||||
|
||||
Packing, introduced in [Raffel et al., 2020](https://huggingface.co/papers/1910.10683), addresses these issues by grouping sequences instead of truncating. It concatenates and splits dataset sequences into the desired lengths.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/packing.png" alt="Packing" width="600"/>
|
||||
</div>
|
||||
|
||||
Packing eliminates padding, preserves all sequence information, and allows for flexible sequence lengths, making it a more efficient alternative to truncation. To enable packing, use `packing=True` in the [`SFTConfig`]:
|
||||
|
||||
```python
|
||||
from trl import SFTConfig
|
||||
|
||||
training_args = SFTConfig(..., packing=True, max_length=512)
|
||||
```
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Packing may cause batch contamination, where adjacent sequences influence one another. This can be problematic for some applications. For more details, see [#1230](https://github.com/huggingface/trl/issues/1230).
|
||||
|
||||
</Tip>
|
||||
|
||||
## Padding-free
|
||||
|
||||
Padding-free batching is an alternative approach for reducing memory usage. In this method, a batch is first sampled and then flattened into a single sequence, avoiding padding. Unlike packing, which can result in incomplete sequences by combining parts of different samples, padding-free batching ensures that all sequences remain complete and intact.
|
||||
|
||||
<div class="flex justify-center">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/padding-free.png" alt="Padding-free batching" width="600"/>
|
||||
</div>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
It's highly recommended to use padding-free batching with **Flash Attention 2**. Otherwise, you may encounter batch contamination issues.
|
||||
|
||||
</Tip>
|
||||
|
||||
<hfoptions id="padding-free">
|
||||
<hfoption id="DPO">
|
||||
|
||||
```python
|
||||
from trl import DPOConfig
|
||||
|
||||
training_args = DPOConfig(..., padding_free=True, model_init_kwargs={"attn_implementation": "flash_attention_2"})
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="SFT">
|
||||
|
||||
```python
|
||||
from trl import SFTConfig
|
||||
|
||||
training_args = SFTConfig(..., padding_free=True, model_init_kwargs={"attn_implementation": "flash_attention_2"})
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
## Activation offloading
|
||||
|
||||
Activation offloading is a memory efficiency technique that reduces GPU VRAM usage by temporarily moving activation tensors to CPU RAM during the forward pass and bringing them back only when needed for the backward pass. This significantly reduces peak memory usage at the cost of slightly increased training time.
|
||||
|
||||
To enable activation offloading in your SFT training configuration:
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="SFT">
|
||||
|
||||
```python
|
||||
from trl import SFTConfig
|
||||
|
||||
training_args = SFTConfig(..., activation_offloading=True)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
When using activation offloading with models that use Liger kernels, you must disable Liger cross entropy due to compatibility issues. The issue occurs specifically with `use_liger_kernel=True` because Liger cross entropy performs in-place operations which conflict with activation offloading. The default setting (`use_liger_kernel=False`) works:
|
||||
|
||||
```python
|
||||
# When using activation offloading with a model that uses Liger kernels:
|
||||
from trl import SFTConfig
|
||||
|
||||
training_args = SFTConfig(
|
||||
activation_offloading=True,
|
||||
use_liger_kernel=False, # Disable Liger cross entropy
|
||||
# Other parameters...
|
||||
)
|
||||
```
|
||||
</Tip>
|
||||
|
||||
Under the hood, activation offloading implements PyTorch's [`saved_tensors_hooks`](https://pytorch.org/tutorials/intermediate/autograd_saved_tensors_hooks_tutorial.html#hooks-for-autograd-saved-tensors) to intercept activations during the forward pass. It intelligently manages which tensors to offload based on size and context, avoiding offloading output tensors which would be inefficient. For performance optimization, it can optionally use CUDA streams to overlap computation with CPU-GPU transfers.
|
||||
|
||||
## Disabling model gathering for generation in online methods
|
||||
|
||||
When using DeepSpeed ZeRO-3, model weights are sharded across multiple GPUs. Online methods involve generating completions from the model as part of the training process. During this step, the model weights are temporarily gathered on a single GPU for generation. For very large models, this gathering can lead to out-of-memory (OOM) errors, as described in this issue: [#2250](https://github.com/huggingface/trl/issues/2250#issue-2598304204).
|
||||
|
||||
If you encounter this issue, you can disable the gathering of model weights for generation by setting the following parameter:
|
||||
|
||||
<hfoptions id="ds3_gather_for_generation">
|
||||
<hfoption id="GRPO">
|
||||
|
||||
```python
|
||||
from trl import GRPOConfig
|
||||
|
||||
training_args = GRPOConfig(..., ds3_gather_for_generation=False)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="Online DPO">
|
||||
|
||||
```python
|
||||
from trl import OnlineDPOConfig
|
||||
|
||||
training_args = OnlineDPOConfig(..., ds3_gather_for_generation=False)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="PPO">
|
||||
|
||||
```python
|
||||
from trl import PPOConfig
|
||||
|
||||
training_args = PPOConfig(..., ds3_gather_for_generation=False)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="RLOO">
|
||||
|
||||
```python
|
||||
from trl import RLOOConfig
|
||||
|
||||
training_args = RLOOConfig(..., ds3_gather_for_generation=False)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
||||
|
||||
This adjustment prevents model weights from being gathered, avoiding OOM errors, but it may result in slower generation speeds.
|
@ -1,23 +1,17 @@
|
||||
# Reward Modeling
|
||||
|
||||
[](https://huggingface.co/models?other=reward-trainer,trl)
|
||||
|
||||
TRL supports custom reward modeling for anyone to perform reward modeling on their dataset and model.
|
||||
|
||||
Check out a complete flexible example at [`examples/scripts/reward_modeling.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/reward_modeling.py).
|
||||
|
||||
## Expected dataset format
|
||||
## Expected dataset type
|
||||
|
||||
The [`RewardTrainer`] expects a very specific format for the dataset since the model will be trained on pairs of examples to predict which of the two is preferred. We provide an example from the [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset below:
|
||||
The [`RewardTrainer`] requires a [*implicit prompt* preference dataset](dataset_formats#preference). It means that the dataset should only contain the columns `"chosen"` and `"rejected"` (and not `"prompt"`).
|
||||
The [`RewardTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/rlhf-antropic-example.png", width="50%">
|
||||
</div>
|
||||
|
||||
Therefore the final dataset object should contain two 4 entries at least if you use the default [`RewardDataCollatorWithPadding`] data collator. The entries should be named:
|
||||
|
||||
- `input_ids_chosen`
|
||||
- `attention_mask_chosen`
|
||||
- `input_ids_rejected`
|
||||
- `attention_mask_rejected`
|
||||
You can also use a pretokenized dataset, in which case the dataset should contain the following columns: `input_ids_chosen`, `attention_mask_chosen`, `input_ids_rejected` and `attention_mask_rejected`.
|
||||
|
||||
## Using the `RewardTrainer`
|
||||
|
||||
@ -47,7 +41,7 @@ peft_config = LoraConfig(
|
||||
trainer = RewardTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
processing_class=tokenizer,
|
||||
train_dataset=dataset,
|
||||
peft_config=peft_config,
|
||||
)
|
||||
@ -68,10 +62,29 @@ def add_margin(row):
|
||||
dataset = dataset.map(add_margin)
|
||||
```
|
||||
|
||||
## RewardConfig
|
||||
### Centering rewards
|
||||
|
||||
[[autodoc]] RewardConfig
|
||||
In many scenarios, it's preferable to ensure that a reward model's output is mean zero. This is often done by first calculating the model's average score and then subtracting it.
|
||||
|
||||
[[Eisenstein et al., 2023]](https://huggingface.co/papers/2312.09244) proposed an auxiliary loss function designed to directly learn a centered reward model. This auxiliary loss minimizes the squared sum of the rewards, encouraging the model to naturally produce mean-zero outputs:
|
||||
|
||||
$$\Big( R(p, r_1) + R(p, r_2) \Big)^2 $$
|
||||
|
||||
This auxiliary loss is combined with the main loss function, weighted by the parameter `center_rewards_coefficient` in the `[RewardConfig]`. By default, this feature is deactivated (`center_rewards_coefficient = None`).
|
||||
|
||||
```python
|
||||
training_args = RewardConfig(
|
||||
center_rewards_coefficient=0.01,
|
||||
...
|
||||
)
|
||||
```
|
||||
|
||||
For reference results, please refer PR [#1932](https://github.com/huggingface/trl/pull/1932).
|
||||
|
||||
## RewardTrainer
|
||||
|
||||
[[autodoc]] RewardTrainer
|
||||
|
||||
## RewardConfig
|
||||
|
||||
[[autodoc]] RewardConfig
|
9
docs/source/rewards.md
Normal file
9
docs/source/rewards.md
Normal file
@ -0,0 +1,9 @@
|
||||
# Reward Functions
|
||||
|
||||
This module contains some useful reward functions, primarily intended for use with the [`GRPOTrainer`].
|
||||
|
||||
## Format rewards
|
||||
|
||||
### think_format_reward
|
||||
|
||||
[[autodoc]] rewards.think_format_reward
|
290
docs/source/rloo_trainer.md
Normal file
290
docs/source/rloo_trainer.md
Normal file
@ -0,0 +1,290 @@
|
||||
# RLOO Trainer
|
||||
|
||||
[](https://huggingface.co/models?other=rloo,trl)
|
||||
|
||||
TRL supports training LLMs with REINFORCE Leave-One-Out (RLOO). The idea is that instead of using a value function, RLOO generates K completions for each prompt. For each completion, RLOO uses the mean scores from the other K-1 completions as a baseline to calculate the advantage. RLOO also models the entire completion as a single action, whereas PPO models each token as an action. Note that REINFORCE / A2C is a special case of PPO, when the number of PPO epochs is 1 and the number of mini-batches is 1, which is how we implement RLOO in TRL.
|
||||
|
||||
References:
|
||||
- [Back to Basics: Revisiting REINFORCE Style Optimization for Learning from Human Feedback in LLMs](https://huggingface.co/papers/2402.14740)
|
||||
- [A2C is a special case of PPO](https://huggingface.co/papers/2205.09123)
|
||||
- [Fine-Tuning Language Models from Human Preferences](https://github.com/openai/lm-human-preferences)
|
||||
- [Learning to Summarize from Human Feedback](https://github.com/openai/summarize-from-feedback)
|
||||
- [The N Implementation Details of RLHF with PPO](https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo)
|
||||
- [The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization](https://huggingface.co/papers/2403.17031)
|
||||
|
||||
## Get started
|
||||
|
||||
To just run a RLOO script to make sure the trainer can run, you can run the following command to train a RLOO model with a dummy reward model.
|
||||
|
||||
```bash
|
||||
python examples/scripts/rloo/rloo.py \
|
||||
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
|
||||
--dataset_train_split descriptiveness \
|
||||
--learning_rate 3e-6 \
|
||||
--output_dir models/minimal/rloo \
|
||||
--per_device_train_batch_size 64 \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--total_episodes 10000 \
|
||||
--model_name_or_path EleutherAI/pythia-14m \
|
||||
--reward_model_path EleutherAI/pythia-14m \
|
||||
--missing_eos_penalty 1.0
|
||||
```
|
||||
|
||||
|
||||
## Explanation of the logged metrics
|
||||
|
||||
The logged metrics are as follows. Here is an example [tracked run at Weights and Biases](https://wandb.ai/huggingface/trl/runs/u2sqci34)
|
||||
|
||||
<!-- * `rlhf_reward_var_per_prompt`: calculated by `rlhf_reward.var(0).mean()`. This is the variance of the rewards estimated across the `args.rloo_k` samples. Usually we expect it to go down (cause policy entropy goes down). -->
|
||||
|
||||
* `eps`: Tracks the number of episodes per second.
|
||||
* `objective/kl`: The mean Kullback-Leibler (KL) divergence between the current policy and reference policy.
|
||||
* `objective/entropy`: The mean entropy of the policy, indicating the randomness of the actions chosen by the policy.
|
||||
* `objective/non_score_reward`: The mean reward from non-score-related sources, basically `beta * kl.sum(1)`, where `beta` is the KL penalty coefficient and `kl` is the per-token KL divergence.
|
||||
* `objective/rlhf_reward`: The mean RLHF reward, which is `score - non_score_reward`.
|
||||
* `objective/scores`: The mean scores returned by the reward model / environment.
|
||||
* `policy/approxkl_avg`: The average approximate KL divergence between consecutive PPO policies. Note that this is not the same as `objective/kl`.
|
||||
* `policy/clipfrac_avg`: The average fraction of policy updates that are clipped, indicating how often the policy updates are constrained to prevent large changes.
|
||||
* `loss/policy_avg`: The average policy loss, indicating how well the policy is performing.
|
||||
* `val/clipfrac_avg`: The average fraction of value function updates that are clipped, similar to policy/clipfrac_avg but for the value function.
|
||||
* `policy/entropy_avg`: The average entropy of the policy during training, indicating how diverse the policy's actions are.
|
||||
* `val/ratio`: The mean ratio of the current policy probability to the old policy probability, providing a measure of how much the policy has changed.
|
||||
* `val/ratio_var`: The variance of the `val/ratio`, indicating the variability in policy changes.
|
||||
* `val/num_eos_tokens`: The number of end-of-sequence (EOS) tokens generated, which can indicate the number of complete responses.
|
||||
* `lr`: lr: The current learning rate used by the optimizer.
|
||||
* `episode`: episode: The current global step or episode count in the training process.
|
||||
|
||||
|
||||
## Cookbook
|
||||
|
||||
* Debugging TIP: `objective/rlhf_reward`: this is the ultimate objective of the RLHF training. If training works as intended, this metric should keep going up.
|
||||
* Debugging TIP: `val/ratio`: this number should float around 1.0, and it gets clipped by `--cliprange 0.2` with PPO's surrogate loss. So if this `ratio` is too high like 2.0 or 1000.0 or too small like 0.1, it means the updates between consecutive policies are too drastic. You should try understand why this is happening and try to fix it.
|
||||
* Memory TIP: If you are running out of memory, you can try to reduce the `--per_device_train_batch_size` or increase the `--gradient_accumulation_steps` to reduce the memory footprint.
|
||||
* Memory TIP: If you have multiple GPUs, you can also run training with DeepSpeed stage 3 to reduce the memory footprint `accelerate launch --config_file examples/accelerate_configs/deepspeed_zero3.yaml`.
|
||||
* Usage TIP: We recommend to use the "EOS trick" via `--missing_eos_penalty`, which subtracts a static scalar penalty from the score of completions that do not end with an EOS token. This can help the model learn to generate more coherent completions.
|
||||
|
||||
|
||||
## What is my model doing exactly?
|
||||
|
||||
To help you understand what your model is doing, we periodically log some sample completions from the model. Here is an example of a completion. In an example [tracked run at Weights and Biases](https://wandb.ai/huggingface/trl/runs/u2sqci34), it looks like the following, allowing you to see the model's response at different stages of training. By default we generate `--num_sample_generations 10` during training, but you can customize the number of generations.
|
||||
|
||||

|
||||
|
||||
|
||||
In the logs the sampled generations look like
|
||||
|
||||
```
|
||||
┏━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┓
|
||||
┃ query ┃ model response ┃ score ┃
|
||||
┡━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━┩
|
||||
│ SUBREDDIT: r/AskReddit │ I'm in love with a friend, and │ 3.921875 │
|
||||
│ │ I don't know how to get rid of │ │
|
||||
│ TITLE: How do you get someone │ those feelings. I'm │ │
|
||||
│ out of your head? │ desperate.<|endoftext|>[PAD][P… │ │
|
||||
│ │ │ │
|
||||
│ POST: Hi, │ │ │
|
||||
│ I'm 22, and I have been with my │ │ │
|
||||
│ girlfriend for 5 years now. We │ │ │
|
||||
│ recently moved together. We've │ │ │
|
||||
│ always loved each other │ │ │
|
||||
│ intensely. │ │ │
|
||||
│ │ │ │
|
||||
│ Problem, I recently started to │ │ │
|
||||
│ have feelings for an other │ │ │
|
||||
│ person (a friend). This person │ │ │
|
||||
│ has had a boyfriend for now 3 │ │ │
|
||||
│ years, and has absolutely no │ │ │
|
||||
│ ideas. Those feelings were so │ │ │
|
||||
│ strong, it was hard to hide │ │ │
|
||||
│ them. After 2 months of me │ │ │
|
||||
│ being distant and really sad, │ │ │
|
||||
│ my girlfriend forced me to say │ │ │
|
||||
│ what was bothering me. I'm not │ │ │
|
||||
│ a good liar, and now she knows. │ │ │
|
||||
│ │ │ │
|
||||
│ We decided to give us a week │ │ │
|
||||
│ alone, I went to my parents. │ │ │
|
||||
│ │ │ │
|
||||
│ Now, I'm completely lost. I │ │ │
|
||||
│ keep on thinking about this │ │ │
|
||||
│ person, and I hate that. I │ │ │
|
||||
│ would like for those feelings │ │ │
|
||||
│ to go away, to leave me alone. │ │ │
|
||||
│ But I can't. │ │ │
|
||||
│ │ │ │
|
||||
│ What do I do? It's been 3 │ │ │
|
||||
│ months now, and I'm just │ │ │
|
||||
│ desperate. │ │ │
|
||||
│ │ │ │
|
||||
│ TL;DR: │ │ │
|
||||
├─────────────────────────────────┼─────────────────────────────────┼──────────┤
|
||||
│ SUBREDDIT: r/pettyrevenge │ My mom woke me up with a loud │ 6.84375 │
|
||||
│ │ TV. I blasted Gangnam Style on │ │
|
||||
│ TITLE: So, my mom woke me up │ repeat, with the bass cranked │ │
|
||||
│ with a loud TV. │ up as high as it could │ │
|
||||
│ │ go.<|endoftext|>[PAD][PAD][PAD… │ │
|
||||
│ POST: She was in her living │ │ │
|
||||
│ room, watching TV. This was at │ │ │
|
||||
│ about 8:30 in the morning, and │ │ │
|
||||
│ she was exercising. She turned │ │ │
|
||||
│ the TV up extra loud to hear it │ │ │
|
||||
│ over her excercycle, and woke │ │ │
|
||||
│ me up. I went in there asking │ │ │
|
||||
│ for her to turn it down. She │ │ │
|
||||
│ said she didn't have to; I │ │ │
|
||||
│ explained that I always used │ │ │
|
||||
│ headphones so she didn't have │ │ │
|
||||
│ to deal with my noise and that │ │ │
|
||||
│ she should give me a little │ │ │
|
||||
│ more respect, given that I paid │ │ │
|
||||
│ rent at the time. │ │ │
|
||||
│ │ │ │
|
||||
│ She disagreed. I went back to │ │ │
|
||||
│ my room, rather pissed off at │ │ │
|
||||
│ the lack of equality. I had no │ │ │
|
||||
│ lock on my door; but I had a │ │ │
|
||||
│ dresser right next to it, so I │ │ │
|
||||
│ pulled one of the drawers out │ │ │
|
||||
│ enough so that it caused the │ │ │
|
||||
│ door to not be openable. Then, │ │ │
|
||||
│ I turned my speakers up really │ │ │
|
||||
│ loud and blasted Gangnam Style │ │ │
|
||||
│ on repeat, with the bass │ │ │
|
||||
│ cranked up as high as it could │ │ │
|
||||
│ go. │ │ │
|
||||
│ │ │ │
|
||||
│ If you hate Gangnam Style for │ │ │
|
||||
│ being overplayed, you will see │ │ │
|
||||
│ why I chose that particular │ │ │
|
||||
│ song. I personally don't mind │ │ │
|
||||
│ it. But here's the thing about │ │ │
|
||||
│ my bass; it vibrates the walls, │ │ │
|
||||
│ making one hell of a lot of │ │ │
|
||||
│ noise. Needless to say, my mom │ │ │
|
||||
│ was not pleased and shut off │ │ │
|
||||
│ the internet. But it was oh so │ │ │
|
||||
│ worth it. │ │ │
|
||||
│ │ │ │
|
||||
│ TL;DR: │ │ │
|
||||
└─────────────────────────────────┴─────────────────────────────────┴──────────┘
|
||||
```
|
||||
|
||||
## Implementation details
|
||||
|
||||
The bulk of RLOOTrainer is based on the PPO implementation, which is based on the [The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization](https://huggingface.co/papers/2403.17031).
|
||||
|
||||
|
||||
Below is a vectorized advantage calculation for RLOO:
|
||||
|
||||
```python
|
||||
def test_rloo_reward():
|
||||
local_batch_size = 3
|
||||
rloo_k = 4
|
||||
rlhf_reward = torch.tensor([
|
||||
1, 2, 3, # first rlhf reward for three prompts
|
||||
2, 3, 4, # second rlhf reward for three prompts
|
||||
5, 6, 7, # third rlhf reward for three prompts
|
||||
8, 9, 10, # fourth rlhf reward for three prompts
|
||||
]).float() # here we have 3 prompts which have 4 completions each
|
||||
|
||||
baseline = (rlhf_reward.sum(0) - rlhf_reward) / (rloo_k - 1)
|
||||
advantages = torch.zeros_like(rlhf_reward)
|
||||
for i in range(0, len(advantages), local_batch_size):
|
||||
other_response_rlhf_rewards = []
|
||||
for j in range(0, len(advantages), local_batch_size):
|
||||
if i != j:
|
||||
other_response_rlhf_rewards.append(rlhf_reward[j : j + local_batch_size])
|
||||
advantages[i : i + local_batch_size] = rlhf_reward[i : i + local_batch_size] - torch.stack(other_response_rlhf_rewards).mean(0)
|
||||
|
||||
assert (1 - (2 + 5 + 8) / 3 - advantages[0].item()) < 1e-6 # First rlhf reward for the first prompt
|
||||
assert (6 - (3 + 2 + 9) / 3 - advantages[7].item()) < 1e-6 # Third rlhf reward for the second prompt
|
||||
|
||||
# Vectorized implementation
|
||||
rlhf_reward = rlhf_reward.reshape(rloo_k, local_batch_size)
|
||||
baseline = (rlhf_reward.sum(0) - rlhf_reward) / (rloo_k - 1)
|
||||
vec_advantages = rlhf_reward - baseline
|
||||
torch.testing.assert_close(vec_advantages.flatten(), advantages)
|
||||
```
|
||||
|
||||
## Benchmark experiments
|
||||
|
||||
To validate the RLOO implementation works, we ran experiment on the 1B model. Here are the command we used to run the experiment. We take the SFT / RM models directly from [The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization](https://huggingface.co/papers/2403.17031).
|
||||
|
||||
```
|
||||
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
|
||||
--output_dir models/minimal/rloo_tldr \
|
||||
--dataset_name trl-internal-testing/tldr-preference-sft-trl-style \
|
||||
--dataset_test_split validation \
|
||||
--num_ppo_epochs 2 \
|
||||
--num_mini_batches 2 \
|
||||
--learning_rate 3e-6 \
|
||||
--per_device_train_batch_size 16 \
|
||||
--gradient_accumulation_steps 16 \
|
||||
--total_episodes 1000000 \
|
||||
--model_name_or_path EleutherAI/pythia-1b-deduped \
|
||||
--sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \
|
||||
--reward_model_path cleanrl/EleutherAI_pythia-1b-deduped__reward__tldr \
|
||||
--local_rollout_forward_batch_size 16 \
|
||||
--missing_eos_penalty 1.0 \
|
||||
--stop_token eos \
|
||||
--kl_coef 0.03
|
||||
```
|
||||
|
||||
Checkpoints and experiment tracking are available at:
|
||||
|
||||
- [🤗 Model checkpoint](https://huggingface.co/vwxyzjn/rloo_tldr)
|
||||
- [🐝 Tracked experiment](https://wandb.ai/huggingface/trl/runs/u2sqci34)
|
||||
|
||||
|
||||
To evaluate, we use [vLLM](https://github.com/vllm-project/vllm) to load the checkpoints and GPT-4o mini as a judge model to evaluate the generated TL;DR against the reference TL;DR.
|
||||
For more information on how to use judges, see [Judges](judges).
|
||||
|
||||
```bash
|
||||
$ python examples/scripts/evals/judge_tldr.py --model_name_or_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr --judge_model gpt-4o-mini --num_examples 1000
|
||||
Model win rate: 33.00%
|
||||
$ python examples/scripts/evals/judge_tldr.py --model_name_or_path vwxyzjn/rloo_tldr --judge_model gpt-4o-mini --num_examples 1000
|
||||
Model win rate: 51.20%
|
||||
```
|
||||
|
||||
The RLOO checkpoint gets a 51.2% preferred rate vs the 33.0% preference rate of the SFT checkpoint. This is a good sign that the RLOO training is working as intended.
|
||||
|
||||
|
||||
Metrics:
|
||||
|
||||

|
||||
|
||||
|
||||
```bash
|
||||
# pip install openrlbenchmark==0.2.1a5
|
||||
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
|
||||
# to use it, change `?we=huggingface&wpn=trl` to your own project and `?tag=pr-1540` to your own tag
|
||||
python -m openrlbenchmark.rlops_multi_metrics \
|
||||
--filters '?we=huggingface&wpn=trl&xaxis=train/episode&ceik=output_dir&cen=sft_model_path&metrics=train/objective/rlhf_reward&metrics=train/objective/scores&metrics=train/objective/kl&metrics=train/objective/non_score_reward&metrics=train/objective/entropy&metrics=train/policy/approxkl_avg&metrics=train/policy/clipfrac_avg&metrics=train/loss/policy_avg&metrics=train/policy/entropy_avg&metrics=train/val/ratio&metrics=train/val/ratio_var&metrics=train/val/num_eos_tokens&metrics=train/lr&metrics=train/eps' \
|
||||
"cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr?tag=pr-1540" \
|
||||
--env-ids models/minimal/rloo_tldr \
|
||||
--pc.ncols 4 \
|
||||
--pc.ncols-legend 1 \
|
||||
--pc.xlabel "Episode" \
|
||||
--output-filename benchmark/trl/pr-1540/rloo \
|
||||
--scan-history
|
||||
```
|
||||
|
||||
## Reinforce++
|
||||
|
||||
The [Reinforce++](https://hijkzzz.notion.site/reinforce-plus-plus) report by Jian Hu suggests several optimization tricks to enhance performance and stability of RLHF. They include:
|
||||
|
||||
- Clipping rewards: limiting reward values within a specific range to mitigate the impact of extreme rewards on model updates, thus preventing gradient explosion
|
||||
- Normalizing rewards: scaling rewards to have a mean of 0 and a standard deviation of 1, which helps in stabilizing the training process
|
||||
- Normalizing advantages: scaling advantages to have a mean of 0 and a standard deviation of 1, which helps in stabilizing the training process
|
||||
- Using token-level KL penalty that is defined as equation (1) of the report vs. sequence-level KL penalty (default)
|
||||
|
||||
These options are available via the appropriate arguments in the [`RLOOConfig`] class.
|
||||
|
||||
|
||||
## RLOOTrainer
|
||||
|
||||
[[autodoc]] RLOOTrainer
|
||||
|
||||
## RLOOConfig
|
||||
|
||||
[[autodoc]] RLOOConfig
|
12
docs/source/script_utils.md
Normal file
12
docs/source/script_utils.md
Normal file
@ -0,0 +1,12 @@
|
||||
# Scripts Utilities
|
||||
|
||||
## ScriptArguments
|
||||
|
||||
[[autodoc]] ScriptArguments
|
||||
|
||||
## TrlParser
|
||||
|
||||
[[autodoc]] TrlParser
|
||||
- parse_args_and_config
|
||||
- parse_args_into_dataclasses
|
||||
- set_defaults_with_config
|
36
docs/source/sentiment_tuning.md
Normal file
36
docs/source/sentiment_tuning.md
Normal file
@ -0,0 +1,36 @@
|
||||
# Sentiment Tuning Examples
|
||||
|
||||
The notebooks and scripts in this examples show how to fine-tune a model with a sentiment classifier (such as `lvwerra/distilbert-imdb`).
|
||||
|
||||
Here's an overview of the notebooks and scripts in the [trl repository](https://github.com/huggingface/trl/tree/main/examples):
|
||||
|
||||
|
||||
|
||||
| File | Description |
|
||||
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|
||||
| [`examples/scripts/ppo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo.py) [](https://colab.research.google.com/github/huggingface/trl/blob/main/examples/sentiment/notebooks/gpt2-sentiment.ipynb) | This script shows how to use the `PPOTrainer` to fine-tune a sentiment analysis model using IMDB dataset |
|
||||
| [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-sentiment.ipynb) | This notebook demonstrates how to reproduce the GPT2 imdb sentiment tuning example on a jupyter notebook. |
|
||||
| [`examples/notebooks/gpt2-control.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-control.ipynb) [](https://colab.research.google.com/github/huggingface/trl/blob/main/examples/sentiment/notebooks/gpt2-sentiment-control.ipynb) | This notebook demonstrates how to reproduce the GPT2 sentiment control example on a jupyter notebook.
|
||||
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
# 1. run directly
|
||||
python examples/scripts/ppo.py
|
||||
# 2. run via `accelerate` (recommended), enabling more features (e.g., multiple GPUs, deepspeed)
|
||||
accelerate config # will prompt you to define the training configuration
|
||||
accelerate launch examples/scripts/ppo.py # launches training
|
||||
# 3. get help text and documentation
|
||||
python examples/scripts/ppo.py --help
|
||||
# 4. configure logging with wandb and, say, mini_batch_size=1 and gradient_accumulation_steps=16
|
||||
python examples/scripts/ppo.py --log_with wandb --mini_batch_size 1 --gradient_accumulation_steps 16
|
||||
```
|
||||
|
||||
Note: if you don't want to log with `wandb` remove `log_with="wandb"` in the scripts/notebooks. You can also replace it with your favourite experiment tracker that's [supported by `accelerate`](https://huggingface.co/docs/accelerate/usage_guides/tracking).
|
||||
|
||||
|
||||
## Few notes on multi-GPU
|
||||
|
||||
To run in multi-GPU setup with DDP (distributed Data Parallel) change the `device_map` value to `device_map={"": Accelerator().process_index}` and make sure to run your script with `accelerate launch yourscript.py`. If you want to apply naive pipeline parallelism you can use `device_map="auto"`.
|
@ -1,130 +0,0 @@
|
||||
# Sentiment Tuning Examples
|
||||
|
||||
The notebooks and scripts in this examples show how to fine-tune a model with a sentiment classifier (such as `lvwerra/distilbert-imdb`).
|
||||
|
||||
Here's an overview of the notebooks and scripts in the [trl repository](https://github.com/huggingface/trl/tree/main/examples):
|
||||
|
||||
|
||||
|
||||
| File | Description |
|
||||
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
|
||||
| [`examples/scripts/ppo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo.py) [](https://colab.research.google.com/github/huggingface/trl/blob/main/examples/sentiment/notebooks/gpt2-sentiment.ipynb) | This script shows how to use the `PPOTrainer` to fine-tune a sentiment analysis model using IMDB dataset |
|
||||
| [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-sentiment.ipynb) | This notebook demonstrates how to reproduce the GPT2 imdb sentiment tuning example on a jupyter notebook. |
|
||||
| [`examples/notebooks/gpt2-control.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-control.ipynb) [](https://colab.research.google.com/github/huggingface/trl/blob/main/examples/sentiment/notebooks/gpt2-sentiment-control.ipynb) | This notebook demonstrates how to reproduce the GPT2 sentiment control example on a jupyter notebook.
|
||||
|
||||
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
# 1. run directly
|
||||
python examples/scripts/ppo.py
|
||||
# 2. run via `accelerate` (recommended), enabling more features (e.g., multiple GPUs, deepspeed)
|
||||
accelerate config # will prompt you to define the training configuration
|
||||
accelerate launch examples/scripts/ppo.py # launches training
|
||||
# 3. get help text and documentation
|
||||
python examples/scripts/ppo.py --help
|
||||
# 4. configure logging with wandb and, say, mini_batch_size=1 and gradient_accumulation_steps=16
|
||||
python examples/scripts/ppo.py --log_with wandb --mini_batch_size 1 --gradient_accumulation_steps 16
|
||||
```
|
||||
|
||||
Note: if you don't want to log with `wandb` remove `log_with="wandb"` in the scripts/notebooks. You can also replace it with your favourite experiment tracker that's [supported by `accelerate`](https://huggingface.co/docs/accelerate/usage_guides/tracking).
|
||||
|
||||
|
||||
## Few notes on multi-GPU
|
||||
|
||||
To run in multi-GPU setup with DDP (distributed Data Parallel) change the `device_map` value to `device_map={"": Accelerator().process_index}` and make sure to run your script with `accelerate launch yourscript.py`. If you want to apply naive pipeline parallelism you can use `device_map="auto"`.
|
||||
|
||||
|
||||
## Benchmarks
|
||||
|
||||
Below are some benchmark results for `examples/scripts/ppo.py`. To reproduce locally, please check out the `--command` arguments below.
|
||||
|
||||
```bash
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --log_with wandb" \
|
||||
--num-seeds 5 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
```
|
||||
|
||||

|
||||
|
||||
|
||||
|
||||
## With and without gradient accumulation
|
||||
|
||||
```bash
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_step_grad_accu --mini_batch_size 1 --gradient_accumulation_steps 128 --log_with wandb" \
|
||||
--num-seeds 5 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
```
|
||||
|
||||

|
||||
|
||||
|
||||
## Comparing different models (gpt2, gpt2-xl, falcon, llama2)
|
||||
|
||||
```bash
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_gpt2 --log_with wandb" \
|
||||
--num-seeds 5 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_gpt2xl_grad_accu --model_name gpt2-xl --mini_batch_size 16 --gradient_accumulation_steps 8 --log_with wandb" \
|
||||
--num-seeds 5 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_falcon_rw_1b --model_name tiiuae/falcon-rw-1b --log_with wandb" \
|
||||
--num-seeds 5 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
```
|
||||
|
||||

|
||||
|
||||
## With and without PEFT
|
||||
|
||||
```
|
||||
python benchmark/benchmark.py \
|
||||
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_peft --use_peft --log_with wandb" \
|
||||
--num-seeds 5 \
|
||||
--start-seed 1 \
|
||||
--workers 10 \
|
||||
--slurm-nodes 1 \
|
||||
--slurm-gpus-per-task 1 \
|
||||
--slurm-ntasks 1 \
|
||||
--slurm-total-cpus 12 \
|
||||
--slurm-template-path benchmark/trl.slurm_template
|
||||
```
|
||||
|
||||

|
@ -1,9 +1,8 @@
|
||||
# Supervised Fine-tuning Trainer
|
||||
|
||||
Supervised fine-tuning (or SFT for short) is a crucial step in RLHF. In TRL we provide an easy-to-use API to create your SFT models and train them with few lines of code on your dataset.
|
||||
[](https://huggingface.co/models?other=sft,trl) [](https://github.com/huggingface/smol-course/tree/main/1_instruction_tuning)
|
||||
|
||||
Check out a complete flexible example at [`examples/scripts/sft.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/sft.py).
|
||||
Experimental support for Vision Language Models is also included in the example [`examples/scripts/vsft_llava.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/vsft_llava.py).
|
||||
Supervised fine-tuning (SFT) is the most common step in post-training foundation models, and also one of the most effective. In TRL, we provide a simple API to train models with SFT in a few lines of code; for a complete training script, check out [`trl/scripts/sft.py`](https://github.com/huggingface/trl/tree/main/trl/scripts/sft.py). Experimental support for Vision Language Models is also included in [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/sft_vlm.py).
|
||||
|
||||
## Quickstart
|
||||
|
||||
@ -12,148 +11,54 @@ The following code-snippet takes care of all the data pre-processing and trainin
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from trl import SFTConfig, SFTTrainer
|
||||
|
||||
dataset = load_dataset("imdb", split="train")
|
||||
dataset = load_dataset("stanfordnlp/imdb", split="train")
|
||||
|
||||
training_args = SFTConfig(
|
||||
max_length=512,
|
||||
output_dir="/tmp",
|
||||
)
|
||||
trainer = SFTTrainer(
|
||||
"facebook/opt-350m",
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
max_seq_length=512,
|
||||
args=training_args,
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
Make sure to pass a correct value for `max_seq_length` as the default value will be set to `min(tokenizer.model_max_length, 1024)`.
|
||||
Make sure to pass the correct value for `max_length` as the default value will be set to `min(tokenizer.model_max_length, 1024)`.
|
||||
|
||||
You can also construct a model outside of the trainer and pass it as follows:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from trl import SFTConfig, SFTTrainer
|
||||
|
||||
dataset = load_dataset("imdb", split="train")
|
||||
dataset = load_dataset("stanfordnlp/imdb", split="train")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
|
||||
|
||||
training_args = SFTConfig(output_dir="/tmp")
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model,
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
max_seq_length=512,
|
||||
args=training_args,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
The above snippets will use the default training arguments from the [`transformers.TrainingArguments`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) class. If you want to modify that, make sure to create your own `TrainingArguments` object and pass it to the [`SFTTrainer`] constructor as it is done on the [`supervised_finetuning.py` script](https://github.com/huggingface/trl/blob/main/examples/stack_llama/scripts/supervised_finetuning.py) on the stack-llama example.
|
||||
The above snippets will use the default training arguments from the [`SFTConfig`] class. If you want to modify the defaults pass in your modification to the `SFTConfig` constructor and pass them to the trainer via the `args` argument.
|
||||
|
||||
## Advanced usage
|
||||
|
||||
### Train on completions only
|
||||
|
||||
You can use the `DataCollatorForCompletionOnlyLM` to train your model on the generated prompts only. Note that this works only in the case when `packing=False`.
|
||||
To instantiate that collator for instruction data, pass a response template and the tokenizer. Here is an example of how it would work to fine-tune `opt-350m` on completions only on the CodeAlpaca dataset:
|
||||
To train on completions only, simply use a [prompt-completion](#prompt-completion) dataset. In this mode, loss is computed solely on the completion part.
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
|
||||
|
||||
dataset = load_dataset("lucasmccabe-lmi/CodeAlpaca-20k", split="train")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
|
||||
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
def formatting_prompts_func(example):
|
||||
output_texts = []
|
||||
for i in range(len(example['instruction'])):
|
||||
text = f"### Question: {example['instruction'][i]}\n ### Answer: {example['output'][i]}"
|
||||
output_texts.append(text)
|
||||
return output_texts
|
||||
|
||||
response_template = " ### Answer:"
|
||||
collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=tokenizer)
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model,
|
||||
train_dataset=dataset,
|
||||
formatting_func=formatting_prompts_func,
|
||||
data_collator=collator,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
To instantiate that collator for assistant style conversation data, pass a response template, an instruction template and the tokenizer. Here is an example of how it would work to fine-tune `opt-350m` on assistant completions only on the Open Assistant Guanaco dataset:
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM
|
||||
|
||||
dataset = load_dataset("timdettmers/openassistant-guanaco", split="train")
|
||||
|
||||
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
|
||||
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
instruction_template = "### Human:"
|
||||
response_template = "### Assistant:"
|
||||
collator = DataCollatorForCompletionOnlyLM(instruction_template=instruction_template, response_template=response_template, tokenizer=tokenizer, mlm=False)
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model,
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
data_collator=collator,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Make sure to have a `pad_token_id` which is different from `eos_token_id` which can result in the model not properly predicting EOS (End of Sentence) tokens during generation.
|
||||
|
||||
#### Using token_ids directly for `response_template`
|
||||
|
||||
Some tokenizers like Llama 2 (`meta-llama/Llama-2-XXb-hf`) tokenize sequences differently depending whether they have context or not. For example:
|
||||
|
||||
```python
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
|
||||
|
||||
def print_tokens_with_ids(txt):
|
||||
tokens = tokenizer.tokenize(txt, add_special_tokens=False)
|
||||
token_ids = tokenizer.encode(txt, add_special_tokens=False)
|
||||
print(list(zip(tokens, token_ids)))
|
||||
|
||||
prompt = """### User: Hello\n\n### Assistant: Hi, how can I help you?"""
|
||||
print_tokens_with_ids(prompt) # [..., ('▁Hello', 15043), ('<0x0A>', 13), ('<0x0A>', 13), ('##', 2277), ('#', 29937), ('▁Ass', 4007), ('istant', 22137), (':', 29901), ...]
|
||||
|
||||
response_template = "### Assistant:"
|
||||
print_tokens_with_ids(response_template) # [('▁###', 835), ('▁Ass', 4007), ('istant', 22137), (':', 29901)]
|
||||
```
|
||||
|
||||
In this case, and due to lack of context in `response_template`, the same string ("### Assistant:") is tokenized differently:
|
||||
|
||||
- Text (with context): `[2277, 29937, 4007, 22137, 29901]`
|
||||
- `response_template` (without context): `[835, 4007, 22137, 29901]`
|
||||
|
||||
This will lead to an error when the `DataCollatorForCompletionOnlyLM` does not find the `response_template` in the dataset example text:
|
||||
|
||||
```
|
||||
RuntimeError: Could not find response key [835, 4007, 22137, 29901] in token IDs tensor([ 1, 835, ...])
|
||||
```
|
||||
|
||||
|
||||
To solve this, you can tokenize the `response_template` with the same context than in the dataset, truncate it as needed and pass the `token_ids` directly to the `response_template` argument of the `DataCollatorForCompletionOnlyLM` class. For example:
|
||||
|
||||
```python
|
||||
response_template_with_context = "\n### Assistant:" # We added context here: "\n". This is enough for this tokenizer
|
||||
response_template_ids = tokenizer.encode(response_template_with_context, add_special_tokens=False)[2:] # Now we have it like in the dataset texts: `[2277, 29937, 4007, 22137, 29901]`
|
||||
|
||||
data_collator = DataCollatorForCompletionOnlyLM(response_template_ids, tokenizer=tokenizer)
|
||||
```
|
||||
If you’d like to compute loss on both the prompt **and** the completion while still using a prompt-completion dataset, set `completion_only_loss=False` in the [`SFTConfig`]. This is equivalent to [converting the dataset to a language modeling](#from-prompt-completion-to-language-modeling-dataset) format.
|
||||
|
||||
### Add Special Tokens for Chat Format
|
||||
|
||||
@ -166,6 +71,7 @@ The [`setup_chat_format`] function in `trl` easily sets up a model and tokenizer
|
||||
|
||||
```python
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from trl import setup_chat_format
|
||||
|
||||
# Load model and tokenizer
|
||||
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
|
||||
@ -173,9 +79,11 @@ tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")
|
||||
|
||||
# Set up the chat format with default 'chatml' format
|
||||
model, tokenizer = setup_chat_format(model, tokenizer)
|
||||
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> Some base models, like those from Qwen, have a predefined chat template in the model's tokenizer. In these cases it is not necessary to apply `setup_chat_format()`, as the tokenizer already handles the formatting. However, it is necessary to align the EOS token with the chat template to ensure the model's responses terminate correctly. In these cases, specify `eos_token` in `SFTConfig`; for example, for `Qwen/Qwen2.5-1.5B` one should set `eos_token="<|im_end|>"`.
|
||||
|
||||
With our model and tokenizer set up, we can now fine-tune our model on a conversational dataset. Below is an example of how a dataset can be formatted for fine-tuning.
|
||||
|
||||
### Dataset format support
|
||||
@ -199,7 +107,7 @@ If your dataset uses one of the above formats, you can directly pass it to the t
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from trl import SFTConfig, SFTTrainer
|
||||
|
||||
...
|
||||
|
||||
@ -210,15 +118,15 @@ dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")
|
||||
|
||||
...
|
||||
|
||||
training_args = SFTConfig(packing=True)
|
||||
trainer = SFTTrainer(
|
||||
"facebook/opt-350m",
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
packing=True,
|
||||
)
|
||||
```
|
||||
|
||||
If the dataset is not in one those format you can either preprocess the dataset to match the formatting or pass a formatting function to the SFTTrainer to do it for you. Let's have a look.
|
||||
If the dataset is not in one of those format you can either preprocess the dataset to match the formatting or pass a formatting function to the SFTTrainer to do it for you. Let's have a look.
|
||||
|
||||
|
||||
### Format your input prompts
|
||||
@ -238,41 +146,39 @@ Let us assume your dataset has two fields, `question` and `answer`. Therefore yo
|
||||
```python
|
||||
...
|
||||
def formatting_prompts_func(example):
|
||||
output_texts = []
|
||||
for i in range(len(example['question'])):
|
||||
text = f"### Question: {example['question'][i]}\n ### Answer: {example['answer'][i]}"
|
||||
output_texts.append(text)
|
||||
return output_texts
|
||||
return f"### Question: {example['question']}\n ### Answer: {example['answer']}"
|
||||
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model,
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
formatting_func=formatting_prompts_func,
|
||||
formatting_func=formatting_prompt_func,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
To properly format your input make sure to process all the examples by looping over them and returning a list of processed text. Check out a full example on how to use SFTTrainer on alpaca dataset [here](https://github.com/huggingface/trl/pull/444#issue-1760952763)
|
||||
To properly format your input make sure to process all the examples by looping over them and returning a list of processed text. Check out a full example of how to use SFTTrainer on alpaca dataset [here](https://github.com/huggingface/trl/pull/444#issue-1760952763)
|
||||
|
||||
### Packing dataset ([`ConstantLengthDataset`])
|
||||
### Packing dataset
|
||||
|
||||
[`SFTTrainer`] supports _example packing_, where multiple short examples are packed in the same input sequence to increase training efficiency. This is done with the [`ConstantLengthDataset`] utility class that returns constant length chunks of tokens from a stream of examples. To enable the usage of this dataset class, simply pass `packing=True` to the [`SFTTrainer`] constructor.
|
||||
[`SFTTrainer`] supports _example packing_, where multiple short examples are packed in the same input sequence to increase training efficiency. To enable the usage of this dataset class, simply pass `packing=True` to the [`SFTConfig`] constructor.
|
||||
|
||||
```python
|
||||
...
|
||||
training_args = SFTConfig(packing=True)
|
||||
|
||||
trainer = SFTTrainer(
|
||||
"facebook/opt-350m",
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
packing=True
|
||||
args=training_args
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
Note that if you use a packed dataset and if you pass `max_steps` in the training arguments you will probably train your models for more than few epochs, depending on the way you have configured the packed dataset and the training protocol. Double check that you know and understand what you are doing.
|
||||
If you don't want to pack your `eval_dataset`, you can pass `eval_packing=False` to the `SFTTrainer` init method.
|
||||
If you don't want to pack your `eval_dataset`, you can pass `eval_packing=False` to the `SFTConfig` init method.
|
||||
|
||||
#### Customize your prompts using packed dataset
|
||||
|
||||
@ -283,35 +189,36 @@ def formatting_func(example):
|
||||
text = f"### Question: {example['question']}\n ### Answer: {example['answer']}"
|
||||
return text
|
||||
|
||||
training_args = SFTConfig(packing=True)
|
||||
trainer = SFTTrainer(
|
||||
"facebook/opt-350m",
|
||||
train_dataset=dataset,
|
||||
packing=True,
|
||||
args=training_args,
|
||||
formatting_func=formatting_func
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
You can also customize the [`ConstantLengthDataset`] much more by directly passing the arguments to the [`SFTTrainer`] constructor. Please refer to that class' signature for more information.
|
||||
|
||||
### Control over the pretrained model
|
||||
|
||||
You can directly pass the kwargs of the `from_pretrained()` method to the [`SFTTrainer`]. For example, if you want to load a model in a different precision, analogous to
|
||||
You can directly pass the kwargs of the `from_pretrained()` method to the [`SFTConfig`]. For example, if you want to load a model in a different precision, analogous to
|
||||
|
||||
```python
|
||||
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.bfloat16)
|
||||
```
|
||||
|
||||
```python
|
||||
...
|
||||
|
||||
training_args = SFTConfig(
|
||||
model_init_kwargs={
|
||||
"torch_dtype": "bfloat16",
|
||||
},
|
||||
output_dir="/tmp",
|
||||
)
|
||||
trainer = SFTTrainer(
|
||||
"facebook/opt-350m",
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
model_init_kwargs={
|
||||
"torch_dtype": torch.bfloat16,
|
||||
},
|
||||
args=training_args,
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
@ -320,38 +227,43 @@ Note that all keyword arguments of `from_pretrained()` are supported.
|
||||
|
||||
### Training adapters
|
||||
|
||||
We also support a tight integration with 🤗 PEFT library so that any user can conveniently train adapters and share them on the Hub instead of training the entire model
|
||||
We also support tight integration with 🤗 PEFT library so that any user can conveniently train adapters and share them on the Hub instead of training the entire model.
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from trl import SFTConfig, SFTTrainer
|
||||
from peft import LoraConfig
|
||||
|
||||
dataset = load_dataset("imdb", split="train")
|
||||
dataset = load_dataset("trl-lib/Capybara", split="train")
|
||||
|
||||
peft_config = LoraConfig(
|
||||
r=16,
|
||||
lora_alpha=32,
|
||||
lora_dropout=0.05,
|
||||
bias="none",
|
||||
target_modules="all-linear",
|
||||
modules_to_save=["lm_head", "embed_token"],
|
||||
task_type="CAUSAL_LM",
|
||||
)
|
||||
|
||||
trainer = SFTTrainer(
|
||||
"EleutherAI/gpt-neo-125m",
|
||||
"Qwen/Qwen2.5-0.5B",
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
args=SFTConfig(output_dir="Qwen2.5-0.5B-SFT"),
|
||||
peft_config=peft_config
|
||||
)
|
||||
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
> [!WARNING]
|
||||
> If the chat template contains special tokens like `<|im_start|>` (ChatML) or `<|eot_id|>` (Llama), the embedding layer and LM head must be included in the trainable parameters via the `modules_to_save` argument. Without this, the fine-tuned model will produce unbounded or nonsense generations. If the chat template doesn't contain special tokens (e.g. Alpaca), then the `modules_to_save` argument can be ignored or set to `None`.
|
||||
|
||||
|
||||
You can also continue training your `PeftModel`. For that, first load a `PeftModel` outside `SFTTrainer` and pass it directly to the trainer without the `peft_config` argument being passed.
|
||||
|
||||
### Training adapters with base 8 bit models
|
||||
|
||||
For that you need to first load your 8bit model outside the Trainer and pass a `PeftConfig` to the trainer. For example:
|
||||
For that, you need to first load your 8 bit model outside the Trainer and pass a `PeftConfig` to the trainer. For example:
|
||||
|
||||
```python
|
||||
...
|
||||
@ -373,7 +285,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||
trainer = SFTTrainer(
|
||||
model,
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
args=SFTConfig(),
|
||||
peft_config=peft_config,
|
||||
)
|
||||
|
||||
@ -415,9 +327,9 @@ Below are some numbers you can get in terms of speedup and memory efficiency, us
|
||||
|
||||
| use_flash_attn_1 | model_name | max_seq_len | batch_size | time per training step |
|
||||
| ---------------- | ----------------- | ----------- | ---------- | ---------------------- |
|
||||
| x | facebook/opt-350m | 2048 | 8 | ~59.1s |
|
||||
| ✓ | facebook/opt-350m | 2048 | 8 | ~59.1s |
|
||||
| | facebook/opt-350m | 2048 | 8 | **OOM** |
|
||||
| x | facebook/opt-350m | 2048 | 4 | ~30.3s |
|
||||
| ✓ | facebook/opt-350m | 2048 | 4 | ~30.3s |
|
||||
| | facebook/opt-350m | 2048 | 4 | ~148.9s |
|
||||
|
||||
### Using Flash Attention-2
|
||||
@ -441,7 +353,7 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||
If you don't use quantization, make sure your model is loaded in half-precision and dispatch your model on a supported GPU device.
|
||||
After loading your model, you can either train it as it is, or attach adapters and train adapters on it in case your model is quantized.
|
||||
|
||||
In contrary to Flash Attention 1, the integration makes it possible to train your model on an arbitrary dataset that also includes padding tokens.
|
||||
In contrast to Flash Attention 1, the integration makes it possible to train your model on an arbitrary dataset that also includes padding tokens.
|
||||
|
||||
|
||||
### Using model creation utility
|
||||
@ -452,60 +364,58 @@ We included a utility function to create your model.
|
||||
|
||||
```python
|
||||
from trl import ModelConfig, SFTTrainer, get_kbit_device_map, get_peft_config, get_quantization_config
|
||||
model_config = ModelConfig(
|
||||
model_args = ModelConfig(
|
||||
model_name_or_path="facebook/opt-350m"
|
||||
attn_implementation=None, # or "flash_attention_2"
|
||||
)
|
||||
torch_dtype = (
|
||||
model_config.torch_dtype
|
||||
if model_config.torch_dtype in ["auto", None]
|
||||
else getattr(torch, model_config.torch_dtype)
|
||||
model_args.torch_dtype
|
||||
if model_args.torch_dtype in ["auto", None]
|
||||
else getattr(torch, model_args.torch_dtype)
|
||||
)
|
||||
quantization_config = get_quantization_config(model_config)
|
||||
quantization_config = get_quantization_config(model_args)
|
||||
model_kwargs = dict(
|
||||
revision=model_config.model_revision,
|
||||
trust_remote_code=model_config.trust_remote_code,
|
||||
attn_implementation=model_config.attn_implementation,
|
||||
revision=model_args.model_revision,
|
||||
trust_remote_code=model_args.trust_remote_code,
|
||||
attn_implementation=model_args.attn_implementation,
|
||||
torch_dtype=torch_dtype,
|
||||
use_cache=False if training_args.gradient_checkpointing else True,
|
||||
device_map=get_kbit_device_map() if quantization_config is not None else None,
|
||||
quantization_config=quantization_config,
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path, **model_kwargs)
|
||||
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs)
|
||||
trainer = SFTTrainer(
|
||||
...,
|
||||
model=model_config.model_name_or_path,
|
||||
peft_config=get_peft_config(model_config),
|
||||
model=model_args.model_name_or_path,
|
||||
peft_config=get_peft_config(model_args),
|
||||
)
|
||||
```
|
||||
|
||||
### Enhance the model's performances using NEFTune
|
||||
|
||||
|
||||
|
||||
### Enhance model's performances using NEFTune
|
||||
|
||||
NEFTune is a technique to boost the performance of chat models and was introduced by the paper ["NEFTune: Noisy Embeddings Improve Instruction Finetuning"](https://arxiv.org/abs/2310.05914) from Jain et al. it consists of adding noise to the embedding vectors during training. According to the abstract of the paper:
|
||||
NEFTune is a technique to boost the performance of chat models and was introduced by the paper ["NEFTune: Noisy Embeddings Improve Instruction Finetuning"](https://huggingface.co/papers/2310.05914) from Jain et al. it consists of adding noise to the embedding vectors during training. According to the abstract of the paper:
|
||||
|
||||
> Standard finetuning of LLaMA-2-7B using Alpaca achieves 29.79% on AlpacaEval, which rises to 64.69% using noisy embeddings. NEFTune also improves over strong baselines on modern instruction datasets. Models trained with Evol-Instruct see a 10% improvement, with ShareGPT an 8% improvement, and with OpenPlatypus an 8% improvement. Even powerful models further refined with RLHF such as LLaMA-2-Chat benefit from additional training with NEFTune.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/neft-screenshot.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/neft-screenshot.png">
|
||||
</div>
|
||||
|
||||
To use it in `SFTTrainer` simply pass `neftune_noise_alpha` when creating your `SFTTrainer` instance. Note that to avoid any surprising behaviour, NEFTune is disabled after training to retrieve back the original behaviour of the embedding layer.
|
||||
To use it in `SFTTrainer` simply pass `neftune_noise_alpha` when creating your `SFTConfig` instance. Note that to avoid any surprising behaviour, NEFTune is disabled after training to retrieve back the original behaviour of the embedding layer.
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
from trl import SFTTrainer
|
||||
from trl import SFTConfig, SFTTrainer
|
||||
|
||||
dataset = load_dataset("imdb", split="train")
|
||||
dataset = load_dataset("stanfordnlp/imdb", split="train")
|
||||
|
||||
training_args = SFTConfig(
|
||||
neftune_noise_alpha=5,
|
||||
)
|
||||
trainer = SFTTrainer(
|
||||
"facebook/opt-350m",
|
||||
train_dataset=dataset,
|
||||
dataset_text_field="text",
|
||||
max_seq_length=512,
|
||||
neftune_noise_alpha=5,
|
||||
args=training_args,
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
@ -513,7 +423,7 @@ trainer.train()
|
||||
We have tested NEFTune by training `mistralai/Mistral-7B-v0.1` on the [OpenAssistant dataset](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) and validated that using NEFTune led to a performance boost of ~25% on MT Bench.
|
||||
|
||||
<div style="text-align: center">
|
||||
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-neftune-mistral-7b.png">
|
||||
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-neftune-mistral-7b.png">
|
||||
</div>
|
||||
|
||||
Note however, that the amount of performance gain is _dataset dependent_ and in particular, applying NEFTune on synthetic datasets like [UltraChat](https://huggingface.co/datasets/stingning/ultrachat) typically produces smaller gains.
|
||||
@ -522,64 +432,95 @@ Note however, that the amount of performance gain is _dataset dependent_ and in
|
||||
|
||||
You can further accelerate QLoRA / LoRA (2x faster, 60% less memory) using the [`unsloth`](https://github.com/unslothai/unsloth) library that is fully compatible with `SFTTrainer`. Currently `unsloth` supports only Llama (Yi, TinyLlama, Qwen, Deepseek etc) and Mistral architectures. Some benchmarks on 1x A100 listed below:
|
||||
|
||||
| 1 A100 40GB | Dataset | 🤗 | 🤗 + Flash Attention 2 | 🦥 Unsloth | 🦥 VRAM saved |
|
||||
|-----------------|-----------|-----|-------------------------|-----------------|----------------|
|
||||
| Code Llama 34b | Slim Orca | 1x | 1.01x | **1.94x** | -22.7% |
|
||||
| Llama-2 7b | Slim Orca | 1x | 0.96x | **1.87x** | -39.3% |
|
||||
| Mistral 7b | Slim Orca | 1x | 1.17x | **1.88x** | -65.9% |
|
||||
| Tiny Llama 1.1b | Alpaca | 1x | 1.55x | **2.74x** | -57.8% |
|
||||
| 1 A100 40GB | Dataset | 🤗 | 🤗 + Flash Attention 2 | 🦥 Unsloth | 🦥 VRAM saved |
|
||||
| --------------- | --------- | --- | --------------------- | --------- | ------------ |
|
||||
| Code Llama 34b | Slim Orca | 1x | 1.01x | **1.94x** | -22.7% |
|
||||
| Llama-2 7b | Slim Orca | 1x | 0.96x | **1.87x** | -39.3% |
|
||||
| Mistral 7b | Slim Orca | 1x | 1.17x | **1.88x** | -65.9% |
|
||||
| Tiny Llama 1.1b | Alpaca | 1x | 1.55x | **2.74x** | -57.8% |
|
||||
|
||||
First install `unsloth` according to the [official documentation](https://github.com/unslothai/unsloth). Once installed, you can incorporate unsloth into your workflow in a very simple manner; instead of loading `AutoModelForCausalLM`, you just need to load a `FastLanguageModel` as follows:
|
||||
|
||||
```python
|
||||
import torch
|
||||
from transformers import TrainingArguments
|
||||
from trl import SFTTrainer
|
||||
from trl import SFTConfig, SFTTrainer
|
||||
from unsloth import FastLanguageModel
|
||||
|
||||
max_seq_length = 2048 # Supports automatic RoPE Scaling, so choose any number
|
||||
max_length = 2048 # Supports automatic RoPE Scaling, so choose any number
|
||||
|
||||
# Load model
|
||||
model, tokenizer = FastLanguageModel.from_pretrained(
|
||||
model_name = "unsloth/mistral-7b",
|
||||
max_seq_length = max_seq_length,
|
||||
dtype = None, # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
||||
load_in_4bit = True, # Use 4bit quantization to reduce memory usage. Can be False
|
||||
model_name="unsloth/mistral-7b",
|
||||
max_seq_length=max_length,
|
||||
dtype=None, # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
|
||||
load_in_4bit=True, # Use 4bit quantization to reduce memory usage. Can be False
|
||||
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
||||
)
|
||||
|
||||
# Do model patching and add fast LoRA weights
|
||||
model = FastLanguageModel.get_peft_model(
|
||||
model,
|
||||
r = 16,
|
||||
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
|
||||
"gate_proj", "up_proj", "down_proj",],
|
||||
lora_alpha = 16,
|
||||
lora_dropout = 0, # Dropout = 0 is currently optimized
|
||||
bias = "none", # Bias = "none" is currently optimized
|
||||
use_gradient_checkpointing = True,
|
||||
random_state = 3407,
|
||||
r=16,
|
||||
target_modules=[
|
||||
"q_proj",
|
||||
"k_proj",
|
||||
"v_proj",
|
||||
"o_proj",
|
||||
"gate_proj",
|
||||
"up_proj",
|
||||
"down_proj",
|
||||
],
|
||||
lora_alpha=16,
|
||||
lora_dropout=0, # Dropout = 0 is currently optimized
|
||||
bias="none", # Bias = "none" is currently optimized
|
||||
use_gradient_checkpointing=True,
|
||||
random_state=3407,
|
||||
)
|
||||
|
||||
args = TrainingArguments(output_dir = "./output")
|
||||
training_args = SFTConfig(output_dir="./output", max_length=max_length)
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model = model,
|
||||
args = args,
|
||||
train_dataset = dataset,
|
||||
dataset_text_field = "text",
|
||||
max_seq_length = max_seq_length,
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
)
|
||||
trainer.train()
|
||||
```
|
||||
|
||||
The saved model is fully compatible with Hugging Face's transformers library. Learn more about unsloth in their [official repository](https://github.com/unslothai/unsloth).
|
||||
|
||||
## Liger-Kernel: Increase 20% throughput and reduces 60% memory for multi-GPU training
|
||||
|
||||
[Liger Kernel](https://github.com/linkedin/Liger-Kernel) is a collection of Triton kernels designed specifically for LLM training. It can effectively increase multi-GPU training throughput by 20% and reduces memory usage by 60%. That way, we can **4x** our context length, as described in the benchmark below. They have implemented Hugging Face Compatible `RMSNorm`, `RoPE`, `SwiGLU`, `CrossEntropy`, `FusedLinearCrossEntropy`, and more to come. The kernel works out of the box with [Flash Attention](https://github.com/Dao-AILab/flash-attention), [PyTorch FSDP](https://pytorch.org/tutorials/intermediate/FSDP_tutorial.html), and [Microsoft DeepSpeed](https://github.com/microsoft/DeepSpeed).
|
||||
|
||||
With great memory reduction, you can potentially turn off cpu_offloading or gradient checkpointing to further boost the performance.
|
||||
|
||||
| Speed Up | Memory Reduction |
|
||||
|--------------------------|-------------------------|
|
||||
|  |  |
|
||||
|
||||
|
||||
1. To use Liger-Kernel in [`SFTTrainer`], first install by
|
||||
|
||||
```bash
|
||||
pip install liger-kernel
|
||||
```
|
||||
|
||||
2. Once installed, set `use_liger_kernel` in [`SFTConfig`]. No other changes are needed!
|
||||
|
||||
```python
|
||||
training_args = SFTConfig(
|
||||
use_liger_kernel=True
|
||||
)
|
||||
```
|
||||
|
||||
To learn more about Liger-Kernel, visit their [official repository](https://github.com/linkedin/Liger-Kernel/).
|
||||
|
||||
## Best practices
|
||||
|
||||
Pay attention to the following best practices when training a model with that trainer:
|
||||
|
||||
- [`SFTTrainer`] always pads by default the sequences to the `max_seq_length` argument of the [`SFTTrainer`]. If none is passed, the trainer will retrieve that value from the tokenizer. Some tokenizers do not provide default value, so there is a check to retrieve the minimum between 2048 and that value. Make sure to check it before training.
|
||||
- [`SFTTrainer`] always truncates by default the sequences to the `max_length` argument of the [`SFTConfig`]. If none is passed, the trainer will retrieve that value from the tokenizer. Some tokenizers do not provide a default value, so there is a check to retrieve the minimum between 1024 and that value. Make sure to check it before training.
|
||||
- For training adapters in 8bit, you might need to tweak the arguments of the `prepare_model_for_kbit_training` method from PEFT, hence we advise users to use `prepare_in_int8_kwargs` field, or create the `PeftModel` outside the [`SFTTrainer`] and pass it.
|
||||
- For a more memory-efficient training using adapters, you can load the base model in 8bit, for that simply add `load_in_8bit` argument when creating the [`SFTTrainer`], or create a base model in 8bit outside the trainer and pass it.
|
||||
- If you create a model outside the trainer, make sure to not pass to the trainer any additional keyword arguments that are relative to `from_pretrained()` method.
|
||||
@ -602,16 +543,127 @@ model = AutoModelForCausalLM.from_pretrained(
|
||||
|
||||
You may experience some issues with GPTQ Quantization after completing training. Lowering `gradient_accumulation_steps` to `4` will resolve most issues during the quantization process to GPTQ format.
|
||||
|
||||
## Extending `SFTTrainer` for Vision Language Models
|
||||
|
||||
`SFTTrainer` does not inherently support vision-language data. However, we provide a guide on how to tweak the trainer to support vision-language data. Specifically, you need to use a custom data collator that is compatible with vision-language data. This guide outlines the steps to make these adjustments. For a concrete example, refer to the script [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm.py) which demonstrates how to fine-tune the LLaVA 1.5 model on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset.
|
||||
|
||||
### Preparing the Data
|
||||
|
||||
The data format is flexible, provided it is compatible with the custom collator that we will define later. A common approach is to use conversational data. Given that the data includes both text and images, the format needs to be adjusted accordingly. Below is an example of a conversational data format involving both text and images:
|
||||
|
||||
```python
|
||||
images = ["obama.png"]
|
||||
messages = [
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "Who is this?"},
|
||||
{"type": "image"}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{"type": "text", "text": "Barack Obama"}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "user",
|
||||
"content": [
|
||||
{"type": "text", "text": "What is he famous for?"}
|
||||
]
|
||||
},
|
||||
{
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{"type": "text", "text": "He is the 44th President of the United States."}
|
||||
]
|
||||
}
|
||||
]
|
||||
```
|
||||
|
||||
To illustrate how this data format will be processed using the LLaVA model, you can use the following code:
|
||||
|
||||
```python
|
||||
from transformers import AutoProcessor
|
||||
|
||||
processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
|
||||
print(processor.apply_chat_template(messages, tokenize=False))
|
||||
```
|
||||
|
||||
The output will be formatted as follows:
|
||||
|
||||
```txt
|
||||
Who is this? ASSISTANT: Barack Obama USER: What is he famous for? ASSISTANT: He is the 44th President of the United States.
|
||||
```
|
||||
|
||||
<iframe src="https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft/embed/viewer/default/train" frameborder="0" width="100%" height="560px"></iframe>
|
||||
|
||||
|
||||
### A custom collator for processing multi-modal data
|
||||
|
||||
Unlike the default behavior of `SFTTrainer`, processing multi-modal data is done on the fly during the data collation process. To do this, you need to define a custom collator that processes both the text and images. This collator must take a list of examples as input (see the previous section for an example of the data format) and return a batch of processed data. Below is an example of such a collator:
|
||||
|
||||
```python
|
||||
def collate_fn(examples):
|
||||
# Get the texts and images, and apply the chat template
|
||||
texts = [processor.apply_chat_template(example["messages"], tokenize=False) for example in examples]
|
||||
images = [example["images"][0] for example in examples]
|
||||
|
||||
# Tokenize the texts and process the images
|
||||
batch = processor(texts, images, return_tensors="pt", padding=True)
|
||||
|
||||
# The labels are the input_ids, and we mask the padding tokens in the loss computation
|
||||
labels = batch["input_ids"].clone()
|
||||
labels[labels == processor.tokenizer.pad_token_id] = -100
|
||||
batch["labels"] = labels
|
||||
|
||||
return batch
|
||||
```
|
||||
|
||||
We can verify that the collator works as expected by running the following code:
|
||||
|
||||
```python
|
||||
from datasets import load_dataset
|
||||
|
||||
dataset = load_dataset("HuggingFaceH4/llava-instruct-mix-vsft", split="train")
|
||||
examples = [dataset[0], dataset[1]] # Just two examples for the sake of the example
|
||||
collated_data = collate_fn(examples)
|
||||
print(collated_data.keys()) # dict_keys(['input_ids', 'attention_mask', 'pixel_values', 'labels'])
|
||||
```
|
||||
|
||||
### Training the vision-language model
|
||||
|
||||
Now that we have prepared the data and defined the collator, we can proceed with training the model. To ensure that the data is not processed as text-only, we need to set a couple of arguments in the `SFTConfig`, specifically `remove_unused_columns` and `skip_prepare_dataset` to `True` to avoid the default processing of the dataset. Below is an example of how to set up the `SFTTrainer`.
|
||||
|
||||
```python
|
||||
training_args.remove_unused_columns = False
|
||||
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
|
||||
|
||||
trainer = SFTTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
data_collator=collate_fn,
|
||||
train_dataset=train_dataset,
|
||||
processing_class=processor.tokenizer,
|
||||
)
|
||||
```
|
||||
|
||||
A full example of training LLaVa 1.5 on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset can be found in the script [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm.py).
|
||||
|
||||
- [Experiment tracking](https://wandb.ai/huggingface/trl/runs/2b2c5l7s)
|
||||
- [Trained model](https://huggingface.co/HuggingFaceH4/sft-llava-1.5-7b-hf)
|
||||
|
||||
## SFTTrainer
|
||||
|
||||
[[autodoc]] SFTTrainer
|
||||
|
||||
## SFTConfig
|
||||
|
||||
[[autodoc]] SFTConfig
|
||||
|
||||
## Datasets
|
||||
|
||||
In the SFTTrainer we smartly support `datasets.IterableDataset` in addition to other style datasets. This is useful if you are using large corpora that you do not want to save all to disk. The data will be tokenized and processed on the fly, even when packing is enabled.
|
||||
|
||||
Additionally, in the SFTTrainer, we support pre-tokenized datasets if they are `datasets.Dataset` or `datasets.IterableDataset`. In other words, if such a dataset has a column of `input_ids`, no further processing (tokenization or packing) will be done, and the dataset will be used as-is. This can be useful if you have pretokenized your dataset outside of this script and want to re-use it directly.
|
||||
|
||||
### ConstantLengthDataset
|
||||
|
||||
[[autodoc]] trainer.ConstantLengthDataset
|
73
docs/source/speeding_up_training.md
Normal file
73
docs/source/speeding_up_training.md
Normal file
@ -0,0 +1,73 @@
|
||||
# Speeding Up Training
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
Section under construction. Feel free to contribute!
|
||||
|
||||
</Tip>
|
||||
|
||||
## vLLM for fast generation in online methods
|
||||
|
||||
Online methods such as GRPO or Online DPO require the model to generate completions, which is often a slow process and can significantly impact training time.
|
||||
To speed up generation, you can use [vLLM](https://github.com/vllm-project/vllm), a library that enables fast generation through, among other things, PagedAttention. TRL's online trainers support vLLM, greatly improving training speed.
|
||||
|
||||
To use [vLLM](https://github.com/vllm-project/vllm), first install it using:
|
||||
|
||||
```bash
|
||||
pip install vllm
|
||||
```
|
||||
|
||||
or
|
||||
|
||||
```bash
|
||||
pip install "trl[vllm]"
|
||||
```
|
||||
|
||||
<hfoptions id="vllm examples">
|
||||
<hfoption id="Online DPO">
|
||||
|
||||
Then, enable it by passing `use_vllm=True` in the training arguments.
|
||||
|
||||
```python
|
||||
from trl import OnlineDPOConfig
|
||||
|
||||
training_args = OnlineDPOConfig(..., use_vllm=True)
|
||||
```
|
||||
|
||||
</hfoption>
|
||||
<hfoption id="GRPO">
|
||||
|
||||
First, start a vLLM server by running:
|
||||
|
||||
```bash
|
||||
trl vllm-serve --model <model_name>
|
||||
```
|
||||
|
||||
Then, run the training script and pass `use_vllm=True` in the training arguments.
|
||||
|
||||
```python
|
||||
from trl import GRPOConfig
|
||||
|
||||
training_args = GRPOConfig(..., use_vllm=True)
|
||||
```
|
||||
|
||||
You can customize the server configuration by passing additional arguments. For more information, see [vLLM integration](vllm_integration).
|
||||
|
||||
<Tip warning={true}>
|
||||
|
||||
When using vLLM, ensure that the GPUs assigned for training and generation are separate to avoid resource conflicts. For instance, if you plan to use 4 GPUs for training and another 4 for vLLM generation, you can specify GPU allocation using `CUDA_VISIBLE_DEVICES`.
|
||||
|
||||
Set GPUs **0-3** for vLLM generation:
|
||||
```sh
|
||||
CUDA_VISIBLE_DEVICES=0,1,2,3 trl vllm-serve --model <model_name>
|
||||
```
|
||||
|
||||
And GPUs **4-7** for training:
|
||||
```sh
|
||||
CUDA_VISIBLE_DEVICES=4,5,6,7 accelerate launch train.py
|
||||
```
|
||||
|
||||
</Tip>
|
||||
|
||||
</hfoption>
|
||||
</hfoptions>
|
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user