Compare commits

...

178 Commits

Author SHA1 Message Date
8d4cc9427d Release: v0.13.0 2024-12-15 19:51:55 +01:00
aeca63774f 👨‍🏫 smol course links and badges (#2484)
* smol course links and badges

* try without space

* revert space
2024-12-15 19:38:48 +01:00
117c6d4b52 📥 Fix missing BitsAndBytesConfig import in doc (#2478) 2024-12-15 16:54:38 +01:00
6d4ed070f1 ☄️ Add support for Comet experiment management SDK integration (#2462)
* Added support for Comet URL integration into model cards created by trainers.

* Moved `get_comet_experiment_url()` into utils.py

* Updated Comet badge in the model card to use PNG image instead of text.

* Fixed bug related to running PPO example during model saving. The error as following: 'GPTNeoXForCausalLM' object has no attribute 'policy'. Introduced guard check that attribute `policy` exists.

* Implemented utility method to handle logging of tabular data to the Comet experiment.

* Implemented logging of the completions table to Comet by `PPOTrainer`.

* Implemented logging of the completions table to Comet by `WinRateCallback`.

* Implemented logging of the completions table to Comet by `RLOOTrainer` and `RewardTrainer`.

* Restored line to the main branch version.

* Moved Comet related utility methods into `trainer/utils.py` to resolve merge conflict with master branch,

* Update trl/trainer/utils.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Implemented raising of `ModuleNotFoundError` error when logging table to Comet if `comet-ml` is not installed.

* import comet with other imports

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-12-13 22:08:10 +01:00
cd7156fb34 👀 Add "PaliGemma 🤝 Direct Preference Optimization" in community tutorials (#2475) 2024-12-13 20:29:35 +01:00
ca850be0a2 🕹️ CLI refactor (#2380)
* Refactor main function in dpo.py

* Update setup.py and add cli.py

* Add examples to package data

* style

* Refactor setup.py file

* Add new file t.py

* Move dpo to package

* Update MANIFEST.in and setup.py, refactor trl/cli.py

* Add __init__.py to trl/scripts directory

* Add license header to __init__.py

* File moved instruction

* Add Apache License and update file path

* Move dpo.py to new location

* Refactor CLI and DPO script

* Refactor import structure in scripts package

* env

* rm config from chat arg

* rm old cli

* chat init

* test cli [skip ci]

* Add `datast_config_name` to `ScriptArguments` (#2440)

* add missing arg

* Add test cases for 'trl sft' and 'trl dpo' commands

* Add sft.py script and update cli.py to include sft command

* Move sft script

* chat

* style [ci skip]

* kto

* rm example config

* first step on doc

* see #2442

* see #2443

* fix chat windows

* ©️ Copyrights update (#2454)

* First changes

* Other files

* Finally

* rm comment

* fix nashmd

* Fix example

* Fix example [ci skip]

* 💬 Fix chat for windows (#2443)

* fix chat for windows

* add some tests back

* Revert "add some tests back"

This reverts commit 350aef52f53f8cf34fccd7ad0f78a3dd63867e06.

* 🆔 Add `datast_config` to `ScriptArguments` (#2440)

* datast_config_name

* Update trl/utils.py [ci skip]

* sort import

* typo [ci skip]

* Trigger CI

* Rename `dataset_config_name` to `dataset_config`

* 🏎 Fix deepspeed preparation of `ref_model` in `OnlineDPOTrainer` (#2417)

* Remove unused deepspeed code

* add model prep back

* add deepspeed even if it doesn't work

* rm old code

* Fix config name

* Remove `make dev` in favor of `pip install -e .[dev]`

* Update script paths and remove old symlink related things

* Fix chat script path [ci skip]

* style
2024-12-13 17:52:23 +01:00
179ba53671 🐾 Process-supervised RM Trainer (#2127)
* initial skeleton

* tokenize fn

* adding bos and eos to tokenization fn

* prmtrainer

* fixing small typo in tokenize

* typo in input_ids and labels construction

* numpy dimension

* introduce the stepwise reward trainer

* update markdown files

* let user decide post step separator in config

* doc post_step_separator

* do not add post step_tokens to last step of the reasoning process

* renaming prm to stepwisereward

* formatting

* fix tokenize kwargs

* adapt test to the new post_token args

* adding example script

* fix small typo

* add create_model_card and renaming

* fixing booleans

* Adding the new stepwise_preference instead of placeholders for datasets

* formatting

* Update docs/source/_toctree.yml

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update examples/scripts/stepwise_reward_modeling.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/stepwise_reward_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/stepwise_reward_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* update push to hub

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* step_separator can't be None

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* fix suggested typos

* add citation

* reformat doc

* reordering init

* push to hub prm800k

* changing dataset in example

* change dataset format to align with the sky is blue example

* fix tokenization column names

* fix num labels in openai example

* add support for conversational dataset

* remove training whitespace

* replace tokenizer with processing class

* Update docs/source/dataset_formats.mdx

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* remove openai_prm800k

* Update trl/trainer/stepwise_reward_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/stepwise_reward_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update docs/source/stepwise_reward_trainer.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update docs/source/stepwise_reward_trainer.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* renaming

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* renaming

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* minor renamings in docs

* using prm800k instead of openai_prm800k

* update num labels to 2 following the new format

* changing doc examples to math examples

* change reference to dataset_formats.mdx

* changing dataset config in test

* remove conversational dataset support

* remove conv dataset support

* fix bos token

* fix scriptarguments in example

* completion to completions

* remove valuerror for step_separator inside steps

* run precommit

* remove conv dataset support

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* renaming zen dataset

* remove unused printing

* unknown label column

* introduce the train on last step arg

* _tokenize support train_on_last_step

* incorporate train_on_last_step to tests

* formatting

* remove comments in trainer

* Refactor `tokenize_row`

* Update max_completion_length parameter in StepwiseRewardConfig

* Collator

* Update comment

* Update type hint

* fix table

* Remove collator

* don't need pad token id

* add error back

* max length args

* use tokenizer arg

* Update doc

* label -> labels

* fixing tokenization issues in tokenize row

* correct labels for token classification

* adding max_length to tokenize_row

* reformat tests

* adding tests for tokenize row

* fixing typos in comments

* update doc

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>

* Add math_shepherd.py script for dataset processing

* split the dataset

* formatting

* same evaluation method for the two training methods

* adding filtering to example script

* formatting

* Add features to avoid casting labels to bool in dataset tokenization

* Update docs/source/stepwise_reward_trainer.mdx [ci skip]

* Add learning_rate parameter to StepwiseRewardConfig class

* update doc

* Remove unused setup_chat_format function

* Fix warning message in stepwise_reward_modeling.py

* Update logging steps in stepwise_reward_trainer.mdx

* little doc change [ci skip]

* Fix copyrights

* fix space after copyrights

* Update dataset loading in stepwise_reward_modeling.py

* refine compute_accuracy and proper test

* fix tests

* style

* renamings

* renaming in init

* doc renaming

* fix sorting and tag

* experiemental [ci skip]

* trigger CI

* other doc fix

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-12-13 15:56:10 +01:00
e3e171a26b 🔨 Support for tools for data utils (#2455)
* function calling training support for SFTTraining

* adding tool support to data_utils

* adding test for function calling tokenizer

* reverting changes to sfttrainer and config,added maybe_apply_chat_template

* arg for maybe_apply_chat_templates docstring

* Doc sectioning

* minor test modification

* minor doc modification

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-12-12 17:11:50 +01:00
b3aff441ff 🎞️ Add "Fine-tuning open AI models using Hugging Face TRL" YouTube video to community tutorials (#2467) 2024-12-12 16:40:28 +01:00
efc687db62 🛠️ Update tests and fix PPO (#2463)
* [bugfix] critic not update

* Update ppo_trainer.py

* Update ppo_trainer.py

* add failing test

* test both policy and critic

* formatting

* fix tests

* formatting

* Update tests/test_ppo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* fix test

---------

Co-authored-by: NINGBENZHE <53843873+NINGBENZHE@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-12-12 12:53:32 +01:00
f2e362656c ⚖️ Add tests_latest.yml workflow file (#2457)
* Add tests_latest.yml workflow file

* don't check the branch

* Fix workflow
2024-12-11 18:11:41 +01:00
c9c4f18039 [bugfix] Fix DataCollatorForChatML unexpected generation prompt (#2450)
* [bugfix] Fix DataCollatorForChatML unexpected generation prompt

* Update utils.py

* Update test_utils.py

* Update tests/test_utils.py

* Update tests/test_utils.py

* Update tests/test_utils.py

* Update tests/test_utils.py

* Update test_utils.py

* Update tests/test_utils.py

* Update tests/test_utils.py

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-12-11 15:18:54 +01:00
460e780265 👯 Standardize model_args (#2442)
* `model_config` -> `model_args`

* sort
2024-12-10 12:51:20 +01:00
7ba118a229 🏎 Fix deepspeed preparation of ref_model in OnlineDPOTrainer (#2417)
* Remove unused deepspeed code

* add model prep back

* add deepspeed even if it doesn't work

* rm old code
2024-12-10 12:40:13 +01:00
6a05feff02 🆔 Add datast_config to ScriptArguments (#2440)
* datast_config_name

* Update trl/utils.py [ci skip]

* sort import

* typo [ci skip]

* Trigger CI

* Rename `dataset_config_name` to `dataset_config`
2024-12-10 11:09:26 +01:00
2f72f47191 💬 Fix chat for windows (#2443)
* fix chat for windows

* add some tests back

* Revert "add some tests back"

This reverts commit 350aef52f53f8cf34fccd7ad0f78a3dd63867e06.
2024-12-10 10:40:23 +01:00
9410874787 ©️ Copyrights update (#2454)
* First changes

* Other files

* Finally

* rm comment

* fix nashmd

* Fix example

* Fix example [ci skip]
2024-12-10 10:40:00 +01:00
9c5388b69e 🔗 Add "Open in Colab" badges in community tutorials page (#2441) 2024-12-06 10:51:55 +01:00
b02189aaa5 🗂️ Harmonize run and example batch sizes in RLOO docs (#2439)
Doc has different grad_accumulation_steps and per_device_batch size than the actual hyperparameters, can be verified from wandb run.
2024-12-04 19:19:14 +01:00
52201d3c18 🧮 Fix max_steps calculation in RLOOTrainer (#2433) 2024-12-03 21:31:32 +01:00
9ff79a65e3 🔮 Fix unused precomputed ref log probs in DPO (#2431) 2024-12-03 11:36:57 +01:00
9001a8682c 📑 Refactor TrlParser (#2412)
* refactor parser

* Only document some methods

* Update imports in cli_utils.py and remove config option in utils.py

* add `test_parse_args_and_arg_override_config` and remove unnecessary mocks [ci skip]

* fix comment [ci skip]

* fix comment [ci skip]

* Extra arg in config also returned

* fix docstring [ci skip]

* add mock back

* use `deprecate_kwarg`
2024-12-02 19:57:35 +01:00
f6f42651e2 🧑‍🍳 Add precompute batch size argument in DPOTrainer for reference model (#2426)
* added precompute_batch

* review-fixes

* moving up

* Update trl/trainer/dpo_config.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/dpo_config.py

* Update trl/trainer/dpo_config.py [ci skip]

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-12-02 17:17:41 +01:00
148b592313 Update modeling_base.py (#2419) 2024-11-30 12:14:36 +01:00
d6a8f2c2f6 ⚠️ Add warning guidelines and update codebase to follow best practices (#2350)
* Add guidelines for working with warnings in the codebase

* Remove unnecessary warnings and improve code initialization

* Fix warnings and improve accuracy calculation

* Add rich library dependency for text formatting

* Update LoRA weight loading warning message

* Fix logging and import issues in AlignPropConfig

* Fix warnings and improve code readability

* Remove unused import statements

* Refactor CPOTrainer class in cpo_trainer.py

* Remove unnecessary warnings and raise ValueError for missing model

* Fix warnings and improve code consistency

* Update CONTRIBUTING.md to clarify the purpose of warnings

* Fix string formatting in DataCollatorForCompletionOnlyLM class

* Update SimPO loss parameters in CPOTrainer

* Fix warnings and remove unnecessary code in ConstantLengthDataset class

* Clarify warning guidelines

* Rewrite the entire section

* Fix capitalization in CONTRIBUTING.md

* Fix formatting in CONTRIBUTING.md
2024-11-29 16:07:38 +01:00
8d9cfaafeb 🌋 Add support for LLaVA-Next in DPOTrainer (#2413)
* add support for llava-next in dpotrainer

* enable unit test

* code style

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Ignore last layer in test

---------

Co-authored-by: zesong.cwz <zesong.cwz@taobao.com>
Co-authored-by: 1rubbishyuan <2773496952@qq.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-11-29 15:53:50 +01:00
94e4135a17 🔓 Remove lm_head check in AutoModelForCausalLMWithValueHead (#2398)
* Remove lm_head check in `AutoModelForCausalLMWithValueHead`

* Style

* Remove test
2024-11-29 15:52:35 +01:00
ac267781ec 🌐 Community Tutorials (#2411)
* Add community notebooks to API documentation

* fix extension

* add table of community tutorials

* respond to feedback - fix links and split table

* add class references

* rename file and update toc

* Update docs/source/community_tutorials.md

* Update docs/source/community_tutorials.md

---------

Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-11-29 11:39:37 +01:00
2c6e0d9705 Add note about special tokens in chat templates for LoRA SFT (#2414) 2024-11-29 10:35:39 +01:00
e1d781353b 👁️ Added SFT support for SmolVLM models via standalone script sft_vlm_smol_vlm.py (#2409)
* Added SFT VLM script for SmolVLM

* Run make precommit

* Updated command example
2024-11-28 18:45:37 +01:00
a34e9bf84f 🖨 Add Script Utilities section to the documentation (#2407)
* Add script_utils.md to the documentation

* Refactor ScriptArguments class documentation

* Refactor TrlParser class to improve code organization and readability
2024-11-28 16:43:08 +01:00
c10cc8995b 🗝️ Update type hints (#2399)
* New type hint structure

* Update type hints

* Delete wrong file

* Remove dict import
2024-11-26 20:37:27 +01:00
9368dccef6 🐢 Fix slow tests (#2397)
* fix slow CI

* fix dpo

* formatting

* Apply suggestions from code review

* `setup_chat_format` may add a pad token

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-11-26 15:38:46 +01:00
43df3a485a 🧳 Move zen generation script and fix tests (#2393)
* Move zen

* step -> stepwise_supervision

* Fix train_test_split shuffle issue

* Fix tests

* Update tests/test_sft_trainer.py

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>

* Fix typo in key name

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-11-26 14:08:06 +01:00
baee06f2e8 🖋️ Fix warning message formatting in KTOTrainer (#2394) 2024-11-26 13:05:25 +01:00
bbd8cbb720 🤐 Fix deprecation warnings (#2395) 2024-11-26 11:29:07 +01:00
4f937c7629 🤐 Fix deprecation warnings (#2392) 2024-11-26 11:18:43 +01:00
16fa13ce72 👮 Deprecate policy in favor of model in PPOTrainer (#2386) 2024-11-26 08:13:10 +01:00
453db5cd79 🤏 New models for tests (#2287)
* first commit

* uncomment

* other tests adaptations

* Remove unused variable in test_setup_chat_format

* Remove unused import statement

* style

* Add Bart model

* Update BCOTrainerTester class in test_bco_trainer.py

* Update model IDs and tokenizers in test files

* Add new models and processors

* Update model IDs in test files

* Fix formatting issue in test_dataset_formatting.py

* Refactor dataset formatting in test_dataset_formatting.py

* Fix dataset sequence length in SFTTrainerTester

* Remove tokenizer

* Remove print statement

* Add reward_model_path and sft_model_path to PPO trainer

* Fix tokenizer padding issue

* Add chat template for testing purposes in PaliGemma model

* Update PaliGemma model and chat template

* Increase learning rate to speed up test

* Update model names in run_dpo.sh and run_sft.sh scripts

* Update model and dataset names

* Fix formatting issue in test_dataset_formatting.py

* Fix formatting issue in test_dataset_formatting.py

* Remove unused chat template

* Update model generation script

* additional models

* Update model references in test files

* Remove unused imports in test_online_dpo_trainer.py

* Add is_llm_blender_available import and update reward_tokenizer

* Refactor test_online_dpo_trainer.py: Move skipped test case decorator

* remove models without chat templates

* Update model names in scripts and tests

* Update model_id in test_modeling_value_head.py

* Update model versions in test files

* Fix formatting issue in test_dataset_formatting.py

* Update embedding model ID in BCOTrainerTester

* Update test_online_dpo_trainer.py with reward model changes

* Update expected formatted text in test_dataset_formatting.py

* Add reward_tokenizer to TestOnlineDPOTrainer

* fix tests

* Add SIMPLE_CHAT_TEMPLATE to T5 tokenizer

* Fix dummy_text format in test_rloo_trainer.py

* Skip outdated test for chatML data collator

* Add new vision language models

* Commented out unused model IDs in test_vdpo_trainer

* Update model and vision configurations in generate_tiny_models.py and test_dpo_trainer.py

* Update model and tokenizer references

* Don't push if it already exists

* Add comment explaining test skip

* Fix model_exists function call and add new models

* Update LlavaForConditionalGeneration model and processor

* `qgallouedec` -> `trl-internal-testing`
2024-11-25 16:31:56 +01:00
ee3cbe1946 💾 Deprecate config in favor of args in PPOTrainer (#2384) 2024-11-25 14:48:08 +01:00
17e8060984 📦 Support for packing tokenized datasets for SFT (#2011)
* feat: add support for packing tokenized datasetS

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* fix: address review comments

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

* feat: add tests for pretokenized dataset packing

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>

---------

Signed-off-by: Mehant Kammakomati <mehant.kammakomati2@ibm.com>
2024-11-25 10:36:58 +01:00
163695e85c 🙈 Suppress warning for estimating tokens in trainers (#2389)
* Suppress warning for estimating tokens in trainer

* Suppress warning for estimating FLOPs in ORPO and Reward trainers
2024-11-24 16:55:43 +01:00
672c96546d Update log method to include start_time parameter (#2381) 2024-11-21 21:30:10 +01:00
bdeb117320 📝 Fix typo in dataset generation script (#2379) 2024-11-21 20:37:44 +01:00
6578fdc101 🔀 Add MergeModelCallBack (#2282)
* Create mergekit_utils.py

* adding mergekit as an optional dependancy

* adding MergeModel to callbacks

* adding mergekit_utils dependencies to callbacks

* setting lower bound for mergekit

* setting mergekit lower band to 0.0.5.1

* adding support for MergeModelCallBack __init__.py

* adding support for mergemodelcallback

* mergemodelcallback tests

* Update callbacks.py

* Update __init__.py

* Update __init__.py

* Update test_callbacks.py

* Update trl/trainer/callbacks.py

removing ## from docs

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update trl/trainer/callbacks.py

removing ## from docs

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update trl/trainer/callbacks.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* using different dataset for tests

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update trl/mergekit_utils.py

adding types

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update trl/mergekit_utils.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Apply suggestions from code review

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* replacing get_last_checkpoint

* renaming Merge to merge_models

* setting mergers default value to linear

* removing unnecessary docs and comments

* adding docstring to Mergeconfig

* adding mergekits link to docstring

* precommit

* removing duplicated import

* typos in mergekit_utils docstring

* fixing tests

* making mergemodelcallback tests optional

* Make import optional

* minor

* use tmp dir in test

* sort

* Add import error checks for mergekit extra

* use a common _merge_and_maybe_push method and compat with windows path

* debug windows

* Update dependencies for mergekit and add test dependencies

* Add assertion to check if merged folder exists in the last checkpoint

* Fix temporary directory cleanup in test_callbacks.py

* Add sys import and skip test for Python versions below 3.10 due to cleanup errors with temp dir

* revert change for debug

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-11-21 14:06:45 +01:00
a0066f47f8 Add start_time to _maybe_log_save_evaluate (#2373) 2024-11-20 12:49:49 +01:00
5626806aef 🧲 Use our own require_bitsandbytes (#2370)
* use our own require_bitsandbytes

* rephrase
2024-11-20 11:51:05 +01:00
bb0afc2459 remove redunant call to eval and train (#2372) 2024-11-20 11:24:41 +01:00
066fc37bd3 Fix dev install (#2369) 2024-11-19 13:30:09 +01:00
b80c1a6fb8 🎲 Move random judges in testing utilities (#2365)
* Update judges and testing utilities

* Update judges in test files

* Update judges in test files
2024-11-18 18:43:18 +01:00
b5eabbeb07 🤝 Mixture of judges (#2159)
* base judge

* adding mixture of judges

* update doc

* update doc

* formatting

* fix small typo in doc

* fix randomcontraintjudge

* replace arxiv by hf papers

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* formatting

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* fix naming in __init__

* run precommi

* adding gold answers to judges

* cgpo llm judges

* fix init

* output type

* adjust booleans in test

* adapt moj doc

* renaming and removing factuality and safety judges

* fix typo in import

* fix small typo in naming

* formatting

* Update trl/trainer/judges.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* update parameter name

* update tests

* update doc

* Update trl/trainer/judges.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update doc

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* fix alltruejudge type

* Refactor judge variable names and update test names

* Clarify judgment logic

* Fix invalid binary judgment check in AllTrueJudge class

* Fix invalid binary judgment check in AllTrueJudge class

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-11-18 16:54:57 +01:00
cbf9abcd07 🗺️ Implementation DiscoPOP Loss (#2323)
* Implement DiscoPOP Loss

* Updated DiscoPOP documentation

* Corrected docs/source/dpo_trainer.mdx

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update docs/source/dpo_trainer.mdx

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/dpo_config.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/dpo_config.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/dpo_config.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/dpo_config.py

* Delete scripts directory

* style

* empty commit

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-11-18 14:15:00 +01:00
6f8fe59aeb 📃 Fix description for parameter "generate_during_eval" in dpo_config (#2364) 2024-11-18 14:03:02 +01:00
1293f37c5f 📉 Add PEFT support for PPOTrainer (#2344)
* Add peft/lora support for

* Fix: style

* Fix: typo

* Add ppo.py PEFT example

* Fixed the optional dependencies error

* skip peft test if peft is unavailable

* Update trl/trainer/ppo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-11-18 11:54:09 +01:00
e7870dd5d6 🗃️ Use specified data_collator in RLOOTrainer and PPOTrainer (#2360)
* Fix "Use specified data_collator instead of hard-coding the option"

* Remove query_responses = [] since it's immediately overwritten afterwards.

* Use self.data_collator

* Use specified data_collator instead of hard-coded one in PPOTrainer

* Move the data_collator creation

* Run make precommit
2024-11-18 11:53:47 +01:00
21d5baf338 🔮 Inference mode in GeometricMixtureWrapper.forward (#2345)
* geom mixture model train

* use inference_mode
2024-11-18 09:58:26 +01:00
76dbb1a576 🪜 Stepwise supervision dataset type (#2148) 2024-11-18 09:58:00 +01:00
b8c9d9c7bc ⚖️ Add use_soft_judge option to WinRateCallback (#2347)
* add `use_soft_judge` option to WinRateCallback

* formatting

* Update trl/trainer/callbacks.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* renamed soft_win_rate to avg_win_prob

* Update trl/trainer/callbacks.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* fix tests

* keep orignal

* formatting

* Update tests/test_callbacks.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/callbacks.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update tests/test_callbacks.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update tests/test_callbacks.py

* fix test

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-11-15 15:49:43 +01:00
623963126b 👋 Remove deprecated tokenizer argument in BCO, GKD, Iterative SFT, Nash MD and XPO (#2349) 2024-11-12 09:22:17 -04:00
2d24d35013 Adding video llm fine-tuning example (#2336)
* adding video example

* exposing more parameters

* fixing formatting

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-11-12 12:56:38 +01:00
dde20b23cf 🖨️ Fix error text in BCO and KTO tokenizing function (#2286) 2024-11-11 19:18:36 -04:00
015321e135 👈 Add tokenizer arg back and add deprecation guidelines (#2348)
* Add deprecation and backward compatibility guidelines

* Update tokenizer argument in trainer classes

* Add warning message for TRL Judges API
2024-11-11 19:06:20 -04:00
454f36d951 💣 Remove transformers version check (#2343) 2024-11-11 09:34:26 -04:00
9b7f9f3519 🪡 Various RLOO fixes (#2325) 2024-11-11 08:59:03 -04:00
518e29ca9c 🫴 Better guide users in error reporting (#2327)
* update issue template

* Add checklist for bug report template

* Fix formatting in bug report template

* Update bug report template with additional instructions for code formatting and screenshots

* Update bug report template with code formatting instructions

* Update bug report template with code examples

* Update code block placeholder in bug report template

* Update .github/ISSUE_TEMPLATE/bug-report.yml

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-11-11 08:42:16 -04:00
ac7b6cfdfa 🧞 Add output_layer to the list of lm_head_namings in AutoModelForCausalLMWithValueHead (#2328) 2024-11-11 08:16:09 -04:00
0238d96c6f DPO trainer supports num_logits_to_keep to save memory (#2129)
* Support num_logits_to_keep, which computes necessary logits in the forward pass.

* update doc

* bug fix

* update

* check is model supports num_logits_to_keep

* ruff format

* update test file

* peft model support

* test passed

* update

* apply use_num_logits_to_keep

* fix num_logits_to_keep compute bug

* compare all outputs

* pytest

* pass test

* use check_min_version

* format

* test_dpo_trainer_use_num_logits_to_keep passed

* add some comments

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-11-10 11:34:51 +01:00
c86b51cd12 Bump liger-kernel to fix grad acc and more features (#2333)
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-11-08 12:16:33 +01:00
ac77c09223 Fix gradient_checkpointing_kwargs assignment in examples (#2331)
Co-authored-by: Ping <ping.zhu@jmuse.cn>
2024-11-07 09:28:10 +01:00
7f2ccbe3a2 fix truncating index in DPOTrainer's concatenated_forward() (#2332) 2024-11-07 09:27:32 +01:00
74e20cbbbc 🪪 Check with token_id instead of token in DPOTrainer (#2324) 2024-11-04 21:08:41 +01:00
27b9e3a93f 🪧 Fix slack notification titles (#2322) 2024-11-04 21:02:27 +01:00
dc2b8b9e90 🧽 Fix judge documentation (#2320)
* Bump dev version to `0.13.0.dev0`

* Update version number to 0.12 in CITATION.cff

* 🧽 Fix judge documentation (#2318)

* Update judge examples and documentation

* without ':'

* Clean doc

* Fix typo in example code

* Add space after Attributes

* Update attribute name in judges.py

* Add installation instructions for llm-blender library

* Update PairRMJudge attributes documentation

* Fix return type in PairRMJudge

* Revert "🧽 Fix judge documentation (#2318)"

This reverts commit 337005d95169371935fb87f1c559c7412f8472a4.

* Revert "🧽 Fix judge documentation (#2318)"

This reverts commit 337005d95169371935fb87f1c559c7412f8472a4.

* 🧽 Fix judge documentation (#2318)

* Update judge examples and documentation

* without ':'

* Clean doc

* Fix typo in example code

* Add space after Attributes

* Update attribute name in judges.py

* Add installation instructions for llm-blender library

* Update PairRMJudge attributes documentation

* Fix return type in PairRMJudge
2024-11-04 19:00:27 +01:00
5e90682836 ⚰️ Remove deprecated args, script arguments, and PPOv2 (#2306)
* Remove deprecated args

* Remove deprecated args in SFTTrainer

* Remove deprecated script argument classes

* Remove deprecated PPOv2Config and PPOv2Trainer classes

* Commented out sync_ref_model line in test_trainers_args.py
2024-11-04 16:07:26 +01:00
3b439967f4 📰 Update blog posts in documentation (#2319)
* Bump dev version to `0.13.0.dev0`

* Update version number to 0.12 in CITATION.cff

* Add publication date to blog post

* 🧽 Fix judge documentation (#2318)

* Update judge examples and documentation

* without ':'

* Clean doc

* Fix typo in example code

* Add space after Attributes

* Update attribute name in judges.py

* Add installation instructions for llm-blender library

* Update PairRMJudge attributes documentation

* Fix return type in PairRMJudge

* Revert "🧽 Fix judge documentation (#2318)"

This reverts commit 337005d95169371935fb87f1c559c7412f8472a4.

* Update blog post publication dates

* revert to p5

* Update image URLs in index.mdx

* Sort and uniform thumbnail

* Update image alignment in index.mdx
2024-11-04 16:00:27 +01:00
2f34a161cd Bump dev version to 0.13.0.dev0 (#2305)
* Bump dev version to `0.13.0.dev0`

* Update version number to 0.12 in CITATION.cff

* 🧽 Fix judge documentation (#2318)

* Update judge examples and documentation

* without ':'

* Clean doc

* Fix typo in example code

* Add space after Attributes

* Update attribute name in judges.py

* Add installation instructions for llm-blender library

* Update PairRMJudge attributes documentation

* Fix return type in PairRMJudge

* Revert "🧽 Fix judge documentation (#2318)"

This reverts commit 337005d95169371935fb87f1c559c7412f8472a4.
2024-11-04 15:59:52 +01:00
6138439df4 🧓 Specify and test min versions (#2303)
* Add conditional check for LLMBlender availability in test_judges.py

* Fix import issues and update test requirements

* Remove unused imports

* Add require_peft decorator to test cases

* Fix import_utils module to use correct package name for llm_blender

* Found min version and test

* Update Slack notification titles

* Update dependencies versions

* Update GitHub Actions workflow to include setup.py and reorder file paths

* Revert "Update Slack notification titles"

This reverts commit be02a7f2de87905e86a847540770968d0416934a.

* Update Slack notification titles

* Remove pull_request branch restriction in tests.yml

* add check code quality back

* Fix PairRMJudge model loading issue
2024-11-01 00:26:53 +01:00
d57a181163 🧩 Add optimizer_cls_and_kwargs attribute to PPOTrainer and RLOOTrainer (#2302) 2024-10-31 23:10:11 +01:00
73c3970c1f 🙅 Ensure dependency optionality (#2301)
* Add conditional check for LLMBlender availability in test_judges.py

* Fix import issues and update test requirements

* Remove unused imports

* Add require_peft decorator to test cases

* Fix import_utils module to use correct package name for llm_blender
2024-10-31 22:37:49 +01:00
013a32b396 Remove stale bot (#2300) 2024-10-31 21:16:30 +01:00
24fb32733f 🔧 Use standard unittest assertion methods (#2283)
* WIP: Partial unit test update

* Update unittest format

* Update tests/slow/test_sft_slow.py comment

* Refactor unit tests: replace pytest.raises with self.assertRaises

* Fix: Restore accidentally deleted 'ref_model' parameter in DPOTrainer

* Re-run pre-commit

* fix: Incorrectly replacing non-TestCase assert

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-10-31 15:10:43 +01:00
bb56c6e6af 💾 Fix _save_checkpoint for online methods (#2288)
* Update trainer_utils import and save strategy in online_dpo_trainer.py

* fix back-compat for online-dpo

* better comment

* Update transformers dependency to commit f33904
2024-10-31 12:35:25 +01:00
06be6f409a 🖇️ Better dependency and partitioning of CI tests (#2298)
* clean deps

* new tests

* tests

* Add tests without optional dependencies workflow

* Update dependencies in tests.yml

* cpu version of torch

* Update dependencies and installation commands

* Disable fail-fast in test workflow

* Update test matrix in workflows file

* try fix windows

* Remove "rich" from required packages in setup.py

* Update dependency installation in tests.yml

* Add torch and deepspeed installation for windows-latest

* Fix conditional statement in workflow file

* Add torch and deepspeed installation for Windows

* Fix if statement

* Update torch and deepspeed dependencies

* Update liger package requirement for non-Windows platforms

* remove scipy dep

* Add torch GPU requirement for testing_utils

* Update trl/trainer/judges.py
2024-10-31 11:08:51 +01:00
b2696578ce 🍬 Use any reward model for online methods (#2276)
* Refactor reward processing in OnlineDPOTrainer

* Refactor completion decoding and reward processing

* remove strip

* remove warning

* Add reward_tokenizer to training script

* Add reward_tokenizer and reward_processing_class to OnlineDPOTrainer test

* propagate to xpo and nash

* style

* reduce memory requirement with inference_mode

* fix tests

* pairrm judge llmblender

* setUpClass(cls)

* Add setUpClass method to TestJudges class

* truncation left for reward tokenizer

* don't logcompletion without eval dataset

* only eval when possible
2024-10-28 16:21:40 +01:00
0ce3b65928 🔌 Fix type hint in LogCompletionsCallback (#2285)
* Update callbacks.py for fix small python type error

* Update callbacks.py

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-10-28 11:49:35 +01:00
e155cb8a66 ⛓️💥 Don't use eval_dataset in scripts when no eval strategy (#2270) 2024-10-28 11:40:51 +01:00
ea7a1be92c 🧮 Fix the computation of KL divergence loss (#2277) 2024-10-25 18:16:02 +02:00
110d0884c7 🏁 Add bos_token_id only if it exists (#2279)
Co-authored-by: sean.jung <sean.jung@sean-ai.local>
2024-10-25 18:15:08 +02:00
57ba9b93aa 🧘 Replace F.log(F.sigmoid(log_odds) with F.logsigmoid(log_odds) (#2274)
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-10-24 20:51:55 +02:00
0de75b26f2 🧼 Refactor log_reports.py for Improved Logging, File Processing, and Slack Payload Handling (#2249)
* Update log_reports.py

* comments text update

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* emoji added

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update scripts/log_reports.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update scripts/log_reports.py

* style

* Update scripts/log_reports.py

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-10-24 20:48:12 +02:00
e615974a03 ♾️ Fix test generation max_new_tokens (#2272)
* `eval_strategy="steps" if eval_dataset else "no"`

* tmp skip test

* drop `eval_strategy` in `test_sft_trainer_uncorrect_data`

* remove eval strategy

* Add parameterized test for generate method

* Revert "`eval_strategy="steps" if eval_dataset else "no"`"

This reverts commit 1e8b331fa2c222a699cb3563f44f5702a7d6f50b.

* Revert "tmp skip test"

This reverts commit 44558f84cc43e20254b567d608b44d059a14913b.

* Revert "drop `eval_strategy` in `test_sft_trainer_uncorrect_data`"

This reverts commit a1ef7016286649fce10b3665159abcbfac2219e3.

* Revert "remove eval strategy"

This reverts commit cb7fafa874b108ba91b29f15944b7c4a41705d6d.

* style

* Refactor test_generate method in test_modeling_value_head.py

* `max_new_tokens=9`
2024-10-24 20:20:01 +02:00
c2bb1eed14 Add torch_dtype to model kwargs in reward modeling example (#2266)
Update model_kwargs to include torch_dtype.

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-10-24 20:12:26 +02:00
9c376c571f [Judges] use the pair-judges in online-preference trainers (#2243)
* use the pair-judges

* add test

* Update trl/trainer/online_dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/online_dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* decode and skip special characters

* initial nash

* return tensors

* Update trl/trainer/online_dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/online_dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/online_dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* add back the logging

* use batch_decode

* add judges api to XPO trainer

* Update tests/test_online_dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* judge in examples

* judge in config

* add back logs when using reward model

* typo

* add back model_scores logging when using reward model

* log scores for reward model only

* better cond on what to log

* same for rlhf reward

* Update trl/trainer/online_dpo_trainer.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* use decode_and_strip_padding

* error if both reward and judge or none are set

* remove unused check

* Uniform way to pass conversation into judge

* heading -> leading

* LogCompletionsCallback compat with online method

* Update Online DPO doc

* check if data is conversational for judges

* update example

* remove comment

* use zip

* fix stats xpo

* Replace judge with PairRMJudge and import AutoModelForSequenceClassification

* update xpo documentation

* Remove doc duplication

* update nash doc

* XPO trl chat

* nash md doc

* HfPairwiseJudge

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-10-24 16:47:10 +02:00
16994738d0 Conversational dataset support for KTOTrainer (#2248)
* `get_batch_sample` -> `generate_from_model[_and_ref]`

* add `num_items_in_batch=None`

* `num_items_in_batch` in `training_step`

* Fix return type hint

* desc for unpair dataset util

* update example

* process in KTO

* Update doc

* KTO  doc rewrite

* fix orpo doc

* add other dataset config names in test

* update doc image

* fix links in doc

* Update reward and log probability metrics in KTOTrainer doc

* skip enc-dec test

* Update docs/source/kto_trainer.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

---------

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2024-10-24 14:01:41 +02:00
99225bb6d6 Bump the minimum transformers version to v4.46 (#2245)
* Bump the minimum transformers version

* Bump version in `requirements.txt`

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-10-24 10:42:30 +02:00
88be2c07e5 🚩 setup_chat_format: throw error if there is already a template in base model (#2252)
* setup_chat_format: throw error if there was already a template

* fix lint

* clarify in docs

* fix test?

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-10-22 13:29:32 +02:00
f2349d2af0 Adjust padding in batch generation (#2251)
* pad batch generation

* Use pad utility

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>

* Update trl/trainer/utils.py

* reshaping

* fix test_utils.py

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-10-22 09:36:43 +02:00
d843b3dadd Use processing_class instead of tokenizer in LogCompletionsCallback (#2261) 2024-10-22 09:35:04 +02:00
84dab850f6 🧽 Fix typo in dataset format doc (#2259)
doc update
2024-10-21 17:06:19 +02:00
92f6d246d3 🏗️ Refactor DPO data processing (#2209)
* in progress

* refactor concatenated_inputs and concatenated_forward

* progress

* further modif

* padding side

* eos prompt enc dec

* prompt_padding_side

* drop prompt apdding side collator

* working on decoder only

* dpo trainer

* Fix loss_mask type conversion bug

* bad attention mask

* try to get the same tokens as main

* fix loss mask

* fix unused col

* added comment

* raise error when paddind token not set

* remove private method tests

* initial vlm support

* make it work for paligemma

* minor test updates

* style

* improve readibility

* improve doc

* style

* flush left and truncate

* flush left in the code

* fix empty_cols and make max_length optional

* always add eos token

* minor changes and doc

* style

* fix docstring

* preference collator in doc

* fix doc

* optional max_completion_length

* Investigating CI failing

* style

* just dpo trainer test

* just idefics

* paligemma

* llava

* test cli

* dataset in test

* all tests

* Update trl/trainer/dpo_trainer.py

* Update trl/trainer/dpo_trainer.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update trl/trainer/dpo_trainer.py

* Update trl/trainer/dpo_trainer.py

* reference to ref

* rich descriptions

* fix logits reporting

* fix truncation

* remove chat template from dpo_vlm

* `get_batch_sample` -> `generate_from_model[_and_ref]`

* add `num_items_in_batch=None`

* `num_items_in_batch` in `training_step`

* Fix return type hint

* test tokenize row

* fix test

---------

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2024-10-21 12:47:33 +02:00
31b7820aad 🔀 Rename get_batch_sample and add num_items_in_batch to compute_loss (#2246) 2024-10-18 21:02:24 +02:00
b9aa965cce Enhance log report script: add error handling and logging (#2232)
* Update log_example_reports.py

1. Added logging: Imported the logging module and set up a logger in the main function. This allows for better error tracking and debugging.

2. Improved file reading: Used a with statement to ensure the file is properly closed after reading. Also added error handling to catch and log any issues when reading the file.

3. Error handling for Slack SDK import: Added a try-except block to handle cases where the slack_sdk might not be installed.

4. Enhanced Slack message sending: Added error handling and logging for the Slack message sending process. This will help identify any issues with the Slack integration.

* style

* Update log_reports.py

1. Logging: Added logging to track errors and important events.

2. Error Handling: Wrapped the log file processing in a try-except block to handle potential errors gracefully.

3. Logging Total Failed Tests: Added a log statement to report the total number of failed tests

* style

* further improve

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-10-18 19:40:30 +02:00
a67f2143c3 Update SFT examples (#2244) 2024-10-17 14:11:46 +02:00
494b4afa10 [CLI] Setting capture output to False (#2239)
* setting capture output to False

* Update trl/commands/cli.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-10-17 11:04:23 +02:00
02f4e750c0 DPO support remove_unused_columns (#2233) 2024-10-16 10:00:27 +02:00
2ba3005d1c Updated ScriptArguments warning messages (#2230) 2024-10-15 07:46:58 +02:00
7e394b03e8 🎭 Deprecate [SFT/DPO/Reward]ScriptArguments in favour of ScriptArguments (#2145)
* `DPOScriptArguments` to `ScriptArguments`

* use dataset_train_split

* Use scriptarguments

* dataset names in command lines

* use `ScriptArguments` everywhere

* ignore biais buffer to end

* remove in v0.13

* rm comment

* update test commands

* Update docs/source/rloo_trainer.md

* Update tests/test_rloo_trainer.py

* Added dataset_train_split argument to ppo.py and rloo.py

* update scripts with dataset_train_split
2024-10-14 11:14:58 +02:00
14f3613dac Update commands for code linting in contributing guidelines (#2225)
* update commands for code liniting in contributing guidelines

* update docs on code formatting in contributing guidelines

* fix markdown rendering error

* Update CONTRIBUTING.md

* Update CONTRIBUTING.md

* Update CONTRIBUTING.md

* Update CONTRIBUTING.md

* Update CONTRIBUTING.md

* "sans" -> "without"

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-10-13 09:22:24 +02:00
5e24101b36 📒 Fix type/format confusions (#2223) 2024-10-11 23:39:19 +02:00
b81a6121c3 Add GKD to dataset_formats.mdx (#2222)
* Update dataset_formats.mdx

* Update dataset_formats.mdx

* Update docs/source/dataset_formats.mdx

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Modified to Prompt-completion

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-10-11 21:52:20 +02:00
7f0d246235 Add Sequence-Level KD (#2220)
* Fix templates for dpo, etc.

* Update dpo.py

Add the third issue fixs

* make this a utility.

* Add Sequence-Level KD

* add to the docs-strings and the documentation

* reviewed

* Update docs/source/gkd_trainer.md

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-10-11 20:14:09 +02:00
70036bf87f 🕊️ Migration PPOv2 -> PPO (#2174)
* delete old ppo

* rename ppov2 files

* PPOv2 -> PPO

* rm old doc

* rename ppo doc file

* rm old test

* rename test

* re-add v2 with deprecation

* style

* start update customization

* Lion

* Finish update customization

* remove ppo_multi_adaptater

* remove ppo example

* update some doc

* rm test no peft

* rm hello world

* processing class

* Update docs/source/detoxifying_a_lm.mdx

Co-authored-by: Edward Beeching <edbeeching@users.noreply.github.com>

* Update trl/trainer/ppov2_config.py

Co-authored-by: Edward Beeching <edbeeching@users.noreply.github.com>

* Update docs/source/customization.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update docs/source/detoxifying_a_lm.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* po to example overview

* drop lion

* remove "Use 8-bit optimizer"

* Update docs/source/customization.mdx

* Update docs/source/customization.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* it applies to all trainers

---------

Co-authored-by: Edward Beeching <edbeeching@users.noreply.github.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2024-10-11 17:28:39 +02:00
d0aa421e5e Conversational dataset support for ORPOTrainer (#2184)
* default learning rate

* update trainer

* update test

* update script

* update dataset format

* add line in dpo doc

* update orpo doc

* refine implicit/explicit

* update demo chat
2024-10-11 17:08:28 +02:00
5375d71bbd trl env report all cuda devices (#2216) 2024-10-11 16:32:34 +02:00
6004e033a4 Updated README.md with CLI examples and additional usage instructions (#2199)
* Updated README.md with CLI examples and additional usage instructions

Added Command Line Interface (CLI) examples for SFT, DPO, and Chat features.
Improved the "How to Use" section by providing code examples for SFTTrainer and RewardTrainer.
Included installation instructions for both Python Package and source-based installation.
Refined highlights to better showcase efficiency and scalability features.
Updated the repository clone instructions for working with examples.
Added new links to CLI documentation and contribution guide for better navigation.

* Update README.md

* Update README.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update README.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update README.md

* update badges

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-10-11 16:31:38 +02:00
f436c3e1c9 Update README.md (#2180)
* Update README.md

* Update README.md

* Update README.md

Co-authored-by: Edward Beeching <edbeeching@users.noreply.github.com>

* Update README.md

* Update README.md

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Edward Beeching <edbeeching@users.noreply.github.com>
2024-10-11 16:14:46 +02:00
cd1aa6bdcc [Judges] Soft judges for PairRM (#2221)
* initial soft judges

* add soft-judge to PairRM

* remove comments

* fix from review
2024-10-11 15:53:42 +02:00
b3f93f0bad Report to "none" in GKD test (#2214) 2024-10-10 19:05:55 +02:00
6c32c8bfcd Improve slack reporting (#2182)
* Update log_example_reports.py

1. Added logging: Imported the logging module and set up a logger in the main function. This allows for better error tracking and debugging.

2. Improved file reading: Used a with statement to ensure the file is properly closed after reading. Also added error handling to catch and log any issues when reading the file.

3. Error handling for Slack SDK import: Added a try-except block to handle cases where the slack_sdk might not be installed.

4. Enhanced Slack message sending: Added error handling and logging for the Slack message sending process. This will help identify any issues with the Slack integration.

* style

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-10-10 17:42:06 +02:00
3107a40f16 Update incorrect data processing in DataCollatorForChatML (#2172)
* Update incorrect data processing in DataCollatorForChatML

Fix the extra BOS token and the absence of an EOS token in the returned input_ids, and potentially the absence of a target string in the returned labels.

* Update trl/trainer/utils.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* style

* move comment

* add test for DataCollatorForChatML

* update comment with more details

* update assert reports and comments, and adds verification that the last token of input_ids should be EOS token

* new line at the end of file for code quality

* Update tests/test_utils.py

* Update tests/test_utils.py

* Update tests/test_utils.py

* update tests

* fix test

* Update tests/test_utils.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update tests/test_utils.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* formatting

* fix typo

* simplify

* Revert "simplify"

This reverts commit 7e4006c87265665183032932ca05dffef567e38b.

* tokenize full messages

* dont add eos

* eos is in the last token

* simplify DataCollatorForChatML

* Update tests/test_utils.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-10-10 12:49:10 +02:00
419791695c Drop decoder_input_ids in DPOTrainer (#2208) 2024-10-10 10:20:40 +02:00
7e5924d17e [GKD] interpolate in prob. space (#2204)
* interpolate in prob. space

* better var names

* use logsumexp

* set beta dtype

* beta tensor
2024-10-09 12:13:18 +02:00
ed9ea74b62 [DPO] Adding weighted preference optimization (WPO) (#2141)
* skeleton

* add weighting arg in config

* formatting

* fix doc

* do not compute gradients in weighting term

* fixed detach

* add WPO doc

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-10-08 19:52:54 +02:00
511c92c91c Get the aux_loss_coef at BCOTrainer, CPOTrainer, KTOTrainer, and ORPOTrainer initialization (#2201)
* Fix aux_loss coefficient bug of BCOTrainer

* Fix aux_loss coefficient bug of CPOTrainer

* Fix aux_loss coefficient bug of KTOTrainer

* Fix aux_loss coefficient bug of ORPOTrainer
2024-10-08 16:17:09 +02:00
c6cb6353a5 Get the aux_loss_coef at DPOTrainer initialization (#2200) 2024-10-08 16:06:48 +02:00
adb3e0560b ♾️ [CI] Use transformers from source in "tests_no_optional_dep" (#2198) 2024-10-08 12:19:04 +02:00
adf58d80d0 skip_prompt=True in TextIteratorStreamer (#2193)
* skip_prompt in `TextIteratorStreamer`

* Update trl/commands/cli.py

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>

* Update generation streamer in chat.py

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-10-07 17:38:40 +02:00
9aa022503c Update README.md (#2186)
* Update README.md

Fix grammatical errors in README.md
fixes issue #2185

Description:

I found a grammatical error in the README.md of the project. This PR fixes the error to improve the overall readability and clarity of the documentation.

Changes:
Corrected grammatical errors
Updated lines to reflect the correct grammar
Reasoning: The original text contained a grammatical error that could confuse readers. This fix ensures that the documentation is accurate and easy to understand.

Closes #2185

* Update README.md

Co-authored-by: Edward Beeching <edbeeching@users.noreply.github.com>

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Edward Beeching <edbeeching@users.noreply.github.com>
2024-10-07 14:30:00 +02:00
82ad390caf Fix RLOO checkpointing (#2114)
* Fix RLOO checkpointing for transformers>=4.45.0

* Add missing import

* Fix pre-commit issues

* Added test for RLOO checkpointing

* Ensure that tokenizer matches SFT and Reward model

* Pre-commit formatting

* processing class

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-10-07 13:11:17 +02:00
ac038ef03a Update CONTRIBUTING.md (#2181)
* Update CONTRIBUTING.md

* Update CONTRIBUTING.md

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-10-07 06:56:19 -04:00
51ca76b749 [CI] fix dpo gpu ci tests (#2189)
* fix dpo ci test

* color-blind
2024-10-07 10:59:43 +02:00
7005ab4d11 🃏 Model card: "unsloth" tag (#2173) 2024-10-07 10:57:05 +02:00
ffb1ab74ba Update documentation CLI Chat (#2191) 2024-10-07 10:33:51 +02:00
47d08a9626 Rename trainer arg tokenizer to processing_class (#2162) 2024-10-07 09:39:32 +02:00
70327c18e6 add trl to tag for models (#2178) 2024-10-07 08:12:44 +02:00
f05c3fa8fc minor KTO setting changes + KL batch size (#2153)
* add argument for dropout

* increase default lr

* change default lr in examples

* fix bug in calculation of KL batch size

* KL batch size should be args.per_device_train_batch_size

* Update kto_trainer.mdx with hparam recs

* typo

* allow dropout to be disabled

* update lr in sample scrippt

* Update kto_config.py

* Update trl/trainer/kto_trainer.py

* Update docs/source/kto_trainer.mdx

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-10-06 13:13:11 +02:00
4799ba4842 Capybara replaced with ultrafeedback_binarized (#2183) 2024-10-05 18:49:48 +02:00
d45c86e2a7 Conversational dataset support for CPOTrainer (#2144)
* extract prompt and apply chat template in cpo trainer

* default leanring rate

* simplify example

* update doc

* test all formats

* extend exptract prompt

* improve doc format

* link in dataset formats

* Update docs/source/cpo_trainer.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* Update docs/source/cpo_trainer.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

---------

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2024-10-04 18:01:02 +02:00
c6b0d1358b 🗑️ Set deprecation version for DPO and SFT arguments to version 0.13 (#2170) 2024-10-04 17:46:55 +02:00
3321084e30 Update trl version in CITATION.cff (#2171) 2024-10-04 12:24:09 +02:00
a9cffc7caf Default dataset_text_field to "text" (#2078)
* clarify ConstantLengthDataset usage

* dont provide dataset text field when formatting func is provided

* kto maybe_apply_chat_template

* default text field

* doc

* remove maybe_apply_chat_template from kto example

* dataset text field always a str

* remove `dataset_text_field="text"`

* update doc
2024-10-04 10:55:47 +02:00
32a928cfc2 🏷️ Model badges in trainer documentation (#2160) 2024-10-04 10:55:06 +02:00
1a3bb372ac Fix typo in error message (#2168)
occured -> occurred
2024-10-04 09:36:52 +02:00
d4564b7c64 ↩️ Revert tokenizer hotfix #2163 2024-10-04 00:14:12 +02:00
1be4d86ccc 🩹 [Hotfix] Add setter for tokenizer (#2163) 2024-10-03 16:13:50 +02:00
78249d9de4 Conversational dataset support for DPOTrainer (#2131)
* conversational dataset support for dpo

* support standard dataset for extract prompt

* test standard dataset for extract prompt

* fix maybe

* fix maybe apply prompt

* style

* overwrite default learning rate of DPO

* style

* rlaif script

* `writer_batch_size` in `train_test_split`

* initial dpo doc refactoring

* vision data section in doc

* lil format modif

* refine Vision datasets

* refine doc

* test new loss type format

* restrcture loss function

* table loss type

* simplify `unsloth`

* improve doc

* looged metrics up

* refine loss section

* Fix label_smoothing parameter in DPOConfig

* dataset for test

* update readme

* Update docs/source/dpo_trainer.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* try colorized code block

* refine doc style

* further refine doc

* Update docs/source/dpo_trainer.mdx

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>

* re add pali gemma test

* Add missing period

---------

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-10-02 10:04:03 +02:00
5c21de30ae [CI] Don't use eval_strategy="steps" when no eval dataset (#2152)
* `eval_strategy="steps" if eval_dataset else "no"`

* tmp skip test

* drop `eval_strategy` in `test_sft_trainer_uncorrect_data`

* remove eval strategy
2024-10-01 21:46:41 +02:00
0a566f0c58 🩹 Fix attention mask warning in chat CLI (#2147)
* explicit attention mask

* fix chat command
2024-10-01 10:53:18 +02:00
de3876577c [GKD] Set custom EOS tokens in generation config (#2142)
* Expose EOS token IDs in GKD generation

* Apply suggestions from code review

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Revert

* Refactor EOS token setting

* Remove EOS from config

* Refactor

* Add unit test

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-09-30 13:53:16 +02:00
1201aa61b4 rename example (#2139) 2024-09-27 21:45:21 +02:00
c00722ce0a 🃏 Model card for TRL (#2123)
* template and util

* test for online dpo

* template in package_data

* template in manifest

* standardize push_to_hub

* wandb badge and quick start

* bco

* xpo

* simplify `create_model_card`

* cpo

* kto

* dpo

* gkd

* orpo

* style

* nash-md

* alignprop

* bco citation

* citation template

* cpo citation

* ddpo

* fix alignprop

* dpo

* gkd citation

* kto

* online dpo citation

* orpo citation

* citation in utils

* optional citation

* reward

* optional trainer citation

* sft

* remove add_model_tags bco

* Remove unnecessary code for adding model tags

* Fix model tag issue and update URL format

* Remove unused code for adding model tags

* Add citation for XPOTrainer

* Remove unused code in SFTTrainer

* Add model card generation in RLOOTrainer

* Remove unused import and method call in reward_trainer.py

* Add model card generation

* Remove unused code and update error message in ORPOTrainer class

* Add import statements and create model card in IterativeSFTTrainer

* Add dataset name to push_to_hub() call

* Update trainer.push_to_hub() dataset names

* script args

* test

* better doc

* fix tag test

* fix test tag

* Add tags parameter to create_model_card method

* doc

* script args

* Update trl/templates/model_card.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* unittest's `assertIn` instead of `assert`

* Update trl/templates/model_card.md

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

---------

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2024-09-27 15:23:05 +02:00
124189c86a Add correct label for WinRateCallback table (#2134)
Small fix to make it clear in WandB which table it which
2024-09-27 10:33:41 +02:00
d5eeaab462 arXiv to HF papers (#2133) 2024-09-27 09:00:49 +02:00
5368be1e1e 🧹 Style (#2132)
* drop `# flake8: noqa` in examples

* `__init__.py`

* fix init

* unwrap_model_for_generation

* ignore import violation in init
2024-09-26 21:02:48 +02:00
b169e1030d Add table for WinRateCallback (#2116)
* Add table for WinRateCallback

* Fix tests

* Apply suggestions from code review

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Refactor

* Remove super

* Clean

* Clean

* Apply suggestions from code review

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-09-26 19:28:44 +02:00
9af4734178 ♻️ Standardize script_args (#2130) 2024-09-26 15:23:42 +02:00
a0d714949f Tokenize row during in training_step in OnlineDPOTrainer (#2117)
* tokenize while training

* same for nashmd and xpo

* Update trl/trainer/online_dpo_trainer.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

---------

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2024-09-26 11:58:14 +02:00
a0e28143ec Eos token encouragement Clarification (#2128)
* Update nash_md_trainer.md

* Update online_dpo_trainer.md

* Update xpo_trainer.mdx

* Fixing XPO Script Location
2024-09-26 11:47:48 +02:00
32d9d34eb1 Standardize pushing to Hub in examples (#2126) 2024-09-26 10:00:51 +02:00
fb1b48fdbe Remove max_length from RewardDataCollatorWithPadding (#2119) 2024-09-26 09:59:12 +02:00
b5e4bc5984 Update example_overview.md (#2125) 2024-09-25 20:45:57 +02:00
7a24565d9d Generalizes VSFT script to support REDACTED (#2120)
* generalizes vst script

* precommit

* change launch command to use accelerate

* updates docs

* rename to sft_vlm

* fix script location

* fix formatting

* comma

* add model link

* fix name

---------

Co-authored-by: Kashif Rasul <kashif.rasul@gmail.com>
2024-09-25 19:54:44 +02:00
44a06fc487 BCOTrainer conversational dataset support (#2107)
* update test

* maybe_apply_chat_template

* simplify bco example

* Update documentation

* Update examples/scripts/bco.py

* Update docs/source/bco_trainer.mdx

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

---------

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2024-09-24 18:15:57 +02:00
a84fc5d815 Fix packing test (#2111)
* Fix pack test

* same for eval
2024-09-24 17:12:54 +02:00
80038a5a92 [online-dpo] allow parse-args as list of floats (#2108)
* use a seperate argument for list of floats

* do super first

* fix docstrings

* typos

* use list of floats only

* check if it has len

* fix docstring

* fix suggestion

* fix default

* Update trl/trainer/online_dpo_config.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/xpo_config.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/nash_md_config.py

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Update trl/trainer/nash_md_config.py

* additional tests

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-09-24 16:56:27 +02:00
cece86b182 fix formatting (#2109)
* fix formatting

* formatting
2024-09-24 16:05:55 +02:00
d005980d8b Fix documentation links (#2105) 2024-09-24 15:35:29 +02:00
cc23b511e4 [RewardTrainer] Tokenize inputs within trainer (#2102)
* Pretokenize in reward modelling

* Fix README example

* Apply suggestions from code review

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Move chat template formatting inside trainer

* Refactor tests

* Fix README

* Disable wandb

* Update readme

* add comment `remove_unused_columns`

* Update trl/trainer/reward_config.py

* doc

* implicit*

* explicit

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <quentin.gallouedec@huggingface.co>
2024-09-24 13:03:32 +02:00
2cad48d511 [CLI] trl env for printing system info (#2104) 2024-09-24 09:57:24 +02:00
6859e048da Fix PPO/RLOO examples (#2100) 2024-09-23 11:49:36 +02:00
92eea1f239 Clean up README and remove openrlbenchmark dependency (#2085)
* Clean up README

* Add Kashif and Quentin

* Refactor

* Apply suggestions from code review

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Apply suggestions from code review

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

* Add citation

* Omit benchmarks from dev install

* Remove openrlbenchmark

* Apply suggestions from code review

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2024-09-23 09:21:41 +02:00
663002f609 KTO: fix logits metric, add logits metric to BCOTrainer too (#2094)
Co-authored-by: Clara Luise Pohland <clara-luise.pohland@telekom.de>
2024-09-21 19:08:10 +02:00
44d998b2af Fix _process_tokens for empty prompts in KTOTrainer (#2093)
The function _process_tokens in trl/trainers/kto_trainer.py crashes if the prompt_input_ids are an empty list.
- added a check for nonzero length
- added a check for nonzero length of answer_input_ids for consistency

The checks happen when determining when subtracting 1 from max_length (happens when BOS or EOS is already present).
2024-09-21 12:49:54 +02:00
9b80f3d50c fix: device could be in meta, transformers#33154 (#2089)
Signed-off-by: Yu Chin Fabian Lim <flim@sg.ibm.com>
2024-09-21 09:11:34 +02:00
2038e52c30 Fix typo in orpo example. (#2092) 2024-09-21 09:11:01 +02:00
10c2f63b2a training_args for all TrainingArguments (#2082) 2024-09-19 15:03:47 +02:00
9fb871f62f [SFT] fix neftune_noise_alpha in SFTTrainer (#1841)
* fix neftune_noise_alpha

* del neftune_noise_alpha first

* check len after removing handle

* make sure we do not load twice

* Update trl/trainer/sft_trainer.py

Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>

* remove neftune from SFTTrainer as the superclass has it now

---------

Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
Co-authored-by: lewtun <lewis.c.tunstall@gmail.com>
2024-09-19 11:57:36 +02:00
3cec013a20 Bump dev version 2024-09-19 10:47:21 +02:00
236 changed files with 14394 additions and 12679 deletions

View File

@ -7,16 +7,17 @@ body:
value: |
Thanks for taking the time to fill out this bug report! 🤗
Before you submit your bug report:
- If it is your first time submitting, be sure to check our [bug report guidelines](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md#did-you-find-a-bug)
🚩 If it is your first time submitting, be sure to check our [bug report guidelines](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md#did-you-find-a-bug)
- type: textarea
id: system-info
attributes:
label: System Info
description: Please share your system info with us. You can run the command `transformers-cli env` and copy-paste its output below.
placeholder: trl version, transformers version, platform, python version, ...
description: |
Please provide information about your system: platform, Python version, PyTorch version, Transformers version, devices, TRL version, ...
You can get this information by running `trl env` in your terminal.
placeholder: Copy-paste the output of `trl env`
validations:
required: true
@ -50,13 +51,19 @@ body:
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Do not use screenshots, as they are hard to read and (more importantly) don't allow others to copy-and-paste your code.
placeholder: |
Steps to reproduce the behavior:
value: |
```python
from trl import ...
1.
2.
3.
```
outputs:
```
Traceback (most recent call last):
File "example.py", line 42, in <module>
...
```
- type: textarea
id: expected-behavior
@ -65,3 +72,22 @@ body:
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."
- type: checkboxes
id: terms
attributes:
label: Checklist
description: |
Before submitting, please confirm that you've completed each of the following.
If an item doesn't apply to your issue, check it anyway to show you've reviewed it.
options:
- label: "I have checked that my issue isn't already filed (see [open issues](https://github.com/huggingface/trl/issues?q=is%3Aissue))"
required: true
- label: "I have included my system information"
required: true
- label: "Any code provided is minimal, complete, and reproducible ([more on MREs](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-and-highlighting-code-blocks))"
required: true
- label: "Any code provided is properly formatted in code blocks, (no screenshot, [more on code blocks](https://docs.github.com/en/get-started/writing-on-github/working-with-advanced-formatting/creating-and-highlighting-code-blocks))"
required: true
- label: "Any traceback provided is complete"
required: true

View File

@ -1,27 +0,0 @@
name: Stale Bot
on:
schedule:
- cron: "0 15 * * *"
jobs:
close_stale_issues:
name: Close Stale Issues
if: github.repository == 'huggingface/trl'
runs-on: ubuntu-latest
env:
GITHUB_TOKEN: ${{ secrets.GITHUB_TOKEN }}
steps:
- uses: actions/checkout@v4
- name: Setup Python
uses: actions/setup-python@v5
with:
python-version: 3.8
- name: Install requirements
run: |
pip install PyGithub
- name: Close stale issues
run: |
python scripts/stale.py

View File

@ -1,46 +0,0 @@
name: tests on transformers PEFT main
on:
push:
branches: [ main ]
env:
CI_SLACK_CHANNEL: ${{ secrets.CI_PUSH_MAIN_CHANNEL }}
jobs:
tests:
strategy:
matrix:
python-version: ['3.9', '3.10', '3.11']
os: ['ubuntu-latest', 'windows-latest']
fail-fast: false
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: "pip"
cache-dependency-path: |
setup.py
requirements.txt
- name: Install dependencies
run: |
python -m pip install --upgrade pip
# install PEFT & transformers from source
pip install -U git+https://github.com/huggingface/peft.git
pip install -U git+https://github.com/huggingface/transformers.git
# cpu version of pytorch
pip install ".[test, diffusers]"
- name: Test with pytest
run: |
make test
- name: Post to Slack
if: always()
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: 🤗 Results of the TRL CI on transformers/PEFT main
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

View File

@ -1,88 +1,163 @@
name: tests
name: Tests
on:
push:
branches: [ main ]
pull_request:
branches: [ main ]
paths:
# Run only when relevant files are modified
- "trl/**.py"
- ".github/**.yml"
- "examples/**.py"
- "scripts/**.py"
- ".github/**.yml"
- "tests/**.py"
- "trl/**.py"
- "setup.py"
env:
TQDM_DISABLE: 1
CI_SLACK_CHANNEL: ${{ secrets.CI_PUSH_MAIN_CHANNEL }}
jobs:
check_code_quality:
name: Check code quality
runs-on: ubuntu-latest
strategy:
matrix:
python-version: [3.9]
steps:
- uses: actions/checkout@v4
with:
fetch-depth: 0
submodules: recursive
- name: Set up Python ${{ matrix.python-version }}
- name: Set up Python 3.12
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
python-version: 3.12
- uses: pre-commit/action@v3.0.1
with:
extra_args: --all-files
tests:
needs: check_code_quality
name: Tests
strategy:
matrix:
python-version: ['3.9', '3.10', '3.11']
python-version: ['3.9', '3.10', '3.11', '3.12']
os: ['ubuntu-latest', 'windows-latest']
fail-fast: false
runs-on: ${{ matrix.os }}
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: "pip"
cache-dependency-path: |
setup.py
requirements.txt
- name: Install dependencies
run: |
python -m pip install --upgrade pip
# install PEFT & transformers from source
pip install -U git+https://github.com/huggingface/peft.git
pip install -U git+https://github.com/huggingface/transformers.git
# cpu version of pytorch
pip install ".[test, diffusers]"
- name: Test with pytest
run: |
make test
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v5
with:
python-version: ${{ matrix.python-version }}
cache: "pip"
cache-dependency-path: |
setup.py
requirements.txt
tests_no_optional_dep:
needs: check_code_quality
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install ".[dev]"
- name: Test with pytest
run: |
make test
- name: Post to Slack
if: github.ref == 'refs/heads/main' && always() # Check if the branch is main
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: Results with Python ${{ matrix.python-version }} on ${{ matrix.os }} with lastest dependencies
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
tests_dev:
name: Tests with dev dependencies
runs-on: 'ubuntu-latest'
steps:
- uses: actions/checkout@v4
- name: Set up Python 3.9
uses: actions/setup-python@v5
with:
python-version: '3.9'
cache: "pip"
cache-dependency-path: |
setup.py
requirements.txt
- name: Install dependencies
run: |
python -m pip install --upgrade pip
# cpu version of pytorch
pip install .[test]
- name: Test with pytest
run: |
make test
- uses: actions/checkout@v4
- name: Set up Python 3.12
uses: actions/setup-python@v5
with:
python-version: '3.12'
cache: "pip"
cache-dependency-path: |
setup.py
requirements.txt
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install -U git+https://github.com/huggingface/accelerate.git
python -m pip install -U git+https://github.com/huggingface/datasets.git
python -m pip install -U git+https://github.com/huggingface/transformers.git
python -m pip install ".[dev]"
- name: Test with pytest
run: |
make test
- name: Post to Slack
if: github.ref == 'refs/heads/main' && always() # Check if the branch is main
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: Results with Python 3.12 on ubuntu-latest with dev dependencies
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
tests_wo_optional_deps:
name: Tests without optional dependencies
runs-on: 'ubuntu-latest'
steps:
- uses: actions/checkout@v4
- name: Set up Python 3.12
uses: actions/setup-python@v5
with:
python-version: '3.12'
cache: "pip"
cache-dependency-path: |
setup.py
requirements.txt
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install ".[test]"
- name: Test with pytest
run: |
make test
- name: Post to Slack
if: github.ref == 'refs/heads/main' && always() # Check if the branch is main
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: Results with Python 3.12 on ubuntu-latest without optional dependencies
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}
tests_min_versions:
name: Tests with minimum versions
runs-on: 'ubuntu-latest'
steps:
- uses: actions/checkout@v4
- name: Set up Python 3.12
uses: actions/setup-python@v5
with:
python-version: '3.12'
cache: "pip"
cache-dependency-path: |
setup.py
requirements.txt
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install accelerate==0.34.0
python -m pip install datasets==2.21.0
python -m pip install transformers==4.46.0
python -m pip install ".[dev]"
- name: Test with pytest
run: |
make test
- name: Post to Slack
if: github.ref == 'refs/heads/main' && always() # Check if the branch is main
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: Results with Python 3.12 on ubuntu-latest with minimum versions
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

45
.github/workflows/tests_latest.yml vendored Normal file
View File

@ -0,0 +1,45 @@
name: Tests latest TRL release with dev dependencies
on:
schedule:
- cron: '0 0 * * *' # Runs daily at midnight UTC
workflow_dispatch:
env:
TQDM_DISABLE: 1
CI_SLACK_CHANNEL: ${{ secrets.CI_PUSH_MAIN_CHANNEL }}
jobs:
tests:
name: Tests latest TRL release with dev dependencies
runs-on: 'ubuntu-latest'
steps:
- name: Git checkout
uses: actions/checkout@v4
with: { ref: v0.13-release }
- name: Set up Python 3.12
uses: actions/setup-python@v5
with:
python-version: '3.12'
cache: "pip"
cache-dependency-path: |
setup.py
requirements.txt
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install -U git+https://github.com/huggingface/accelerate.git
python -m pip install -U git+https://github.com/huggingface/datasets.git
python -m pip install -U git+https://github.com/huggingface/transformers.git
python -m pip install ".[dev]"
- name: Test with pytest
run: |
make test
- name: Post to Slack
uses: huggingface/hf-workflows/.github/actions/post-slack@main
with:
slack_channel: ${{ env.CI_SLACK_CHANNEL }}
title: Results of latest TRL with Python 3.12 on ubuntu-latest with dev dependencies
status: ${{ job.status }}
slack_token: ${{ secrets.SLACK_CIFEEDBACK_BOT_TOKEN }}

4
.gitignore vendored
View File

@ -1,4 +1,3 @@
benchmark/trl
*.bak
.gitattributes
.last_checked
@ -144,6 +143,3 @@ checklink/cookies.txt
nbs/wandb/
examples/notebooks/wandb/
wandb/
# cli scripts that are symlinked from `examples/scripts`
trl/commands/scripts/

View File

@ -17,6 +17,12 @@ authors:
family-names: Thrush
- given-names: Nathan
family-names: Lambert
- given-names: Shengyi
family-names: Huang
- given-names: Kashif
family-names: Rasul
- given-names: Quentin
family-names: Gallouédec
repository-code: 'https://github.com/huggingface/trl'
abstract: "With trl you can train transformer language models with Proximal Policy Optimization (PPO). The library is built on top of the transformers library by \U0001F917 Hugging Face. Therefore, pre-trained language models can be directly loaded via transformers. At this point, most decoder and encoder-decoder architectures are supported."
keywords:
@ -25,4 +31,4 @@ keywords:
- pytorch
- transformers
license: Apache-2.0
version: 0.2.1
version: 0.12

View File

@ -20,7 +20,7 @@ There are several ways you can contribute to TRL:
* Fix outstanding issues with the existing code.
* Submit issues related to bugs or desired new features.
* Implement trainers for new post-training algorithms.
* Contribute to the examples or to the documentation.
* Contribute to the examples or the documentation.
If you don't know where to start, there is a special [Good First
Issue](https://github.com/huggingface/trl/contribute) listing. It will give you a list of
@ -33,7 +33,7 @@ For something slightly more challenging, you can also take a look at the [Good S
Before you start contributing make sure you have installed all the dev tools:
```bash
make dev
pip install -e .[dev]
```
## Fixing outstanding issues
@ -62,7 +62,7 @@ Once you've confirmed the bug hasn't already been reported, please include the f
To get the OS and software versions automatically, run the following command:
```bash
transformers-cli env
trl env
```
### Do you want a new feature?
@ -74,19 +74,19 @@ If there is a new feature you'd like to see in TRL, please open an issue and des
Whatever it is, we'd love to hear about it!
2. Describe your requested feature in as much detail as possible. The more you can tell us about it, the better we'll be able to help you.
3. Provide a *code snippet* that demonstrates the features usage.
3. Provide a *code snippet* that demonstrates the feature's usage.
4. If the feature is related to a paper, please include a link.
If your issue is well written we're already 80% of the way there by the time you create it.
## Do you want to implement a new trainer?
New post-training methods are published on a frequent basis and those which satisfy the following criteria are good candidates to be integrated in TRL:
New post-training methods are published frequently and those that satisfy the following criteria are good candidates to be integrated into TRL:
* **Simplicity:** does the new method achieve similar performance as prior methods, but with less complexity? A good example is [Direct Preference Optimization](https://arxiv.org/abs/2305.18290) (DPO), which provided a simpler and compelling alternative to RLHF methods.
* **Efficiency:** does the new method provide a significant improvement in training efficiency? A good example is [Odds Ratio Preference Optimization](https://arxiv.org/abs/2403.07691v2), which utilises a similar objective as DPO, but requires half the GPU VRAM.
* **Simplicity:** Does the new method achieve similar performance as prior methods, but with less complexity? A good example is Direct Preference Optimization (DPO) [[Rafailov et al, 2023]](https://huggingface.co/papers/2305.18290), which provided a simpler and compelling alternative to RLHF methods.
* **Efficiency:** Does the new method provide a significant improvement in training efficiency? A good example is Odds Ratio Preference Optimization (ORPO) [[Hong et al, 2023]](https://huggingface.co/papers/2403.07691), which utilizes a similar objective as DPO but requires half the GPU VRAM.
Methods which only provide incremental improvements at the expense of added complexity or compute costs are unlikely to be included in TRL.
Methods that only provide incremental improvements at the expense of added complexity or compute costs are unlikely to be included in TRL.
If you want to implement a trainer for a new post-training method, first open an issue and provide the following information:
@ -102,7 +102,7 @@ Based on the community and maintainer feedback, the next step will be to impleme
## Do you want to add documentation?
We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved, such as typos, dead links and any missing, unclear or inaccurate content.. We'll be happy to make the changes or help you make a contribution if you're interested!
We're always looking for improvements to the documentation that make it more clear and accurate. Please let us know how the documentation can be improved, such as typos, dead links, and any missing, unclear, or inaccurate content... We'll be happy to make the changes or help you contribute if you're interested!
## Submitting a pull request (PR)
@ -133,7 +133,7 @@ Follow these steps to start contributing:
3. Create a new branch to hold your development changes, and do this for every new PR you work on.
Start by synchronizing your `main` branch with the `upstream/main` branch (ore details in the [GitHub Docs](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork)):
Start by synchronizing your `main` branch with the `upstream/main` branch (more details in the [GitHub Docs](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork)):
```bash
$ git checkout main
@ -152,7 +152,7 @@ Follow these steps to start contributing:
4. Set up a development environment by running the following command in a conda or a virtual environment you've created for working on this library:
```bash
$ make dev
$ pip install -e .[dev]
```
(If TRL was already installed in the virtual environment, remove
@ -180,18 +180,21 @@ Follow these steps to start contributing:
$ make test
```
TRL relies on `ruff` to format its source code
consistently. After you make changes, apply automatic style corrections and code verifications
that can't be automated in one go with:
TRL relies on `ruff` for maintaining consistent code formatting across its source files. Before submitting any PR, you should apply automatic style corrections and run code verification checks.
This target is also optimized to only work with files modified by the PR you're working on.
We provide a `precommit` target in the `Makefile` that simplifies this process by running all required checks and optimizations on only the files modified by your PR.
If you prefer to run the checks one after the other, the following command apply the
style corrections:
To apply these checks and corrections in one step, use:
```bash
$ make precommit
```
```bash
$ make precommit
```
This command runs the following:
- Executes `pre-commit` hooks to automatically fix style issues with `ruff` and other tools.
- Runs additional scripts such as adding copyright information.
If you prefer to apply the style corrections separately or review them individually, the `pre-commit` hook will handle the formatting for the files in question.
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
@ -221,10 +224,7 @@ Follow these steps to start contributing:
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
7. It's ok if maintainers ask you for changes. It happens to core contributors too! To ensure everyone can review your changes in the pull request, work on your local branch and push the updates to your fork. They will automatically appear in the pull request.
### Checklist
@ -245,14 +245,94 @@ Follow these steps to start contributing:
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in
the [tests folder](https://github.com/huggingface/trl/tree/main/tests).
We use `pytest` in order to run the tests. From the root of the
repository, here's how to run tests with `pytest` for the library:
We use `pytest` to run the tests. From the root of the
repository here's how to run tests with `pytest` for the library:
```bash
$ python -m pytest -sv ./tests
```
In fact, that's how `make test` is implemented (sans the `pip install` line)!
That's how `make test` is implemented (without the `pip install` line)!
You can specify a smaller set of tests in order to test only the feature
You can specify a smaller set of tests to test only the feature
you're working on.
### Deprecation and Backward Compatibility
Our approach to deprecation and backward compatibility is flexible and based on the features usage and impact. Each deprecation is carefully evaluated, aiming to balance innovation with user needs.
When a feature or component is marked for deprecation, its use will emit a warning message. This warning will include:
- **Transition Guidance**: Instructions on how to migrate to the alternative solution or replacement.
- **Removal Version**: The target version when the feature will be removed, providing users with a clear timeframe to transition.
Example:
```python
warnings.warn(
"The `Trainer.foo` method is deprecated and will be removed in version 0.14.0. "
"Please use the `Trainer.bar` class instead.",
FutureWarning,
)
```
The deprecation and removal schedule is based on each feature's usage and impact, with examples at two extremes:
- **Experimental or Low-Use Features**: For a feature that is experimental or has limited usage, backward compatibility may not be maintained between releases. Users should therefore anticipate potential breaking changes from one version to the next.
- **Widely-Used Components**: For a feature with high usage, we aim for a more gradual transition period of approximately **5 months**, generally scheduling deprecation around **5 minor releases** after the initial warning.
These examples represent the two ends of a continuum. The specific timeline for each feature will be determined individually, balancing innovation with user stability needs.
### Working with warnings
Warnings play a critical role in guiding users toward resolving potential issues, but they should be used thoughtfully to avoid unnecessary noise. Unlike logging, which provides informational context or operational details, warnings signal conditions that require attention and action. Overusing warnings can dilute their importance, leading users to ignore them entirely.
#### Definitions
- **Correct**: An operation is correct if it is valid, follows the intended approach, and aligns with the current best practices or guidelines within the codebase. This is the recommended or intended way to perform the operation.
- **Supported**: An operation is supported if it is technically valid and works within the current codebase, but it may not be the most efficient, optimal, or recommended way to perform the task. This includes deprecated features or legacy approaches that still work but may be phased out in the future.
#### Choosing the right message
- **Correct → No warning**:
If the operation is fully valid and expected, no message should be issued. The system is working as intended, so no warning is necessary.
- **Correct but deserves attention → No warning, possibly a log message**:
When an operation is correct but uncommon or requires special attention, providing an informational message can be helpful. This keeps users informed without implying any issue. If available, use the logger to output this message. Example:
```python
logger.info("This is an informational message about a rare but correct operation.")
```
- **Correct but very likely a mistake → Warning with option to disable**:
In rare cases, you may want to issue a warning for a correct operation thats very likely a mistake. In such cases, you must provide an option to suppress the warning. This can be done with a flag in the function. Example:
```python
def my_function(foo, bar, _warn=True):
if foo == bar:
if _warn:
warnings.warn("foo and bar are the same, this is likely a mistake. Ignore this warning by setting `_warn=False`.")
# Do something
```
- **Supported but not correct → Warning**:
If the operation is technically supported but is deprecated, suboptimal, or could cause future issues (e.g., conflicting arguments), a warning should be raised. This message should be actionable, meaning it must explain how to resolve the issue. Example:
```python
def my_function(foo, bar):
if foo and bar:
warnings.warn("Both `foo` and `bar` were provided, but only one is allowed. Ignoring `foo`. Please pass only one of these arguments.")
# Do something
```
- **Not supported → Exception**:
If the operation is invalid or unsupported, raise an exception. This indicates that the operation cannot be performed and requires immediate attention. Example:
```python
def my_function(foo, bar):
if foo and bar:
raise ValueError("Both `foo` and `bar` were provided, but only one is allowed. Please pass only one of these arguments.")
```
By following this classification, you ensure that warnings, information, and exceptions are used appropriately, providing clear guidance to the user without cluttering the system with unnecessary messages.

View File

@ -2,4 +2,5 @@ include settings.ini
include LICENSE
include CONTRIBUTING.md
include README.md
recursive-exclude * __pycache__
recursive-exclude * __pycache__
include trl/templates/*.md

View File

@ -1,16 +1,10 @@
.PHONY: test precommit benchmark_core benchmark_aux common_tests slow_tests test_examples tests_gpu
.PHONY: test precommit common_tests slow_tests test_examples tests_gpu
check_dirs := examples tests trl
ACCELERATE_CONFIG_PATH = `pwd`/examples/accelerate_configs
COMMAND_FILES_PATH = `pwd`/commands
dev:
[ -L "$(pwd)/trl/commands/scripts" ] && unlink "$(pwd)/trl/commands/scripts" || true
pip install -e ".[dev]"
ln -s `pwd`/examples/scripts/ `pwd`/trl/commands
test:
python -m pytest -n auto --dist=loadfile -s -v --reruns 5 --reruns-delay 1 --only-rerun '(OSError|Timeout|HTTPError.*502|HTTPError.*504||not less than or equal to 0.01)' ./tests/
@ -18,12 +12,6 @@ precommit:
pre-commit run --all-files
python scripts/add_copyrights.py
benchmark_core:
bash ./benchmark/benchmark_core.sh
benchmark_aux:
bash ./benchmark/benchmark_aux.sh
tests_gpu:
python -m pytest tests/test_* $(if $(IS_GITHUB_CI),--report-log "common_tests.log",)

219
README.md
View File

@ -1,228 +1,211 @@
# TRL - Transformer Reinforcement Learning
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_banner_dark.png">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_banner_dark.png" alt="TRL Banner">
</div>
# TRL - Transformer Reinforcement Learning
> Full stack library to fine-tune and align large language models.
<hr> <br>
<h3 align="center">
<p>A comprehensive library to post-train foundation models</p>
</h3>
<p align="center">
<a href="https://github.com/huggingface/trl/blob/main/LICENSE">
<img alt="License" src="https://img.shields.io/github/license/huggingface/trl.svg?color=blue">
</a>
<a href="https://huggingface.co/docs/trl/index">
<img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/trl/index.svg?down_color=red&down_message=offline&up_message=online">
</a>
<a href="https://github.com/huggingface/trl/releases">
<img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/trl.svg">
</a>
<a href="https://github.com/huggingface/trl/blob/main/LICENSE"><img alt="License" src="https://img.shields.io/github/license/huggingface/trl.svg?color=blue"></a>
<a href="https://huggingface.co/docs/trl/index"><img alt="Documentation" src="https://img.shields.io/website/http/huggingface.co/docs/trl/index.svg?down_color=red&down_message=offline&up_color=blue&up_message=online"></a>
<a href="https://github.com/huggingface/trl/releases"><img alt="GitHub release" src="https://img.shields.io/github/release/huggingface/trl.svg"></a>
</p>
## Overview
## What is it?
The `trl` library is a full stack tool to fine-tune and align transformer language and diffusion models using methods such as Supervised Fine-tuning step (SFT), Reward Modeling (RM) and the Proximal Policy Optimization (PPO) as well as Direct Preference Optimization (DPO).
The library is built on top of the [`transformers`](https://github.com/huggingface/transformers) library and thus allows to use any model architecture available there.
TRL is a cutting-edge library designed for post-training foundation models using advanced techniques like Supervised Fine-Tuning (SFT), Proximal Policy Optimization (PPO), and Direct Preference Optimization (DPO). Built on top of the [🤗 Transformers](https://github.com/huggingface/transformers) ecosystem, TRL supports a variety of model architectures and modalities, and can be scaled-up across various hardware setups.
## Highlights
- **`Efficient and scalable`**:
- [`accelerate`](https://github.com/huggingface/accelerate) is the backbone of `trl` which allows to scale model training from a single GPU to a large scale multi-node cluster with methods such as DDP and DeepSpeed.
- [`PEFT`](https://github.com/huggingface/peft) is fully integrated and allows to train even the largest models on modest hardware with quantisation and methods such as LoRA or QLoRA.
- [`unsloth`](https://github.com/unslothai/unsloth) is also integrated and allows to significantly speed up training with dedicated kernels.
- **`CLI`**: With the [CLI](https://huggingface.co/docs/trl/clis) you can fine-tune and chat with LLMs without writing any code using a single command and a flexible config system.
- **`Trainers`**: The Trainer classes are an abstraction to apply many fine-tuning methods with ease such as the [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer), [`DPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.DPOTrainer), [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer), [`PPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.PPOTrainer), [`CPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.CPOTrainer), and [`ORPOTrainer`](https://huggingface.co/docs/trl/trainer#trl.ORPOTrainer).
- **`AutoModels`**: The [`AutoModelForCausalLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForCausalLMWithValueHead) & [`AutoModelForSeq2SeqLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForSeq2SeqLMWithValueHead) classes add an additional value head to the model which allows to train them with RL algorithms such as PPO.
- **`Examples`**: Train GPT2 to generate positive movie reviews with a BERT sentiment classifier, full RLHF using adapters only, train GPT-j to be less toxic, [StackLlama example](https://huggingface.co/blog/stackllama), etc. following the [examples](https://github.com/huggingface/trl/tree/main/examples).
- **Efficient and scalable**:
- Leverages [🤗 Accelerate](https://github.com/huggingface/accelerate) to scale from single GPU to multi-node clusters using methods like DDP and DeepSpeed.
- Full integration with [`PEFT`](https://github.com/huggingface/peft) enables training on large models with modest hardware via quantization and LoRA/QLoRA.
- Integrates [Unsloth](https://github.com/unslothai/unsloth) for accelerating training using optimized kernels.
- **Command Line Interface (CLI)**: A simple interface lets you fine-tune and interact with models without needing to write code.
- **Trainers**: Various fine-tuning methods are easily accessible via trainers like [`SFTTrainer`](https://huggingface.co/docs/trl/sft_trainer), [`DPOTrainer`](https://huggingface.co/docs/trl/dpo_trainer), [`RewardTrainer`](https://huggingface.co/docs/trl/reward_trainer), [`ORPOTrainer`](https://huggingface.co/docs/trl/orpo_trainer) and more.
- **AutoModels**: Use pre-defined model classes like [`AutoModelForCausalLMWithValueHead`](https://huggingface.co/docs/trl/models#trl.AutoModelForCausalLMWithValueHead) to simplify reinforcement learning (RL) with LLMs.
## Installation
### Python package
Install the library with `pip`:
### Python Package
Install the library using `pip`:
```bash
pip install trl
```
### From source
If you want to use the latest features before an official release you can install from source:
If you want to use the latest features before an official release, you can install TRL from source:
```bash
pip install git+https://github.com/huggingface/trl.git
```
### Repository
If you want to use the examples you can clone the repository with the following command:
```bash
git clone https://github.com/huggingface/trl.git
```
## Command Line Interface (CLI)
You can use TRL Command Line Interface (CLI) to quickly get started with Supervised Fine-tuning (SFT), Direct Preference Optimization (DPO) and test your aligned model with the chat CLI:
You can use the TRL Command Line Interface (CLI) to quickly get started with Supervised Fine-tuning (SFT) and Direct Preference Optimization (DPO), or vibe check your model with the chat CLI:
**SFT:**
```bash
trl sft --model_name_or_path facebook/opt-125m --dataset_name stanfordnlp/imdb --output_dir opt-sft-imdb
trl sft --model_name_or_path Qwen/Qwen2.5-0.5B \
--dataset_name trl-lib/Capybara \
--output_dir Qwen2.5-0.5B-SFT
```
**DPO:**
```bash
trl dpo --model_name_or_path facebook/opt-125m --dataset_name trl-internal-testing/hh-rlhf-helpful-base-trl-style --output_dir opt-sft-hh-rlhf
trl dpo --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--dataset_name argilla/Capybara-Preferences \
--output_dir Qwen2.5-0.5B-DPO
```
**Chat:**
```bash
trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat
trl chat --model_name_or_path Qwen/Qwen2.5-0.5B-Instruct
```
Read more about CLI in the [relevant documentation section](https://huggingface.co/docs/trl/main/en/clis) or use `--help` for more details.
## How to use
For more flexibility and control over the training, you can use the dedicated trainer classes to fine-tune the model in Python.
For more flexibility and control over training, TRL provides dedicated trainer classes to post-train language models or PEFT adapters on a custom dataset. Each trainer in TRL is a light wrapper around the 🤗 Transformers trainer and natively supports distributed training methods like DDP, DeepSpeed ZeRO, and FSDP.
### `SFTTrainer`
This is a basic example of how to use the `SFTTrainer` from the library. The `SFTTrainer` is a light wrapper around the `transformers` Trainer to easily fine-tune language models or adapters on a custom dataset.
Here is a basic example of how to use the `SFTTrainer`:
```python
# imports
from trl import SFTConfig, SFTTrainer
from datasets import load_dataset
from trl import SFTTrainer
# get dataset
dataset = load_dataset("stanfordnlp/imdb", split="train")
dataset = load_dataset("trl-lib/Capybara", split="train")
# get trainer
training_args = SFTConfig(output_dir="Qwen/Qwen2.5-0.5B-SFT")
trainer = SFTTrainer(
"facebook/opt-350m",
args=training_args,
model="Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
dataset_text_field="text",
max_seq_length=512,
)
# train
trainer.train()
```
### `RewardTrainer`
This is a basic example of how to use the `RewardTrainer` from the library. The `RewardTrainer` is a wrapper around the `transformers` Trainer to easily fine-tune reward models or adapters on a custom preference dataset.
Here is a basic example of how to use the `RewardTrainer`:
```python
# imports
from trl import RewardConfig, RewardTrainer
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from trl import RewardTrainer
# load model and dataset - dataset needs to be in a specific format
model = AutoModelForSequenceClassification.from_pretrained("gpt2", num_labels=1)
tokenizer = AutoTokenizer.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
model = AutoModelForSequenceClassification.from_pretrained(
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1
)
model.config.pad_token_id = tokenizer.pad_token_id
...
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
# load trainer
training_args = RewardConfig(output_dir="Qwen2.5-0.5B-Reward", per_device_train_batch_size=2)
trainer = RewardTrainer(
args=training_args,
model=model,
tokenizer=tokenizer,
processing_class=tokenizer,
train_dataset=dataset,
)
# train
trainer.train()
```
### `PPOTrainer`
### `RLOOTrainer`
This is a basic example of how to use the `PPOTrainer` from the library. Based on a query the language model creates a response which is then evaluated. The evaluation could be a human in the loop or another model's output.
`RLOOTrainer` implements a [REINFORCE-style optimization](https://huggingface.co/papers/2402.14740) for RLHF that is more performant and memory-efficient than PPO. Here is a basic example of how to use the `RLOOTrainer`:
```python
# imports
import torch
from transformers import AutoTokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model
from trl.core import respond_to_batch
from trl import RLOOConfig, RLOOTrainer, apply_chat_template
from datasets import load_dataset
from transformers import (
AutoModelForCausalLM,
AutoModelForSequenceClassification,
AutoTokenizer,
)
# get models
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
ref_model = create_reference_model(model)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
reward_model = AutoModelForSequenceClassification.from_pretrained(
"Qwen/Qwen2.5-0.5B-Instruct", num_labels=1
)
ref_policy = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
policy = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained('gpt2')
tokenizer.pad_token = tokenizer.eos_token
dataset = load_dataset("trl-lib/ultrafeedback-prompt")
dataset = dataset.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer})
dataset = dataset.map(lambda x: tokenizer(x["prompt"]), remove_columns="prompt")
# initialize trainer
ppo_config = PPOConfig(batch_size=1, mini_batch_size=1)
# encode a query
query_txt = "This morning I went to the "
query_tensor = tokenizer.encode(query_txt, return_tensors="pt")
# get model response
response_tensor = respond_to_batch(model, query_tensor)
# create a ppo trainer
ppo_trainer = PPOTrainer(ppo_config, model, ref_model, tokenizer)
# define a reward for response
# (this could be any reward such as human feedback or output from another model)
reward = [torch.tensor(1.0)]
# train model for one step with ppo
train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward)
training_args = RLOOConfig(output_dir="Qwen2.5-0.5B-RL")
trainer = RLOOTrainer(
config=training_args,
processing_class=tokenizer,
policy=policy,
ref_policy=ref_policy,
reward_model=reward_model,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
)
trainer.train()
```
### `DPOTrainer`
`DPOTrainer` is a trainer that uses [Direct Preference Optimization algorithm](https://huggingface.co/papers/2305.18290). This is a basic example of how to use the `DPOTrainer` from the library. The `DPOTrainer` is a wrapper around the `transformers` Trainer to easily fine-tune reward models or adapters on a custom preference dataset.
`DPOTrainer` implements the popular [Direct Preference Optimization (DPO) algorithm](https://huggingface.co/papers/2305.18290) that was used to post-train Llama 3 and many other models. Here is a basic example of how to use the `DPOTrainer`:
```python
# imports
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DPOTrainer
from trl import DPOConfig, DPOTrainer
# load model and dataset - dataset needs to be in a specific format
model = AutoModelForCausalLM.from_pretrained("gpt2")
tokenizer = AutoTokenizer.from_pretrained("gpt2")
...
# load trainer
trainer = DPOTrainer(
model=model,
tokenizer=tokenizer,
train_dataset=dataset,
)
# train
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
trainer = DPOTrainer(model=model, args=training_args, train_dataset=dataset, processing_class=tokenizer)
trainer.train()
```
## Development
If you want to contribute to `trl` or customizing it to your needs make sure to read the [contribution guide](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md) and make sure you make a dev install:
If you want to contribute to `trl` or customize it to your needs make sure to read the [contribution guide](https://github.com/huggingface/trl/blob/main/CONTRIBUTING.md) and make sure you make a dev install:
```bash
git clone https://github.com/huggingface/trl.git
cd trl/
make dev
pip install -e .[dev]
```
## References
### Proximal Policy Optimisation
The PPO implementation largely follows the structure introduced in the paper **"Fine-Tuning Language Models from Human Preferences"** by D. Ziegler et al. \[[paper](https://huggingface.co/papers/1909.08593), [code](https://github.com/openai/lm-human-preferences)].
### Direct Preference Optimization
DPO is based on the original implementation of **"Direct Preference Optimization: Your Language Model is Secretly a Reward Model"** by E. Mitchell et al. \[[paper](https://huggingface.co/papers/2305.18290), [code](https://github.com/eric-mitchell/direct-preference-optimization)]
## Citation
```bibtex
@misc{vonwerra2022trl,
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang},
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallouédec},
title = {TRL: Transformer Reinforcement Learning},
year = {2020},
publisher = {GitHub},
@ -230,3 +213,7 @@ DPO is based on the original implementation of **"Direct Preference Optimization
howpublished = {\url{https://github.com/huggingface/trl}}
}
```
## License
This repository's source code is available under the [Apache-2.0 License](LICENSE).

View File

@ -1,164 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import math
import os
import shlex
import subprocess
import uuid
from distutils.util import strtobool
import requests
def parse_args():
# fmt: off
parser = argparse.ArgumentParser()
parser.add_argument("--command", type=str, default="",
help="the command to run")
parser.add_argument("--num-seeds", type=int, default=3,
help="the number of random seeds")
parser.add_argument("--start-seed", type=int, default=1,
help="the number of the starting seed")
parser.add_argument("--workers", type=int, default=0,
help="the number of workers to run benchmark experimenets")
parser.add_argument("--auto-tag", type=lambda x: bool(strtobool(x)), default=True, nargs="?", const=True,
help="if toggled, the runs will be tagged with git tags, commit, and pull request number if possible")
parser.add_argument("--slurm-template-path", type=str, default=None,
help="the path to the slurm template file (see docs for more details)")
parser.add_argument("--slurm-gpus-per-task", type=int, default=1,
help="the number of gpus per task to use for slurm jobs")
parser.add_argument("--slurm-total-cpus", type=int, default=50,
help="the number of gpus per task to use for slurm jobs")
parser.add_argument("--slurm-ntasks", type=int, default=1,
help="the number of tasks to use for slurm jobs")
parser.add_argument("--slurm-nodes", type=int, default=None,
help="the number of nodes to use for slurm jobs")
args = parser.parse_args()
# fmt: on
return args
def run_experiment(command: str):
command_list = shlex.split(command)
print(f"running {command}")
# Use subprocess.PIPE to capture the output
fd = subprocess.Popen(command_list, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
output, errors = fd.communicate()
return_code = fd.returncode
assert return_code == 0, f"Command failed with error: {errors.decode('utf-8')}"
# Convert bytes to string and strip leading/trailing whitespaces
return output.decode("utf-8").strip()
def autotag() -> str:
wandb_tag = ""
print("autotag feature is enabled")
git_tag = ""
try:
git_tag = subprocess.check_output(["git", "describe", "--tags"]).decode("ascii").strip()
print(f"identified git tag: {git_tag}")
except subprocess.CalledProcessError as e:
print(e)
if len(git_tag) == 0:
try:
count = int(subprocess.check_output(["git", "rev-list", "--count", "HEAD"]).decode("ascii").strip())
hash = subprocess.check_output(["git", "rev-parse", "--short", "HEAD"]).decode("ascii").strip()
git_tag = f"no-tag-{count}-g{hash}"
print(f"identified git tag: {git_tag}")
except subprocess.CalledProcessError as e:
print(e)
wandb_tag = f"{git_tag}"
git_commit = subprocess.check_output(["git", "rev-parse", "--verify", "HEAD"]).decode("ascii").strip()
try:
# try finding the pull request number on github
prs = requests.get(f"https://api.github.com/search/issues?q=repo:huggingface/trl+is:pr+{git_commit}")
if prs.status_code == 200:
prs = prs.json()
if len(prs["items"]) > 0:
pr = prs["items"][0]
pr_number = pr["number"]
wandb_tag += f",pr-{pr_number}"
print(f"identified github pull request: {pr_number}")
except Exception as e:
print(e)
return wandb_tag
if __name__ == "__main__":
args = parse_args()
if args.auto_tag:
existing_wandb_tag = os.environ.get("WANDB_TAGS", "")
wandb_tag = autotag()
if len(wandb_tag) > 0:
if len(existing_wandb_tag) > 0:
os.environ["WANDB_TAGS"] = ",".join([existing_wandb_tag, wandb_tag])
else:
os.environ["WANDB_TAGS"] = wandb_tag
print("WANDB_TAGS: ", os.environ.get("WANDB_TAGS", ""))
commands = []
for seed in range(0, args.num_seeds):
commands += [" ".join([args.command, "--seed", str(args.start_seed + seed)])]
print("======= commands to run:")
for command in commands:
print(command)
if args.workers > 0 and args.slurm_template_path is None:
from concurrent.futures import ThreadPoolExecutor
executor = ThreadPoolExecutor(max_workers=args.workers, thread_name_prefix="cleanrl-benchmark-worker-")
for command in commands:
executor.submit(run_experiment, command)
executor.shutdown(wait=True)
else:
print("not running the experiments because --workers is set to 0; just printing the commands to run")
# SLURM logic
if args.slurm_template_path is not None:
if not os.path.exists("slurm"):
os.makedirs("slurm")
if not os.path.exists("slurm/logs"):
os.makedirs("slurm/logs")
print("======= slurm commands to run:")
with open(args.slurm_template_path) as f:
slurm_template = f.read()
slurm_template = slurm_template.replace("{{array}}", f"0-{len(commands) - 1}%{args.workers}")
slurm_template = slurm_template.replace(
"{{seeds}}", f"({' '.join([str(args.start_seed + int(seed)) for seed in range(args.num_seeds)])})"
)
slurm_template = slurm_template.replace("{{len_seeds}}", f"{args.num_seeds}")
slurm_template = slurm_template.replace("{{command}}", args.command)
slurm_template = slurm_template.replace("{{gpus_per_task}}", f"{args.slurm_gpus_per_task}")
total_gpus = args.slurm_gpus_per_task * args.slurm_ntasks
slurm_cpus_per_gpu = math.ceil(args.slurm_total_cpus / total_gpus)
slurm_template = slurm_template.replace("{{cpus_per_gpu}}", f"{slurm_cpus_per_gpu}")
slurm_template = slurm_template.replace("{{ntasks}}", f"{args.slurm_ntasks}")
if args.slurm_nodes is not None:
slurm_template = slurm_template.replace("{{nodes}}", f"#SBATCH --nodes={args.slurm_nodes}")
else:
slurm_template = slurm_template.replace("{{nodes}}", "")
filename = str(uuid.uuid4())
open(os.path.join("slurm", f"{filename}.slurm"), "w").write(slurm_template)
slurm_path = os.path.join("slurm", f"{filename}.slurm")
print(f"saving command in {slurm_path}")
if args.workers > 0:
job_id = run_experiment(f"sbatch --parsable {slurm_path}")
print(f"Job ID: {job_id}")

View File

@ -1,26 +0,0 @@
export WANDB_ENTITY=huggingface
export WANDB_PROJECT=trl
bash $BENCHMARK_SCRIPT > output.txt
# Extract Job IDs into an array
job_ids=($(grep "Job ID:" output.txt | awk '{print $3}'))
# Extract WANDB_TAGS into an array
WANDB_TAGS=($(grep "WANDB_TAGS:" output.txt | awk '{print $2}'))
WANDB_TAGS=($(echo $WANDB_TAGS | tr "," "\n"))
# Print to verify
echo "Job IDs: ${job_ids[@]}"
echo "WANDB_TAGS: ${WANDB_TAGS[@]}"
TAGS_STRING="?tag=${WANDB_TAGS[0]}"
FOLDER_STRING="${WANDB_TAGS[0]}"
for tag in "${WANDB_TAGS[@]:1}"; do
TAGS_STRING+="&tag=$tag"
FOLDER_STRING+="_$tag"
done
echo "TAGS_STRING: $TAGS_STRING"
echo "FOLDER_STRING: $FOLDER_STRING"
TAGS_STRING=$TAGS_STRING FOLDER_STRING=$FOLDER_STRING BENCHMARK_PLOT_SCRIPT=$BENCHMARK_PLOT_SCRIPT sbatch --dependency=afterany:$job_ids benchmark/post_github_comment.sbatch

View File

@ -1,44 +0,0 @@
# hello world experiment
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --log_with wandb" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
python benchmark/benchmark.py \
--command "python examples/scripts/dpo.py --model_name_or_path=gpt2 --per_device_train_batch_size 4 --max_steps 1000 --learning_rate 1e-3 --gradient_accumulation_steps 1 --logging_steps 10 --eval_steps 500 --output_dir="dpo_anthropic_hh" --optim adamw_torch --warmup_steps 150 --report_to wandb --bf16 --logging_first_step --no_remove_unused_columns" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
python benchmark/benchmark.py \
--command "python examples/scripts/sft.py --model_name_or_path="facebook/opt-350m" --report_to="wandb" --learning_rate=1.41e-5 --per_device_train_batch_size=64 --gradient_accumulation_steps=16 --output_dir="sft_openassistant-guanaco" --logging_steps=1 --num_train_epochs=3 --max_steps=-1 --push_to_hub --gradient_checkpointing" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
python benchmark/benchmark.py \
--command "python examples/scripts/reward_modeling.py --model_name_or_path=facebook/opt-350m --output_dir="reward_modeling_anthropic_hh" --per_device_train_batch_size=64 --num_train_epochs=1 --gradient_accumulation_steps=16 --gradient_checkpointing=True --learning_rate=1.41e-5 --report_to="wandb" --remove_unused_columns=False --optim="adamw_torch" --logging_steps=10 --eval_strategy="steps" --max_length=512" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template

View File

@ -1,50 +0,0 @@
# pip install openrlbenchmark==0.2.1a5
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
echo "we deal with $TAGS_STRING"
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
"ppo$TAGS_STRING" \
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$FOLDER_STRING/ppo \
--scan-history
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=output_dir&cen=_name_or_path&metrics=train/rewards/accuracies&metrics=train/loss' \
"gpt2$TAGS_STRING" \
--env-ids dpo_anthropic_hh \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$FOLDER_STRING/dpo \
--scan-history
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=output_dir&cen=_name_or_path&metrics=train/loss&metrics=eval/accuracy&metrics=eval/loss' \
"facebook/opt-350m$TAGS_STRING" \
--env-ids reward_modeling_anthropic_hh \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$FOLDER_STRING/reward_modeling \
--scan-history
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=output_dir&cen=_name_or_path&metrics=train/loss' \
"facebook/opt-350m$TAGS_STRING" \
--env-ids sft_openassistant-guanaco \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$FOLDER_STRING/sft \
--scan-history
python benchmark/upload_benchmark.py \
--folder_path="benchmark/trl/$FOLDER_STRING" \
--path_in_repo="images/benchmark/$FOLDER_STRING" \
--repo_id="trl-internal-testing/example-images" \
--repo_type="dataset"

View File

@ -1,23 +0,0 @@
# compound experiments: gpt2xl + grad_accu
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name ppo_gpt2xl_grad_accu --model_name gpt2-xl --mini_batch_size 16 --gradient_accumulation_steps 8 --log_with wandb" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
# compound experiments: Cerebras-GPT-6.7B + deepspeed zero2 + grad_accu
python benchmark/benchmark.py \
--command "accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml examples/scripts/ppo.py --exp_name ppo_Cerebras-GPT-6.7B_grad_accu_deepspeed_stage2 --batch_size 32 --mini_batch_size 32 --log_with wandb --model_name cerebras/Cerebras-GPT-6.7B --reward_model sentiment-analysis:cerebras/Cerebras-GPT-6.7B" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 8 \
--slurm-ntasks 1 \
--slurm-total-cpus 90 \
--slurm-template-path benchmark/trl.slurm_template

View File

@ -1,31 +0,0 @@
# pip install openrlbenchmark==0.2.1a5
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
echo "we deal with $TAGS_STRING"
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
"ppo$TAGS_STRING" \
"ppo_gpt2xl_grad_accu$TAGS_STRING" \
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$FOLDER_STRING/different_models \
--scan-history
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
"ppo_Cerebras-GPT-6.7B_grad_accu_deepspeed_stage2$TAGS_STRING" \
--env-ids sentiment-analysis:cerebras/Cerebras-GPT-6.7B \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$FOLDER_STRING/deepspeed \
--scan-history
python benchmark/upload_benchmark.py \
--folder_path="benchmark/trl/$FOLDER_STRING" \
--path_in_repo="images/benchmark/$FOLDER_STRING" \
--repo_id="trl-internal-testing/example-images" \
--repo_type="dataset"

View File

@ -1,46 +0,0 @@
## w/ and w/o gradient accumulation
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name ppo_step_grad_accu --mini_batch_size 1 --gradient_accumulation_steps 128 --log_with wandb" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
## w/ different models (gpt2, gpt2-xl, falcon, llama2)
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name ppo_gpt2 --log_with wandb" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name ppo_falcon_rw_1b --model_name tiiuae/falcon-rw-1b --log_with wandb" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
## w/ and w/o PEFT
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name ppo_peft --use_peft --log_with wandb" \
--num-seeds 3 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template

View File

@ -1,56 +0,0 @@
# pip install openrlbenchmark==0.2.1a5
# see https://github.com/openrlbenchmark/openrlbenchmark#get-started for documentation
BASELINE_PR_TAG=v0.4.7-55-g110e672
BASELINE_PR_NAME=PR-662
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
"sentiment_tuning?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb ($BASELINE_PR_NAME)" \
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$BASELINE_PR_TAG/sentiment \
--scan-history
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
"sentiment_tuning?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb ($BASELINE_PR_NAME)" \
"sentiment_tuning_step_grad_accu?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb gradient accumulation ($BASELINE_PR_NAME)" \
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$BASELINE_PR_TAG/gradient_accu \
--scan-history
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
"sentiment_tuning?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb ($BASELINE_PR_NAME)" \
"sentiment_tuning_gpt2?tag=$BASELINE_PR_TAG&cl=sentiment gpt2 ($BASELINE_PR_NAME)" \
"sentiment_tuning_falcon_rw_1b?tag=$BASELINE_PR_TAG&cl=sentiment tiiuae/falcon-rw-1b ($BASELINE_PR_NAME)" \
"sentiment_tuning_gpt2xl_grad_accu?tag=$BASELINE_PR_TAG&cl=sentiment gpt2xl ($BASELINE_PR_NAME)" \
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$BASELINE_PR_TAG/different_models \
--scan-history
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=huggingface&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.reward_model&cen=trl_ppo_trainer_config.value.exp_name&metrics=env/reward_mean&metrics=objective/kl' \
"sentiment_tuning?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb ($BASELINE_PR_NAME)" \
"sentiment_tuning_peft?tag=$BASELINE_PR_TAG&cl=sentiment lvwerra/gpt2-imdb w/ peft ($BASELINE_PR_NAME)" \
--env-ids sentiment-analysis:lvwerra/distilbert-imdb \
--no-check-empty-runs \
--pc.ncols 2 \
--pc.ncols-legend 1 \
--output-filename benchmark/trl/$BASELINE_PR_TAG/peft \
--scan-history
python benchmark/upload_benchmark.py \
--folder_path="benchmark/trl/$BASELINE_PR_TAG" \
--path_in_repo="images/benchmark/$BASELINE_PR_TAG" \
--repo_id="trl-internal-testing/example-images" \
--repo_type="dataset"

View File

@ -1,40 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import os
from ghapi.all import GhApi
FOLDER_STRING = os.environ.get("FOLDER_STRING", "")
folder = f"benchmark/trl/{FOLDER_STRING}"
host_url = f"https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/benchmark/{FOLDER_STRING}"
# Create a GitHub API instance
github_context = json.loads(os.environ["GITHUB_CONTEXT"])
token = os.environ["PERSONAL_ACCESS_TOKEN_GITHUB"] # this needs to refreshed every 12 months
status_message = "**[COSTA BENCHMARK BOT]**: Here are the results"
body = status_message
repo = github_context["repository"]
owner, repo = repo.split("/")
api = GhApi(owner=owner, repo=repo, token=token)
# for each `.png` file in the folder, add it to the comment
for file in os.listdir(folder):
if file.endswith(".png"):
body += f"\n![{file}]({host_url}/{file})"
# Create a comment on the issue
api.issues.create_comment(issue_number=github_context["event"]["issue"]["number"], body=body)

View File

@ -1,9 +0,0 @@
#!/bin/bash
#SBATCH --job-name=trl
#SBATCH --partition=hopper-cpu
#SBATCH --ntasks=1
#SBATCH --output=slurm/logs/%x_%j.out
sleep 2m
bash $BENCHMARK_PLOT_SCRIPT
srun python benchmark/post_github_comment.py

View File

@ -1,3 +0,0 @@
BENCHMARK_SCRIPT="benchmark/benchmark_level1.sh" \
BENCHMARK_PLOT_SCRIPT="benchmark/benchmark_level1_plot.sh" \
bash benchmark/benchmark_and_report.sh

View File

@ -1,19 +0,0 @@
#!/bin/bash
#SBATCH --job-name=trl
#SBATCH --partition=hopper-prod
#SBATCH --gpus-per-task={{gpus_per_task}}
#SBATCH --cpus-per-gpu={{cpus_per_gpu}}
#SBATCH --ntasks={{ntasks}}
#SBATCH --output=slurm/logs/%x_%j.out
#SBATCH --array={{array}}
##SBATCH --exclude=ip-26-0-149-199
module load cuda/12.1
{{nodes}}
seeds={{seeds}}
seed=${seeds[$SLURM_ARRAY_TASK_ID % {{len_seeds}}]}
echo "Running task $SLURM_ARRAY_TASK_ID with seed: $seed"
srun {{command}} --seed $seed

View File

@ -1,37 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
import tyro
from huggingface_hub import HfApi
@dataclass
class Args:
folder_path: str = "benchmark/trl"
path_in_repo: str = "images/benchmark"
repo_id: str = "trl-internal-testing/example-images"
repo_type: str = "dataset"
args = tyro.cli(Args)
api = HfApi()
api.upload_folder(
folder_path=args.folder_path,
path_in_repo=args.path_in_repo,
repo_id=args.repo_id,
repo_type=args.repo_type,
)

View File

@ -2,7 +2,7 @@
# This script runs an SFT example end-to-end on a tiny model using different possible configurations
# but defaults to QLoRA + PEFT
OUTPUT_DIR="test_dpo/"
MODEL_NAME="trl-internal-testing/tiny-random-LlamaForCausalLM"
MODEL_NAME="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
DATASET_NAME="trl-internal-testing/hh-rlhf-helpful-base-trl-style"
MAX_STEPS=5
BATCH_SIZE=2
@ -35,7 +35,7 @@ CMD="""
accelerate launch $EXTRA_ACCELERATE_ARGS \
--num_processes $NUM_GPUS \
--mixed_precision 'fp16' \
`pwd`/examples/scripts/dpo.py \
`pwd`/trl/scripts/dpo.py \
--model_name_or_path $MODEL_NAME \
--dataset_name $DATASET_NAME \
--output_dir $OUTPUT_DIR \

View File

@ -2,7 +2,7 @@
# This script runs an SFT example end-to-end on a tiny model using different possible configurations
# but defaults to QLoRA + PEFT
OUTPUT_DIR="test_sft/"
MODEL_NAME="trl-internal-testing/tiny-random-LlamaForCausalLM"
MODEL_NAME="trl-internal-testing/tiny-Qwen2ForCausalLM-2.5"
DATASET_NAME="stanfordnlp/imdb"
MAX_STEPS=5
BATCH_SIZE=2
@ -36,12 +36,11 @@ CMD="""
accelerate launch $EXTRA_ACCELERATE_ARGS \
--num_processes $NUM_GPUS \
--mixed_precision 'fp16' \
`pwd`/examples/scripts/sft.py \
`pwd`/trl/scripts/sft.py \
--model_name $MODEL_NAME \
--dataset_name $DATASET_NAME \
--output_dir $OUTPUT_DIR \
--max_steps $MAX_STEPS \
--dataset_text_field 'text' \
--per_device_train_batch_size $BATCH_SIZE \
--max_seq_length $SEQ_LEN \
$EXTRA_TRAINING_ARGS

View File

@ -42,8 +42,8 @@
title: ORPO
- local: ppo_trainer
title: PPO
- local: ppov2_trainer
title: PPOv2
- local: prm_trainer
title: PRM
- local: reward_trainer
title: Reward
- local: rloo_trainer
@ -67,8 +67,12 @@
title: Data Utilities
- local: text_environments
title: Text Environments
- local: script_utils
title: Script Utilities
title: API
- sections:
- local: community_tutorials
title: Community Tutorials
- local: example_overview
title: Example Overview
- local: sentiment_tuning

View File

@ -1,5 +1,7 @@
# Aligning Text-to-Image Diffusion Models with Reward Backpropagation
[![](https://img.shields.io/badge/All_models-AlignProp-blue)](https://huggingface.co/models?other=alignprop,trl)
## The why
If your reward function is differentiable, directly backpropagating gradients from the reward models to the diffusion model is significantly more sample and compute efficient (25x) than doing policy gradient algorithm like DDPO.

View File

@ -1,54 +1,15 @@
# BCO Trainer
[![](https://img.shields.io/badge/All_models-BCO-blue)](https://huggingface.co/models?other=bco,trl)
TRL supports the Binary Classifier Optimization (BCO).
The [BCO](https://huggingface.co/papers/2404.04656) authors train a binary classifier whose logit serves as a reward so that the classifier maps {prompt, chosen completion} pairs to 1 and {prompt, rejected completion} pairs to 0.
For a full example have a look at [`examples/scripts/bco.py`].
## Expected dataset format
The BCO trainer expects a very specific format for the dataset as it does not require pairwise preferences. Since the model will be trained to directly optimize examples that consist of a prompt, model completion, and a label to indicate whether the completion is "good" or "bad", we expect a dataset with the following columns:
- `prompt`
- `completion`
- `label`
for example:
```
bco_dataset_dict = {
"prompt": [
"Hey, hello",
"How are you",
"What is your name?",
"What is your name?",
"Which is the best programming language?",
"Which is the best programming language?",
"Which is the best programming language?",
],
"completion": [
"hi nice to meet you",
"leave me alone",
"I don't have a name",
"My name is Mary",
"Python",
"C++",
"Java",
],
"label": [
True,
False,
False,
True,
True,
False,
False,
],
}
```
where the `prompt` contains the context inputs, `completion` contains the corresponding responses and `label` contains the corresponding flag that indicates if the generated completion is desired (`True`) or undesired (`False`).
A prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays. It is required that the dataset contains at least one desirable and one undesirable completion.
## Expected dataset type
The [`BCOTrainer`] requires an [unpaired preference dataset](dataset_formats#unpaired-preference).
The [`BCOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
## Expected model format
The BCO trainer expects a model of `AutoModelForCausalLM`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
@ -71,7 +32,7 @@ bco_trainer = BCOTrainer(
model_ref,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
processing_class=tokenizer,
)
```
After this one can then call:
@ -114,7 +75,7 @@ bco_trainer = BCOTrainer(
model_ref,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
processing_class=tokenizer,
embedding_func=embedding_func,
embedding_tokenizer=self.embedding_tokenizer,
)

View File

@ -14,4 +14,8 @@
## LogCompletionsCallback
[[autodoc]] LogCompletionsCallback
[[autodoc]] LogCompletionsCallback
## MergeModelCallback
[[autodoc]] MergeModelCallback

View File

@ -4,9 +4,16 @@ You can use TRL to fine-tune your Language Model with Supervised Fine-Tuning (SF
Currently supported CLIs are:
- `trl sft`: fine-tune a LLM on a text/instruction dataset
- `trl dpo`: fine-tune a LLM with DPO on a preference dataset
#### Training commands
- `trl dpo`: fine-tune a LLM with DPO
- `trl kto`: fine-tune a LLM with KTO
- `trl sft`: fine-tune a LLM with SFT
#### Other commands
- `trl chat`: quickly spin up a LLM fine-tuned for chatting
- `trl env`: get the system information
## Fine-tuning with the CLI
@ -22,11 +29,9 @@ We also recommend you passing a YAML config file to configure your training prot
```yaml
model_name_or_path:
trl-internal-testing/tiny-random-LlamaForCausalLM
Qwen/Qwen2.5-0.5B
dataset_name:
stanfordnlp/imdb
dataset_text_field:
text
report_to:
none
learning_rate:
@ -59,7 +64,7 @@ Follow the basic instructions above and run `trl sft --output_dir <output_dir> <
trl sft --model_name_or_path facebook/opt-125m --dataset_name stanfordnlp/imdb --output_dir opt-sft-imdb
```
The SFT CLI is based on the `examples/scripts/sft.py` script.
The SFT CLI is based on the `trl/scripts/sft.py` script.
### Direct Policy Optimization (DPO)
@ -82,7 +87,7 @@ trl dpo --model_name_or_path facebook/opt-125m --output_dir trl-hh-rlhf --datase
```
The DPO CLI is based on the `examples/scripts/dpo.py` script.
The DPO CLI is based on the `trl/scripts/dpo.py` script.
#### Custom preference dataset
@ -97,23 +102,74 @@ python examples/datasets/anthropic_hh.py --push_to_hub --hf_entity your-hf-org
The chat CLI lets you quickly load the model and talk to it. Simply run the following:
```bash
trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat
```
<pre><code>$ trl chat --model_name_or_path Qwen/Qwen1.5-0.5B-Chat
<strong><span style="color: red;">&lt;quentin_gallouedec&gt;:</span></strong>
What is the best programming language?
> [!TIP]
> To use the chat CLI with the developer installation, you must run `make dev`
>
<strong><span style="color: blue;">&lt;Qwen/Qwen1.5-0.5B-Chat&gt;:</span></strong>
There isn't a "best" programming language, as everyone has different style preferences, needs, and preferences. However, some people commonly use
languages like Python, Java, C++, and JavaScript, which are popular among developers for a variety of reasons, including readability, flexibility,
and scalability. Ultimately, it depends on personal preference, needs, and goals.
</code></pre>
Note that the chat interface relies on the tokenizer's [chat template](https://huggingface.co/docs/transformers/chat_templating) to format the inputs for the model. Make sure your tokenizer has a chat template defined.
Besides talking to the model there are a few commands you can use:
- **clear**: clears the current conversation and start a new one
- **example {NAME}**: load example named `{NAME}` from the config and use it as the user input
- **set {SETTING_NAME}={SETTING_VALUE};**: change the system prompt or generation settings (multiple settings are separated by a ';').
- **reset**: same as clear but also resets the generation configs to defaults if they have been changed by **set**
- **save {SAVE_NAME} (optional)**: save the current chat and settings to file by default to `./chat_history/{MODEL_NAME}/chat_{DATETIME}.yaml` or `{SAVE_NAME}` if provided
- **exit**: closes the interface
- `clear`: clears the current conversation and start a new one
- `example {NAME}`: load example named `{NAME}` from the config and use it as the user input
- `set {SETTING_NAME}={SETTING_VALUE};`: change the system prompt or generation settings (multiple settings are separated by a `;`).
- `reset`: same as clear but also resets the generation configs to defaults if they have been changed by `set`
- `save` or `save {SAVE_NAME}`: save the current chat and settings to file by default to `./chat_history/{MODEL_NAME}/chat_{DATETIME}.yaml` or `{SAVE_NAME}` if provided
- `exit`: closes the interface
The default examples are defined in `examples/scripts/config/default_chat_config.yaml` but you can pass your own with `--config CONFIG_FILE` where you can also specify the default generation parameters.
## Getting the system information
You can get the system information by running the following command:
```bash
trl env
```
This will print out the system information including the GPU information, the CUDA version, the PyTorch version, the transformers version, and the TRL version, and any optional dependencies that are installed.
```txt
Copy-paste the following information when reporting an issue:
- Platform: Linux-5.15.0-1048-aws-x86_64-with-glibc2.31
- Python version: 3.11.9
- PyTorch version: 2.4.1
- CUDA device: NVIDIA H100 80GB HBM3
- Transformers version: 4.45.0.dev0
- Accelerate version: 0.34.2
- Accelerate config:
- compute_environment: LOCAL_MACHINE
- distributed_type: DEEPSPEED
- mixed_precision: no
- use_cpu: False
- debug: False
- num_processes: 4
- machine_rank: 0
- num_machines: 1
- rdzv_backend: static
- same_network: True
- main_training_function: main
- enable_cpu_affinity: False
- deepspeed_config: {'gradient_accumulation_steps': 4, 'offload_optimizer_device': 'none', 'offload_param_device': 'none', 'zero3_init_flag': False, 'zero_stage': 2}
- downcast_bf16: no
- tpu_use_cluster: False
- tpu_use_sudo: False
- tpu_env: []
- Datasets version: 3.0.0
- HF Hub version: 0.24.7
- TRL version: 0.12.0.dev0+acb4d70
- bitsandbytes version: 0.41.1
- DeepSpeed version: 0.15.1
- Diffusers version: 0.30.3
- Liger-Kernel version: 0.3.0
- LLM-Blender version: 0.0.2
- OpenAI version: 1.46.0
- PEFT version: 0.12.0
```
This information are required when reporting an issue.

View File

@ -0,0 +1,26 @@
# Community Tutorials
Community tutorials are made by active members of the Hugging Face community that want to share their knowledge and expertise with others. They are a great way to learn about the library and its features, and to get started with core classes and modalities.
# Language Models
| Task | Class | Description | Author | Tutorial | Colab |
| ----------------------- | --------------- | ---------------------------------------------------------------------------------------- | -------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Instruction tuning | [`SFTTrainer`] | Fine-tuning Google Gemma LLMs using ChatML format with QLoRA | [Philipp Schmid](https://huggingface.co/philschmid) | [Link](https://www.philschmid.de/fine-tune-google-gemma) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/philschmid/deep-learning-pytorch-huggingface/blob/main/training/gemma-lora-example.ipynb) |
| Structured Generation | [`SFTTrainer`] | Fine-tuning Llama-2-7B to generate Persian product catalogs in JSON using QLoRA and PEFT | [Mohammadreza Esmaeilian](https://huggingface.co/Mohammadreza) | [Link](https://huggingface.co/learn/cookbook/en/fine_tuning_llm_to_generate_persian_product_catalogs_in_json_format) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/cookbook/blob/main/notebooks/en/fine_tuning_llm_to_generate_persian_product_catalogs_in_json_format.ipynb) |
| Preference Optimization | [`DPOTrainer`] | Align Mistral-7b using Direct Preference Optimization for human preference alignment | [Maxime Labonne](https://huggingface.co/mlabonne) | [Link](https://mlabonne.github.io/blog/posts/Fine_tune_Mistral_7b_with_DPO.html) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/mlabonne/llm-course/blob/main/Fine_tune_a_Mistral_7b_model_with_DPO.ipynb) |
| Preference Optimization | [`ORPOTrainer`] | Fine-tuning Llama 3 with ORPO combining instruction tuning and preference alignment | [Maxime Labonne](https://huggingface.co/mlabonne) | [Link](https://mlabonne.github.io/blog/posts/2024-04-19_Fine_tune_Llama_3_with_ORPO.html) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1eHNWg9gnaXErdAa8_mcvjMupbSS6rDvi) |
<Youtube id="cnGyyM0vOes" />
# Vision Language Models
| Task | Class | Description | Author | Tutorial | Colab |
| --------------- | -------------- | ---------------------------------------------------------------------------- | ------------------------------------------------------ | -------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Visual QA | [`SFTTrainer`] | Fine-tuning Qwen2-VL-7B for visual question answering on ChartQA dataset | [Sergio Paniego](https://huggingface.co/sergiopaniego) | [Link](https://huggingface.co/learn/cookbook/fine_tuning_vlm_trl) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/cookbook/blob/main/notebooks/en/fine_tuning_vlm_trl.ipynb) |
| SEO Description | [`SFTTrainer`] | Fine-tuning Qwen2-VL-7B for generating SEO-friendly descriptions from images | [Philipp Schmid](https://huggingface.co/philschmid) | [Link](https://www.philschmid.de/fine-tune-multimodal-llms-with-trl) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/philschmid/deep-learning-pytorch-huggingface/blob/main/training/fine-tune-multimodal-llms-with-trl.ipynb) |
| Visual QA | [`DPOTrainer`] | PaliGemma 🤝 Direct Preference Optimization | [Merve Noyan](https://huggingface.co/merve) | [Link](https://github.com/merveenoyan/smol-vision/blob/main/PaliGemma_DPO.ipynb) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/merveenoyan/smol-vision/blob/main/PaliGemma_DPO.ipynb) |
## Contributing
If you have a tutorial that you would like to add to this list, please open a PR to add it. We will review it and merge it if it is relevant to the community.

View File

@ -1,100 +1,67 @@
# CPO Trainer
Contrastive Preference Optimization (CPO) as introduced in the paper [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417) by Haoran Xu, Amr Sharaf, Yunmo Chen, Weiting Tan, Lingfeng Shen, Benjamin Van Durme, Kenton Murray, and Young Jin Kim. At a high-level, CPO trains models to
avoid generating adequate, but not perfect translations in Machine Translation (MT) tasks. However, CPO is a general approximation to the DPO loss and can be applied to other domains like chat.
[![](https://img.shields.io/badge/All_models-CPO-blue)](https://huggingface.co/models?other=cpo,trl)
## Overview
Contrastive Preference Optimization (CPO) as introduced in the paper [Contrastive Preference Optimization: Pushing the Boundaries of LLM Performance in Machine Translation](https://huggingface.co/papers/2401.08417) by [Haoran Xu](https://huggingface.co/haoranxu), [Amr Sharaf](https://huggingface.co/amrsharaf), [Yunmo Chen](https://huggingface.co/yunmochen), Weiting Tan, Lingfeng Shen, Benjamin Van Durme, [Kenton Murray](https://huggingface.co/Kenton), and [Young Jin Kim](https://huggingface.co/ykim362). At a high-level, CPO trains models to avoid generating adequate, but not perfect translations in Machine Translation (MT) tasks. However, CPO is a general approximation to the DPO loss and can be applied to other domains like chat.
CPO aims to mitigate two fundamental shortcomings of SFT. First, SFTs methodology of minimizing the discrepancy between predicted outputs and gold-standard references inherently caps model performance at the quality level of the training data. Secondly, SFT lacks a mechanism to prevent the model from rejecting mistakes in translations. The CPO objective is derived from the DPO objective.
## SimPO
The [SimPO](https://huggingface.co/papers/2405.14734) method is also implemented in the `CPOTrainer`. SimPO is an alternative loss that adds a reward margin, allows for length normalization, and does not use BC regularization. To use this loss, we can use SimPO easily by turning on `loss_type="simpo"` and `cpo_alpha=0` in the `CPOConfig`.
## Quick start
## CPO-SimPO
We also offer the combined use of CPO and SimPO, which enables more stable training and improved performance. Learn more details at [CPO-SimPO Github](https://github.com/fe1ixxu/CPO_SIMPO). To use this method, simply enable SimPO by setting `loss_type="simpo"` and a non-zero `cpo_alpha` in the CPOConfig.
This example demonstrates how to train a model using the CPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model. We use the preference data from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the data in the dataset here:
## Expected dataset format
<iframe
src="https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized/embed/viewer/default/train?row=0"
frameborder="0"
width="100%"
height="560px"
></iframe>
The CPO trainer expects a format identical to the DPO trainer, which should include three entries. These entries should be named as follows:
Below is the script to train the model:
- `prompt`
- `chosen`
- `rejected`
```python
# train_cpo.py
from datasets import load_dataset
from trl import CPOConfig, CPOTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer
for example:
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
```py
cpo_dataset_dict = {
"prompt": [
"hello",
"how are you",
"What is your name?",
"What is your name?",
"Which is the best programming language?",
"Which is the best programming language?",
"Which is the best programming language?",
],
"chosen": [
"hi nice to meet you",
"I am fine",
"My name is Mary",
"My name is Mary",
"Python",
"Python",
"Java",
],
"rejected": [
"leave me alone",
"I am not fine",
"Whats it to you?",
"I dont have a name",
"Javascript",
"C++",
"C++",
],
}
```
where the `prompt` contains the context inputs, `chosen` contains the corresponding chosen responses and `rejected` contains the corresponding negative (rejected) responses. As can be seen a prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays.
## Expected model format
The CPO trainer expects a model of `AutoModelForCausalLM`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
## Using the `CPOTrainer`
For a detailed example have a look at the `examples/scripts/cpo.py` script. At a high level we need to initialize the `CPOTrainer` with a `model` we wish to train. **Note that CPOTrainer eliminates the need to use the reference model, simplifying the optimization process.** The `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above.
```py
cpo_config = CPOConfig(
beta=0.1,
)
cpo_trainer = CPOTrainer(
model,
args=cpo_config,
train_dataset=train_dataset,
tokenizer=tokenizer,
)
```
After this one can then call:
```py
cpo_trainer.train()
training_args = CPOConfig(output_dir="Qwen2-0.5B-CPO", logging_steps=10)
trainer = CPOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
trainer.train()
```
## Loss functions
Execute the script using the following command:
Given the preference data, the `CPOTrainer` uses the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression.
```bash
accelerate launch train_cpo.py
```
The [RSO](https://huggingface.co/papers/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper. The `CPOTrainer` can be switched to this loss via the `loss_type="hinge"` argument and the `beta` in this case is the reciprocal of the margin.
## Expected dataset type
The [IPO](https://huggingface.co/papers/2310.12036) authors provide a deeper theoretical understanding of the CPO algorithms and identify an issue with overfitting and propose an alternative loss which can be used via the `loss_type="ipo"` argument to the trainer. Note that the `beta` parameter is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike CPO which is summed only).
CPO requires a [preference dataset](dataset_formats#preference). The [`CPOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
### For Mixture of Experts Models: Enabling the auxiliary loss
## Example script
MOEs are the most efficient if the load is about equally distributed between experts.
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
We provide an example script to train a model using the CPO method. The script is available in [`examples/scripts/cpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/cpo.py)
This option is enabled by setting `output_router_logits=True` in the model config (e.g. MixtralConfig).
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: 0.001).
To test the CPO script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized), run the following command:
## Logging
```bash
accelerate launch examples/scripts/cpo.py \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--dataset_name trl-lib/ultrafeedback_binarized \
--num_train_epochs 1 \
--logging_steps 25 \
--output_dir Qwen2-0.5B-CPO
```
## Logged metrics
While training and evaluating we record the following reward metrics:
@ -104,6 +71,34 @@ While training and evaluating we record the following reward metrics:
* `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
* `nll_loss`: the mean negative log likelihood loss of the policy model for the chosen responses
## CPO variants
### Simple Preference Optimization (SimPO)
The [SimPO](https://huggingface.co/papers/2405.14734) method is also implemented in the [`CPOTrainer`]. SimPO is an alternative loss that adds a reward margin, allows for length normalization, and does not use BC regularization. To use this loss, we can use SimPO easily by turning on `loss_type="simpo"` and `cpo_alpha=0.0` in the [`CPOConfig`].
### CPO-SimPO
We also offer the combined use of CPO and SimPO, which enables more stable training and improved performance. Learn more details at [CPO-SimPO GitHub](https://github.com/fe1ixxu/CPO_SIMPO). To use this method, simply enable SimPO by setting `loss_type="simpo"` and a non-zero `cpo_alpha` in the [`CPOConfig`].
## Loss functions
The CPO algorithm supports several loss functions. The loss function can be set using the `loss_type` parameter in the [`CPOConfig`]. The following loss functions are supported:
| `loss_type=` | Description |
| -------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `"sigmoid"` (default) | Given the preference data, we can fit a binary classifier according to the Bradley-Terry model and in fact the [DPO](https://huggingface.co/papers/2305.18290) authors propose the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression. |
| `"hinge"` | The [RSO](https://huggingface.co/papers/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper. In this case, the `beta` is the reciprocal of the margin. |
| `"ipo"` | The [IPO](https://huggingface.co/papers/2310.12036) authors provide a deeper theoretical understanding of the DPO algorithms and identify an issue with overfitting and propose an alternative loss. In this case, the `beta` is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike DPO which is summed only). |
### For Mixture of Experts Models: Enabling the auxiliary loss
MOEs are the most efficient if the load is about equally distributed between experts.
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
This option is enabled by setting `output_router_logits=True` in the model config (e.g. [`~transformers.MixtralConfig`]).
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: `0.001`) in the model config.
## CPOTrainer
[[autodoc]] CPOTrainer

View File

@ -1,6 +1,6 @@
# Training customization
TRL is designed with modularity in mind so that users to be able to efficiently customize the training loop for their needs. Below are some examples on how you can apply and test different techniques.
TRL is designed with modularity in mind so that users to be able to efficiently customize the training loop for their needs. Below are some examples on how you can apply and test different techniques. Note: Although these examples use the DPOTrainer, the customization applies to most (if not all) trainers.
## Train on multiple GPUs / nodes
@ -46,171 +46,118 @@ else:
Consult the 🤗 Accelerate [documentation](https://huggingface.co/docs/accelerate/usage_guides/deepspeed) for more information about the DeepSpeed plugin.
## Use different optimizers
## Use different optimizers and schedulers
By default, the `DPOTrainer` creates a `torch.optim.AdamW` optimizer. You can create and define a different optimizer and pass it to `DPOTrainer` as follows:
By default, the `PPOTrainer` creates a `torch.optim.Adam` optimizer. You can create and define a different optimizer and pass it to `PPOTrainer`:
```python
import torch
from transformers import GPT2Tokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import optim
from trl import DPOConfig, DPOTrainer
# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
# 2. define config
ppo_config = {'batch_size': 1, 'learning_rate':1e-5}
config = PPOConfig(**ppo_config)
optimizer = optim.SGD(model.parameters(), lr=training_args.learning_rate)
# 2. Create optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate)
# 3. initialize trainer
ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer, optimizer=optimizer)
trainer = DPOTrainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
optimizers=(optimizer, None),
)
trainer.train()
```
For memory efficient fine-tuning, you can also pass `Adam8bit` optimizer from `bitsandbytes`:
### Add a learning rate scheduler
You can also play with your training by adding learning rate schedulers.
```python
import torch
import bitsandbytes as bnb
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from torch import optim
from trl import DPOConfig, DPOTrainer
from transformers import GPT2Tokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
optimizer = optim.AdamW(model.parameters(), lr=training_args.learning_rate)
lr_scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1)
# 2. define config
ppo_config = {'batch_size': 1, 'learning_rate':1e-5}
config = PPOConfig(**ppo_config)
# 2. Create optimizer
optimizer = bnb.optim.Adam8bit(model.parameters(), lr=config.learning_rate)
# 3. initialize trainer
ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer, optimizer=optimizer)
```
### Use LION optimizer
You can use the new [LION optimizer from Google](https://huggingface.co/papers/2302.06675) as well, first take the source code of the optimizer definition [here](https://github.com/lucidrains/lion-pytorch/blob/main/lion_pytorch/lion_pytorch.py), and copy it so that you can import the optimizer. Make sure to initialize the optimizer by considering the trainable parameters only for a more memory efficient training:
```python
optimizer = Lion(filter(lambda p: p.requires_grad, self.model.parameters()), lr=self.config.learning_rate)
...
ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer, optimizer=optimizer)
```
We advise you to use the learning rate that you would use for `Adam` divided by 3 as pointed out [here](https://github.com/lucidrains/lion-pytorch#lion---pytorch). We observed an improvement when using this optimizer compared to classic Adam (check the full logs [here](https://wandb.ai/distill-bloom/trl/runs/lj4bheke?workspace=user-younesbelkada)):
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-lion.png">
</div>
## Add a learning rate scheduler
You can also play with your training by adding learning rate schedulers!
```python
import torch
from transformers import GPT2Tokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained('gpt2')
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
# 2. define config
ppo_config = {'batch_size': 1, 'learning_rate':1e-5}
config = PPOConfig(**ppo_config)
# 2. Create optimizer
optimizer = torch.optim.SGD(model.parameters(), lr=config.learning_rate)
lr_scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.9)
# 3. initialize trainer
ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer, optimizer=optimizer, lr_scheduler=lr_scheduler)
trainer = DPOTrainer(
model=model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
optimizers=(optimizer, lr_scheduler),
)
trainer.train()
```
## Memory efficient fine-tuning by sharing layers
Another tool you can use for more memory efficient fine-tuning is to share layers between the reference model and the model you want to train.
```python
import torch
from transformers import AutoTokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import create_reference_model, DPOConfig, DPOTrainer
# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
ref_model = create_reference_model(model, num_shared_layers=6)
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train[:1%]")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
# 2. initialize trainer
ppo_config = {'batch_size': 1}
config = PPOConfig(**ppo_config)
ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer)
trainer = DPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
)
trainer.train()
```
## Pass 8-bit reference models
<div>
Since `trl` supports all keyword arguments when loading a model from `transformers` using `from_pretrained`, you can also leverage `load_in_8bit` from `transformers` for more memory efficient fine-tuning.
Since `trl` supports all key word arguments when loading a model from `transformers` using `from_pretrained`, you can also leverage `load_in_8bit` from `transformers` for more memory efficient fine-tuning.
Read more about 8-bit model loading in `transformers` [here](https://huggingface.co/docs/transformers/perf_infer_gpu_one#bitsandbytes-integration-for-int8-mixedprecision-matrix-decomposition).
</div>
Read more about 8-bit model loading in `transformers` [here](https://huggingface.co/docs/transformers/en/peft#load-in-8bit-or-4bit).
```python
# 0. imports
# pip install bitsandbytes
import torch
from transformers import AutoTokenizer
from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from trl import DPOConfig, DPOTrainer
# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m')
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained('bigscience/bloom-560m', device_map="auto", load_in_8bit=True)
tokenizer = AutoTokenizer.from_pretrained('bigscience/bloom-560m')
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
ref_model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", quantization_config= quantization_config)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = DPOConfig(output_dir="Qwen2.5-0.5B-DPO")
# 2. initialize trainer
ppo_config = {'batch_size': 1}
config = PPOConfig(**ppo_config)
ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer)
trainer = DPOTrainer(
model=model,
ref_model=ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
)
trainer.train()
```
## Use the CUDA cache optimizer
When training large models, you should better handle the CUDA cache by iteratively clearing it. Do do so, simply pass `optimize_cuda_cache=True` to `PPOConfig`:
When training large models, you should better handle the CUDA cache by iteratively clearing it. To do so, simply pass `optimize_cuda_cache=True` to `DPOConfig`:
```python
config = PPOConfig(..., optimize_cuda_cache=True)
```
## Use score scaling/normalization/clipping
As suggested by [Secrets of RLHF in Large Language Models Part I: PPO](https://huggingface.co/papers/2307.04964), we support score (aka reward) scaling/normalization/clipping to improve training stability via `PPOConfig`:
```python
from trl import PPOConfig
ppo_config = {
use_score_scaling=True,
use_score_norm=True,
score_clip=0.5,
}
config = PPOConfig(**ppo_config)
```
To run `ppo.py`, you can use the following command:
```
python examples/scripts/ppo.py --log_with wandb --use_score_scaling --use_score_norm --score_clip 0.5
training_args = DPOConfig(..., optimize_cuda_cache=True)
```

View File

@ -1,15 +1,29 @@
## Data Utilities
# Data Utilities
## is_conversational
[[autodoc]] is_conversational
## apply_chat_template
[[autodoc]] apply_chat_template
## maybe_apply_chat_template
[[autodoc]] maybe_apply_chat_template
## extract_prompt
[[autodoc]] extract_prompt
## maybe_extract_prompt
[[autodoc]] maybe_extract_prompt
## unpair_preference_dataset
[[autodoc]] unpair_preference_dataset
## maybe_unpair_preference_dataset
[[autodoc]] maybe_unpair_preference_dataset

View File

@ -1,10 +1,11 @@
# Dataset formats
# Dataset formats and types
This guide provides an overview of the dataset formats supported by each trainer in TRL. Since conversational datasets are very common, we also provide a guide on how to use them, and how to convert them into a standard dataset format for TRL trainers.
This guide provides an overview of the dataset formats and types supported by each trainer in TRL.
## Overview of the dataset formats and types
The *format* of a dataset refers to how the data is structured, typically categorized as either *standard* or *conversational*. The *type* is associated with the specific task the dataset is designed for, such as *prompt-only* or *preference*. Each type is characterized by its columns, which vary according to the task, as shown in the table.
- The *format* of a dataset refers to how the data is structured, typically categorized as either *standard* or *conversational*.
- The *type* is associated with the specific task the dataset is designed for, such as *prompt-only* or *preference*. Each type is characterized by its columns, which vary according to the task, as shown in the table.
<table>
<tr>
@ -60,7 +61,7 @@ The *format* of a dataset refers to how the data is structured, typically catego
or, with implicit prompt:
<pre><code>{"chosen": [{"role": "user", "content": "What color is the sky?"},
{"role": "assistant", "content": "It is blue."}],
"rejected": [{"role": "user", "content": "What color is the sky?"},
"rejected": [{"role": "user", "content": "What color is the sky?"},
{"role": "assistant", "content": "It is green."}]}</code></pre>
</td>
</tr>
@ -76,21 +77,36 @@ The *format* of a dataset refers to how the data is structured, typically catego
"label": False}</code></pre>
</td>
</tr>
</tr>
<td>Stepwise supervision</td>
<td>
<pre><code>{"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["The fractional part of 9.8 is 0.8.",
"The fractional part of 9.11 is 0.11.",
"0.11 is greater than 0.8.",
"Hence, 9.11 > 9.8."],
"labels": [True, True, False, False]}</code></pre>
</td>
<td></td>
</tr>
</table>
### Formats
### Standard dataset format
#### Standard
The standard dataset format typically consists of plain text strings. The columns in the dataset vary depending on the task. This is the format expected by TRL trainers. Below are examples of standard dataset formats for different tasks:
```python
# Language modeling
example = {"text": "The sky is blue."}
language_modeling_example = {"text": "The sky is blue."}
# Preference
example = {"chosen": "The sky is blue.", "rejected": "The sky is green."}
preference_example = {"prompt": "The sky is", "chosen": " blue.", "rejected": " green."}
# Unpaired preference
unpaired_preference_example = {"prompt": "The sky is", "completion": " blue.", "label": True}
```
### Conversational dataset format
#### Conversational
Conversational datasets are used for tasks involving dialogues or chat interactions between users and assistants. Unlike standard dataset formats, these contain sequences of messages where each message has a `role` (e.g., `"user"` or `"assistant"`) and `content` (the message text).
@ -102,42 +118,52 @@ messages = [
]
```
Just like standard datasets, the columns in conversational datasets vary depending on the task. For instance, a preference dataset would include columns like `"chosen"` and `"rejected"` to compare responses:
Just like standard datasets, the columns in conversational datasets vary depending on the task. Below are examples of conversational dataset formats for different tasks:
```python
example = {
"chosen": [
{"role": "user", "content": "What color is the sky?"},
{"role": "assistant", "content": "It is blue."},
],
"rejected": [
{"role": "user", "content": "What color is the sky?"},
{"role": "assistant", "content": "It is green."},
],
# Prompt-completion
prompt_completion_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
"completion": [{"role": "assistant", "content": "It is blue."}]}
# Preference
preference_example = {
"prompt": [{"role": "user", "content": "What color is the sky?"}],
"chosen": [{"role": "assistant", "content": "It is blue."}],
"rejected": [{"role": "assistant", "content": "It is green."}],
}
```
Conversational datasets are useful for training chat models, but must be converted into a standard format before being used with TRL trainers. This is typically done using chat templates specific to the model being used. For more information, refer to the [Working with conversational datasets in TRL](#working-with-conversational-datasets-in-trl) section.
### Language modeling
### Types
#### Language modeling
A language modeling dataset consists of a column `"text"` (or `"messages"` for conversational datasets) containing a full sequence of text.
```python
# Standard format
language_modeling_example = {"text": "The sky is blue."}
# Conversational format
language_modeling_example = {"messages": [
{"role": "user", "content": "What color is the sky?"},
{"role": "assistant", "content": "It is blue."}
]}
```
### Prompt-only
#### Prompt-only
In a prompt-only dataset, only the initial prompt (the question or partial sentence) is provided under the key `"prompt"`. The training typically involves generating the completion based on this prompt, where the model learns to continue or complete the given input.
```python
# Standard format
prompt_only_example = {"prompt": "The sky is"}
# Conversational format
prompt_only_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}]}
```
<Tip>
While both the prompt-only and language modeling formats are similar, they differ in how the input is handled. In the prompt-only format, the prompt represents a partial input that expects the model to complete or continue, while in the language modeling format, the input is treated as a complete sentence or sequence. These two formats are processed differently by TRL. Below is an example showing the difference in the output of the `apply_chat_template` function for each format:
While both the prompt-only and language modeling types are similar, they differ in how the input is handled. In the prompt-only type, the prompt represents a partial input that expects the model to complete or continue, while in the language modeling type, the input is treated as a complete sentence or sequence. These two types are processed differently by TRL. Below is an example showing the difference in the output of the `apply_chat_template` function for each type:
```python
from transformers import AutoTokenizer
@ -145,12 +171,12 @@ from trl import apply_chat_template
tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-128k-instruct")
# Example for prompt-only format
# Example for prompt-only type
prompt_only_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}]}
apply_chat_template(prompt_only_example, tokenizer)
# Output: {'prompt': '<|user|>\nWhat color is the sky?<|end|>\n<|assistant|>\n'}
# Example for language modeling format
# Example for language modeling type
lm_example = {"messages": [{"role": "user", "content": "What color is the sky?"}]}
apply_chat_template(lm_example, tokenizer)
# Output: {'text': '<|user|>\nWhat color is the sky?<|end|>\n<|endoftext|>'}
@ -161,51 +187,89 @@ apply_chat_template(lm_example, tokenizer)
</Tip>
### Prompt-completion
#### Prompt-completion
A prompt-completion dataset includes a `"prompt"` and a `"completion"`.
```python
# Standard format
prompt_completion_example = {"prompt": "The sky is", "completion": " blue."}
# Conversational format
prompt_completion_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
"completion": [{"role": "assistant", "content": "It is blue."}]}
```
### Preference
#### Preference
A preference dataset is used for tasks where the model is trained to choose between two or more possible completions to the same prompt. This dataset includes a `"prompt"`, a `"chosen"` completion, and a `"rejected"` completion. The model is trained to select the `"chosen"` response over the `"rejected"` response.
Some dataset may not include the `"prompt"` column, in which case the prompt is implicit and directly included in the `"chosen"` and `"rejected"` completions. We recommend using explicit prompts whenever possible.
```python
preference_example = {"prompt": "The sky is", "chosen": " blue.", "rejected": " green."} # recommended
# or,
# Standard format
## Explicit prompt (recommended)
preference_example = {"prompt": "The sky is", "chosen": " blue.", "rejected": " green."}
# Implicit prompt
preference_example = {"chosen": "The sky is blue.", "rejected": "The sky is green."}
# Conversational format
## Explicit prompt (recommended)
preference_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
"chosen": [{"role": "assistant", "content": "It is blue."}],
"rejected": [{"role": "assistant", "content": "It is green."}]}
## Implicit prompt
preference_example = {"chosen": [{"role": "user", "content": "What color is the sky?"},
{"role": "assistant", "content": "It is blue."}],
"rejected": [{"role": "user", "content": "What color is the sky?"},
{"role": "assistant", "content": "It is green."}]}
```
### Unpaired preference
Some preference datasets can be found with [the tag `dpo` on Hugging Face Hub](https://huggingface.co/datasets?other=dpo). You can also explore the [librarian-bots' DPO Collections](https://huggingface.co/collections/librarian-bots/direct-preference-optimization-datasets-66964b12835f46289b6ef2fc) to identify preference datasets.
#### Unpaired preference
An unpaired preference dataset is similar to a preference dataset but instead of having `"chosen"` and `"rejected"` completions for the same prompt, it includes a single `"completion"` and a `"label"` indicating whether the completion is preferred or not.
```python
# Standard format
unpaired_preference_example = {"prompt": "The sky is", "completion": " blue.", "label": True}
# Conversational format
unpaired_preference_example = {"prompt": [{"role": "user", "content": "What color is the sky?"}],
"completion": [{"role": "assistant", "content": "It is blue."}],
"label": True}
```
## Which dataset format to use?
#### Stepwise supervision
Choosing the right dataset format depends on the task you are working on and the specific requirements of the TRL trainer you are using. Below is a brief overview of the dataset formats supported by each TRL trainer.
A stepwise (or process) supervision dataset is similar to an [unpaired preference](#unpaired-preference) dataset but includes multiple steps of completions, each with its own label. This structure is useful for tasks that need detailed, step-by-step labeling, such as reasoning tasks. By evaluating each step separately and providing targeted labels, this approach helps identify precisely where the reasoning is correct and where errors occur, allowing for targeted feedback on each part of the reasoning process.
| Trainer | Expected dataset format |
| ----------------------- | ---------------------------- |
| [`BCOTrainer`] | Unpaired preference |
| [`CPOTrainer`] | Preference (explicit prompt) |
| [`DPOTrainer`] | Preference (explicit prompt) |
| [`IterativeSFTTrainer`] | Unpaired preference |
| [`KTOTrainer`] | Unpaired preference |
| [`NashMDTrainer`] | Prompt-only |
| [`OnlineDPOTrainer`] | Prompt-only |
| [`ORPOTrainer`] | Preference (explicit prompt) |
| [`PPOv2Trainer`] | Tokenized language modeling |
| [`RewardTrainer`] | Preference (implicit prompt) |
| [`SFTTrainer`] | Language modeling |
| [`XPOTrainer`] | Prompt-only |
```python
stepwise_example = {
"prompt": "Which number is larger, 9.8 or 9.11?",
"completions": ["The fractional part of 9.8 is 0.8, while the fractional part of 9.11 is 0.11.", "Since 0.11 is greater than 0.8, the number 9.11 is larger than 9.8."],
"labels": [True, False]
}
```
## Which dataset type to use?
Choosing the right dataset type depends on the task you are working on and the specific requirements of the TRL trainer you are using. Below is a brief overview of the dataset types supported by each TRL trainer.
| Trainer | Expected dataset type |
| ----------------------- | ------------------------------------------------------------------------------------------------------ |
| [`BCOTrainer`] | [Unpaired preference](#unpaired-preference) |
| [`CPOTrainer`] | [Preference (explicit prompt recommended)](#preference) |
| [`DPOTrainer`] | [Preference (explicit prompt recommended)](#preference) |
| [`GKDTrainer`] | [Prompt-completion](#prompt-completion) |
| [`IterativeSFTTrainer`] | [Unpaired preference](#unpaired-preference) |
| [`KTOTrainer`] | [Unpaired preference](#unpaired-preference) or [Preference (explicit prompt recommended)](#preference) |
| [`NashMDTrainer`] | [Prompt-only](#prompt-only) |
| [`OnlineDPOTrainer`] | [Prompt-only](#prompt-only) |
| [`ORPOTrainer`] | [Preference (explicit prompt recommended)](#preference) |
| [`PPOTrainer`] | Tokenized language modeling |
| [`PRMTrainer`] | [Stepwise supervision](#stepwise-supervision) |
| [`RewardTrainer`] | [Preference (implicit prompt recommended)](#preference) |
| [`SFTTrainer`] | [Language modeling](#language-modeling) |
| [`XPOTrainer`] | [Prompt-only](#prompt-only) |
<Tip>
@ -216,12 +280,12 @@ For more information on how to work with conversational datasets, refer to the [
## Working with conversational datasets in TRL
Conversational datasets are increasingly common, especially for training chat models. However, TRL trainers (except [`SFTTrainer`]) don't support conversational datasets in their raw format. These datasets must first be converted into a standard format.
Conversational datasets are increasingly common, especially for training chat models. However, some TRL trainers don't support conversational datasets in their raw format. (For more information, see [issue #2071](https://github.com/huggingface/trl/issues/2071).) These datasets must first be converted into a standard format.
Fortunately, TRL offers tools to easily handle this conversion, which are detailed below.
### Converting a conversational dataset into a standard dataset
TRL trainers do not support conversational datasets in their raw format. To use them, you need to convert them into a standard dataset format using a chat template. This template is provided by the tokenizer of the model you use.
To convert a conversational dataset into a standard dataset, you need to _apply a chat template_ to the dataset. A chat template is a predefined structure that typically includes placeholders for user and assistant messages. This template is provided by the tokenizer of the model you use.
For detailed instructions on using chat templating, refer to the [Chat templating section in the `transformers` documentation](https://huggingface.co/docs/transformers/en/chat_templating).
@ -266,7 +330,8 @@ dataset = dataset.map(apply_chat_template, fn_kwargs={"tokenizer": tokenizer})
<Tip warning={true}>
We recommend using the [`apply_chat_template`] function rather than directly calling `tokenizer.apply_chat_template`. Handling chat templates nonlanguage modeling datasets can be tricky and may lead to issues, such as inserting a system prompt in the middle of a conversation. For additional examples, see [#1930 (comment)](https://github.com/huggingface/trl/pull/1930#issuecomment-2292908614). The [`apply_chat_template`] is designed to handle these intricacies and ensure the correct application of chat templates for various tasks.
We recommend using the [`apply_chat_template`] function instead of calling `tokenizer.apply_chat_template` directly. Handling chat templates for non-language modeling datasets can be tricky and may result in errors, such as mistakenly placing a system prompt in the middle conversation.
For additional examples, see [#1930 (comment)](https://github.com/huggingface/trl/pull/1930#issuecomment-2292908614). The [`apply_chat_template`] is designed to handle these intricacies and ensure the correct application of chat templates for various tasks.
</Tip>
@ -304,7 +369,7 @@ Lets take the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb
As shown above, the dataset format does not match the expected structure. Its not in a conversational format, the column names differ, and the results pertain to different models (e.g., Bard, GPT-4) and aspects (e.g., "helpfulness", "honesty").
By using the provided conversion script [`examples/datasets/ultrafeedback.py`](https://github.com/huggingface/trl/tree/main/examples/datasets/ultrafeedback.py), you can transform this dataset into an unpaired preference format, and push it to the Hub:
By using the provided conversion script [`examples/datasets/ultrafeedback.py`](https://github.com/huggingface/trl/tree/main/examples/datasets/ultrafeedback.py), you can transform this dataset into an unpaired preference type, and push it to the Hub:
```sh
python examples/datasets/ultrafeedback.py --push_to_hub --repo_id trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness
@ -329,14 +394,15 @@ This section provides example code to help you convert between different dataset
For simplicity, some of the examples below do not follow this recommendation and use the standard format. However, the conversions can be applied directly to the conversational format without modification.
| From \ To | Language modeling | Prompt-completion | Prompt-only | Preference with implicit prompt | Preference | Unpaired preference |
| ------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | ------------------------------------------------------------------------- |
| Language modeling | N/A | N/A | N/A | N/A | N/A | N/A |
| Prompt-completion | [🔗](#from-prompt-completion-to-language-modeling-dataset) | N/A | [🔗](#from-prompt-completion-to-prompt-only-dataset) | N/A | N/A | N/A |
| Prompt-only | N/A | N/A | N/A | N/A | N/A | N/A |
| Preference with implicit prompt | [🔗](#from-preference-with-implicit-prompt-to-language-modeling-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-completion-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-only-dataset) | N/A | [🔗](#from-implicit-to-explicit-prompt-preference-dataset) | [🔗](#from-preference-with-implicit-prompt-to-unpaired-preference-dataset) |
| Preference | [🔗](#from-preference-to-language-modeling-dataset) | [🔗](#from-preference-to-prompt-completion-dataset) | [🔗](#from-preference-to-prompt-only-dataset) | [🔗](#from-explicit-to-implicit-prompt-preference-dataset) | N/A | [🔗](#from-preference-to-unpaired-preference-dataset) |
| Unpaired preference | [🔗](#from-unpaired-preference-to-language-modeling-dataset) | [🔗](#from-unpaired-preference-to-prompt-completion-dataset) | [🔗](#from-unpaired-preference-to-prompt-only-dataset) | N/A | N/A | N/A |
| From \ To | Language modeling | Prompt-completion | Prompt-only | Preference with implicit prompt | Preference | Unpaired preference | Stepwise supervision |
| ------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------------- | ----------------------------------------------------------------- | --------------------------------------------------------- | --------------------------------------------------------- | ------------------------------------------------------------------------- | -------------------- |
| Language modeling | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
| Prompt-completion | [🔗](#from-prompt-completion-to-language-modeling-dataset) | N/A | [🔗](#from-prompt-completion-to-prompt-only-dataset) | N/A | N/A | N/A | N/A |
| Prompt-only | N/A | N/A | N/A | N/A | N/A | N/A | N/A |
| Preference with implicit prompt | [🔗](#from-preference-with-implicit-prompt-to-language-modeling-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-completion-dataset) | [🔗](#from-preference-with-implicit-prompt-to-prompt-only-dataset) | N/A | [🔗](#from-implicit-to-explicit-prompt-preference-dataset) | [🔗](#from-preference-with-implicit-prompt-to-unpaired-preference-dataset) | N/A |
| Preference | [🔗](#from-preference-to-language-modeling-dataset) | [🔗](#from-preference-to-prompt-completion-dataset) | [🔗](#from-preference-to-prompt-only-dataset) | [🔗](#from-explicit-to-implicit-prompt-preference-dataset) | N/A | [🔗](#from-preference-to-unpaired-preference-dataset) | N/A |
| Unpaired preference | [🔗](#from-unpaired-preference-to-language-modeling-dataset) | [🔗](#from-unpaired-preference-to-prompt-completion-dataset) | [🔗](#from-unpaired-preference-to-prompt-only-dataset) | N/A | N/A | N/A | N/A |
| Stepwise supervision | [🔗](#from-stepwise-supervision-to-language-modeling-dataset) | [🔗](#from-stepwise-supervision-to-prompt-completion-dataset) | [🔗](#from-stepwise-supervision-to-prompt-only-dataset) | N/A | N/A | [🔗](#from-stepwise-supervision-to-unpaired-preference-dataset) | N/A |
### From prompt-completion to language modeling dataset
@ -580,7 +646,7 @@ dataset = dataset.remove_columns(["chosen", "rejected"])
### From explicit to implicit prompt preference dataset
To convert a preference dataset with implicit prompt into a preference dataset with explicit prompt, concatenate the prompt to both chosen and rejected, and remove the prompt.
To convert a preference dataset with explicit prompt into a preference dataset with implicit prompt, concatenate the prompt to both chosen and rejected, and remove the prompt.
```python
from datasets import Dataset
@ -710,3 +776,136 @@ dataset = dataset.remove_columns(["completion", "label"])
>>> dataset[0]
{'prompt': 'The sky is'}
```
### From stepwise supervision to language modeling dataset
To convert a stepwise supervision dataset into a language modeling dataset, concatenate the prompt and the completions into the `"text"` column.
```python
from datasets import Dataset
dataset = Dataset.from_dict({
"prompt": ["Blue light", "Water"],
"completions": [[" scatters more in the atmosphere,", " so the sky is green."],
[" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
"labels": [[True, False], [True, True]],
})
def concatenate_prompt_completions(example):
completion = "".join(example["completions"])
return {"text": example["prompt"] + completion}
dataset = dataset.map(concatenate_prompt_completions, remove_columns=["prompt", "completions", "labels"])
```
```python
>>> dataset[0]
{'text': 'Blue light scatters more in the atmosphere, so the sky is green.'}
```
### From stepwise supervision to prompt completion dataset
To convert a stepwise supervision dataset into a prompt-completion dataset, join the completions and remove the labels.
```python
from datasets import Dataset
dataset = Dataset.from_dict({
"prompt": ["Blue light", "Water"],
"completions": [[" scatters more in the atmosphere,", " so the sky is green."],
[" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
"labels": [[True, False], [True, True]],
})
def join_completions(example):
completion = "".join(example["completions"])
return {"completion": completion}
dataset = dataset.map(join_completions, remove_columns=["completions", "labels"])
```
```python
>>> dataset[0]
{'prompt': 'Blue light', 'completion': ' scatters more in the atmosphere, so the sky is green.'}
```
### From stepwise supervision to prompt only dataset
To convert a stepwise supervision dataset into a prompt-only dataset, remove the completions and the labels.
```python
from datasets import Dataset
dataset = Dataset.from_dict({
"prompt": ["Blue light", "Water"],
"completions": [[" scatters more in the atmosphere,", " so the sky is green."],
[" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
"labels": [[True, False], [True, True]],
})
dataset = dataset.remove_columns(["completions", "labels"])
```
```python
>>> dataset[0]
{'prompt': 'Blue light'}
```
### From stepwise supervision to unpaired preference dataset
To convert a stepwise supervision dataset into an unpaired preference dataset, join the completions and merge the labels.
The method for merging the labels depends on the specific task. In this example, we use the logical AND operation. This means that if the step labels indicate the correctness of individual steps, the resulting label will reflect the correctness of the entire sequence.
```python
from datasets import Dataset
dataset = Dataset.from_dict({
"prompt": ["Blue light", "Water"],
"completions": [[" scatters more in the atmosphere,", " so the sky is green."],
[" forms a less dense structure in ice,", " which causes it to expand when it freezes."]],
"labels": [[True, False], [True, True]],
})
def merge_completions_and_labels(example):
return {"prompt": example["prompt"], "completion": "".join(example["completions"]), "label": all(example["labels"])}
dataset = dataset.map(merge_completions_and_labels, remove_columns=["completions", "labels"])
```
```python
>>> dataset[0]
{'prompt': 'Blue light', 'completion': ' scatters more in the atmosphere, so the sky is green.', 'label': False}
```
## Vision datasets
Some trainers also support fine-tuning vision-language models (VLMs) using image-text pairs. In this scenario, it's recommended to use a conversational format, as each model handles image placeholders in text differently.
A conversational vision dataset differs from a standard conversational dataset in two key ways:
1. The dataset must contain the key `images` with the image data.
2. The `"content"` field in messages must be a list of dictionaries, where each dictionary specifies the type of data: `"image"` or `"text"`.
Example:
```python
# Textual dataset:
"content": "What color is the sky?"
# Vision dataset:
"content": [
{"type": "image"},
{"type": "text", "text": "What color is the sky in the image?"}
]
```
An example of a conversational vision dataset is the [openbmb/RLAIF-V-Dataset](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset). Below is an embedded view of the dataset's training data, allowing you to explore it directly:
<iframe
src="https://huggingface.co/datasets/trl-lib/rlaif-v/embed/viewer/default/train"
frameborder="0"
width="100%"
height="560px"
></iframe>

View File

@ -1,4 +1,7 @@
# Denoising Diffusion Policy Optimization
[![](https://img.shields.io/badge/All_models-DDPO-blue)](https://huggingface.co/models?other=ddpo,trl)
## The why
| Before | After DDPO finetuning |

View File

@ -98,19 +98,15 @@ model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", torch_dtype=
and the optimizer will take care of computing the gradients in `bfloat16` precision. Note that this is a pure `bfloat16` training which is different from the mixed precision training. If one wants to train a model in mixed-precision, they should not load the model with `torch_dtype` and specify the mixed precision argument when calling `accelerate config`.
- Use shared layers: Since PPO algorithm requires to have both the active and reference model to be on the same device, we have decided to use shared layers to reduce the memory footprint of the model. This can be achieved by just speifying `num_shared_layers` argument when creating a `PPOTrainer`:
- Use shared layers: Since PPO algorithm requires to have both the active and reference model to be on the same device, we have decided to use shared layers to reduce the memory footprint of the model. This can be achieved by specifying `num_shared_layers` argument when calling the `create_reference_model()` function. For example, if you want to share the first 6 layers of the model, you can do it like this:
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-shared-layers.png">
</div>
```python
ppo_trainer = PPOTrainer(
model=model,
tokenizer=tokenizer,
num_shared_layers=4,
...
)
ref_model = create_reference_model(model, num_shared_layers=6)
trainer = PPOTrainer(..., ref_model=ref_model)
```
In the example above this means that the model have the 4 first layers frozen (i.e. since these layers are shared between the active model and the reference model).

View File

@ -1,166 +1,131 @@
# DPO Trainer
TRL supports the DPO Trainer for training language models from preference data, as described in the paper [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290) by Rafailov et al., 2023. For a full example have a look at [`examples/scripts/dpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo.py).
[![](https://img.shields.io/badge/All_models-DPO-blue)](https://huggingface.co/models?other=dpo,trl) [![](https://img.shields.io/badge/smol_course-Chapter_2-yellow)](https://github.com/huggingface/smol-course/tree/main/2_preference_alignment)
The first step as always is to train your SFT model, to ensure the data we train on is in-distribution for the DPO algorithm.
## Overview
## How DPO works
TRL supports the DPO Trainer for training language models from preference data, as described in the paper [Direct Preference Optimization: Your Language Model is Secretly a Reward Model](https://huggingface.co/papers/2305.18290) by [Rafael Rafailov](https://huggingface.co/rmrafailov), Archit Sharma, Eric Mitchell, [Stefano Ermon](https://huggingface.co/ermonste), [Christopher D. Manning](https://huggingface.co/manning), [Chelsea Finn](https://huggingface.co/cbfinn).
Fine-tuning a language model via DPO consists of two steps and is easier than PPO:
The abstract from the paper is the following:
1. **Data collection**: Gather a preference dataset with positive and negative selected pairs of generation, given a prompt.
> While large-scale unsupervised language models (LMs) learn broad world knowledge and some reasoning skills, achieving precise control of their behavior is difficult due to the completely unsupervised nature of their training. Existing methods for gaining such steerability collect human labels of the relative quality of model generations and fine-tune the unsupervised LM to align with these preferences, often with reinforcement learning from human feedback (RLHF). However, RLHF is a complex and often unstable procedure, first fitting a reward model that reflects the human preferences, and then fine-tuning the large unsupervised LM using reinforcement learning to maximize this estimated reward without drifting too far from the original model. In this paper we introduce a new parameterization of the reward model in RLHF that enables extraction of the corresponding optimal policy in closed form, allowing us to solve the standard RLHF problem with only a simple classification loss. The resulting algorithm, which we call Direct Preference Optimization (DPO), is stable, performant, and computationally lightweight, eliminating the need for sampling from the LM during fine-tuning or performing significant hyperparameter tuning. Our experiments show that DPO can fine-tune LMs to align with human preferences as well as or better than existing methods. Notably, fine-tuning with DPO exceeds PPO-based RLHF in ability to control sentiment of generations, and matches or improves response quality in summarization and single-turn dialogue while being substantially simpler to implement and train.
The first step is to train an SFT model, to ensure the data we train on is in-distribution for the DPO algorithm.
Then, fine-tuning a language model via DPO consists of two steps and is easier than [PPO](ppo_trainer):
1. **Data collection**: Gather a [preference dataset](dataset_formats#preference) with positive and negative selected pairs of generation, given a prompt.
2. **Optimization**: Maximize the log-likelihood of the DPO loss directly.
DPO-compatible datasets can be found with [the tag `dpo` on Hugging Face Hub](https://huggingface.co/datasets?other=dpo). You can also explore the [librarian-bots/direct-preference-optimization-datasets](https://huggingface.co/collections/librarian-bots/direct-preference-optimization-datasets-66964b12835f46289b6ef2fc) Collection to identify datasets that are likely to support DPO training.
This process is illustrated in the sketch below (from [Figure 1 of the DPO paper](https://huggingface.co/papers/2305.18290)):
This process is illustrated in the sketch below (from [figure 1 of the original paper](https://huggingface.co/papers/2305.18290)):
<img width="835" alt="Screenshot 2024-03-19 at 12 39 41" src="https://github.com/huggingface/trl/assets/49240599/9150fac6-3d88-4ca2-8ec6-2a6f3473216d">
![](https://github.com/huggingface/trl/assets/49240599/9150fac6-3d88-4ca2-8ec6-2a6f3473216d)
Read more about DPO algorithm in the [original paper](https://huggingface.co/papers/2305.18290).
## Quick start
## Expected dataset format
This example demonstrates how to train a model using the DPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model. We use the preference data from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the data in the dataset here:
The DPO trainer expects a very specific format for the dataset. Since the model will be trained to directly optimize the preference of which sentence is the most relevant, given two sentences. We provide an example from the [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset below:
<iframe
src="https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized/embed/viewer/default/train?row=0"
frameborder="0"
width="100%"
height="560px"
></iframe>
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/rlhf-antropic-example.png", width="50%">
</div>
Below is the script to train the model:
Therefore the final dataset object should contain these 3 entries if you use the default [`DPODataCollatorWithPadding`] data collator. The entries should be named:
```python
# train_dpo.py
from datasets import load_dataset
from trl import DPOConfig, DPOTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer
- `prompt`
- `chosen`
- `rejected`
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
for example:
```py
dpo_dataset_dict = {
"prompt": [
"hello",
"how are you",
"What is your name?",
"What is your name?",
"Which is the best programming language?",
"Which is the best programming language?",
"Which is the best programming language?",
],
"chosen": [
"hi nice to meet you",
"I am fine",
"My name is Mary",
"My name is Mary",
"Python",
"Python",
"Java",
],
"rejected": [
"leave me alone",
"I am not fine",
"Whats it to you?",
"I dont have a name",
"Javascript",
"C++",
"C++",
],
}
training_args = DPOConfig(output_dir="Qwen2-0.5B-DPO", logging_steps=10)
trainer = DPOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
trainer.train()
```
where the `prompt` contains the context inputs, `chosen` contains the corresponding chosen responses and `rejected` contains the corresponding negative (rejected) responses. As can be seen a prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays.
Execute the script using the following command:
[`DPOTrainer`] can be used to fine-tune visual language models (VLMs). In this case, the dataset must also contain the key `images`, and the trainer's `tokenizer` is the VLM's `processor`. For example, for Idefics2, the processor expects the dataset to have the following format:
Note: Currently, VLM support is exclusive to Idefics2 and does not extend to other VLMs.
```py
dpo_dataset_dict = {
'images': [
[Image.open('beach.jpg')],
[Image.open('street.jpg')],
],
'prompt': [
'The image <image> shows',
'<image> The image depicts',
],
'chosen': [
'a sunny beach with palm trees.',
'a busy street with several cars and buildings.',
],
'rejected': [
'a snowy mountain with skiers.',
'a calm countryside with green fields.',
],
}
```bash
accelerate launch train_dpo.py
```
## Expected model format
Distributed across 8 GPUs, the training takes approximately 3 minutes. You can verify the training progress by checking the reward graph. An increasing trend in the reward margin indicates that the model is improving and generating better responses over time.
The DPO trainer expects a model of `AutoModelForCausalLM` or `AutoModelForVision2Seq`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/dpo-qwen2-reward-margin.png)
## Using the `DPOTrainer`
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-DPO) performs, you can use the [TRL Chat CLI](clis#chat-interface).
For a detailed example have a look at the `examples/scripts/dpo.py` script. At a high level we need to initialize the [`DPOTrainer`] with a `model` we wish to train, a reference `ref_model` which we will use to calculate the implicit rewards of the preferred and rejected response, the `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above. Note that the `model` and `ref_model` need to have the same architecture (ie decoder only or encoder-decoder).
<pre><code>$ trl chat --model_name_or_path trl-lib/Qwen2-0.5B-DPO
<strong><span style="color: red;">&lt;quentin_gallouedec&gt;:</span></strong>
What is the best programming language?
```py
training_args = DPOConfig(
beta=0.1,
)
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer, # for visual language models, use tokenizer=processor instead
<strong><span style="color: blue;">&lt;trl-lib/Qwen2-0.5B-DPO&gt;:</span></strong>
The best programming language for specific applications can vary depending on the use case and knowledge level of the programmer. Here are some general factors that can be used as input to choose the best programming language:
<strong><span style="color: green;">1</span></strong> Ease of use: Some programming languages are more user-friendly than others, such as Python, Java, or Ruby. Python is popular due to its simplicity and great scalability.
<strong><span style="color: green;">2</span></strong> Versatility: The ability to work with a wide range of data structures and frameworks can define the language as versatile.
<strong><span style="color: green;">3</span></strong> Ease of learning: Different programming languages have different learning curves, so users must be willing to take some time to master one.
<strong><span style="color: green;">4</span></strong> Community support: The broader community of developers and enthusiasts in the selected programming language can provide great support and resources.
<strong><span style="color: green;">5</span></strong> Reusability: Languages that emphasize code reuse and can be easily modifiable can be more suitable for software development.
The best programming language based on these factors is subjective and depends on what the programmer intends to accomplish.
</code></pre>
## Expected dataset type
DPO requires a [preference dataset](dataset_formats#preference). The [`DPOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
Although the [`DPOTrainer`] supports both explicit and implicit prompts, we recommend using explicit prompts. If provided with an implicit prompt dataset, the trainer will automatically extract the prompt from the `"chosen"` and `"rejected"` columns. For more information, refer to the [preference style](dataset_formats#preference) section.
### Special considerations for vision-language models
The [`DPOTrainer`] supports fine-tuning vision-language models (VLMs). For these models, a vision dataset is required. To learn more about the specific format for vision datasets, refer to the [Vision dataset format](dataset_formats#vision-datasets) section.
Additionally, unlike standard text-based models where a `tokenizer` is used, for VLMs, you should replace the `tokenizer` with a `processor`.
```diff
- model = AutoModelForCausalLM.from_pretrained(model_id)
+ model = AutoModelForVision2Seq.from_pretrained(model_id)
- tokenizer = AutoTokenizer.from_pretrained(model_id)
+ processor = AutoProcessor.from_pretrained(model_id)
trainer = DPOTrainer(
model,
args=training_args,
train_dataset=train_dataset,
- processing_class=tokenizer,
+ processing_class=processor,
)
```
After this one can then call:
For a complete example of fine-tuning a vision-language model, refer to the script in [`examples/scripts/dpo_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo_vlm.py).
```py
dpo_trainer.train()
## Example script
We provide an example script to train a model using the DPO method. The script is available in [`trl/scripts/dpo.py`](https://github.com/huggingface/trl/blob/main/trl/scripts/dpo.py)
To test the DPO script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized), run the following command:
```bash
accelerate launch trl/scripts/dpo.py \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--dataset_name trl-lib/ultrafeedback_binarized \
--num_train_epochs 1 \
--logging_steps 25 \
--output_dir Qwen2-0.5B-DPO
```
Note that the `beta` is the temperature parameter for the DPO loss, typically something in the range of `0.1` to `0.5`. We ignore the reference model as `beta` -> 0.
## Loss functions
Given the preference data, we can fit a binary classifier according to the Bradley-Terry model and in fact the [DPO](https://huggingface.co/papers/2305.18290) authors propose the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression. To use this loss, set the `loss_type="sigmoid"` (default) in the [`DPOConfig`].
The [RSO](https://huggingface.co/papers/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper. To use this loss, set the `loss_type="hinge"` in the [`DPOConfig`]. In this case, the `beta` is the reciprocal of the margin.
The [IPO](https://huggingface.co/papers/2310.12036) authors provide a deeper theoretical understanding of the DPO algorithms and identify an issue with overfitting and propose an alternative loss. To use the loss set the `loss_type="ipo"` in the [`DPOConfig`]. In this case, the `beta` is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike DPO which is summed only).
The [cDPO](https://ericmitchell.ai/cdpo.pdf) is a tweak on the DPO loss where we assume that the preference labels are noisy with some probability. In this approach, the `label_smoothing` parameter in the [`DPOConfig`] is used to model the probability of existing label noise. To apply this conservative loss, set `label_smoothing` to a value greater than 0.0 (between 0.0 and 0.5; the default is 0.0).
The [EXO](https://huggingface.co/papers/2402.00856) authors propose to minimize the reverse KL instead of the negative log-sigmoid loss of DPO which corresponds to forward KL. To use the loss set the `loss_type="exo_pair"` in the [`DPOConfig`]. Setting non-zero `label_smoothing` (default `1e-3`) leads to a simplified version of EXO on pair-wise preferences (see Eqn. (16) of the [EXO paper](https://huggingface.co/papers/2402.00856)). The full version of EXO uses `K>2` completions generated by the SFT policy, which becomes an unbiased estimator of the PPO objective (up to a constant) when `K` is sufficiently large.
The [NCA](https://huggingface.co/papers/2402.05369) authors shows that NCA optimizes the absolute likelihood for each response rather than the relative likelihood. To use the loss set the `loss_type="nca_pair"` in the [`DPOConfig`].
The [Robust DPO](https://huggingface.co/papers/2403.00409) authors propose an unbiased estimate of the DPO loss that is robust to preference noise in the data. Like in cDPO, it assumes that the preference labels are noisy with some probability. In this approach, the `label_smoothing` parameter in the [`DPOConfig`] is used to model the probability of existing label noise. To apply this conservative loss, set `label_smoothing` to a value greater than 0.0 (between 0.0 and 0.5; the default is 0.0) and set the `loss_type="robust"` in the [`DPOConfig`].
The [BCO](https://huggingface.co/papers/2404.04656) authors train a binary classifier whose logit serves as a reward so that the classifier maps {prompt, chosen completion} pairs to 1 and {prompt, rejected completion} pairs to 0. To use this loss, set the `loss_type="bco_pair"` in the [`DPOConfig`].
The [TR-DPO](https://huggingface.co/papers/2404.09656) paper suggests syncing the reference model weights after every `ref_model_sync_steps` steps of SGD with weight `ref_model_mixup_alpha` during DPO training. To toggle this callback use the `sync_ref_model=True` in the [`DPOConfig`].
The [RPO](https://huggingface.co/papers/2404.19733) paper implements an iterative preference tuning algorithm using a loss related to the RPO loss in this [paper](https://huggingface.co/papers/2405.16436) that essentially consists of a weighted SFT loss on the chosen preferences together with the DPO loss. To use this loss, set the `rpo_alpha` in the [`DPOConfig`] to an appropriate value. The paper suggests setting this weight to 1.0.
The [SPPO](https://huggingface.co/papers/2405.00675) authors claim that SPPO is capable of solving the Nash equilibrium iteratively by pushing the chosen rewards to be as large as 1/2 and the rejected rewards to be as small as -1/2 and can alleviate data sparsity issues. The implementation approximates this algorithm by employing hard label probabilities, assigning 1 to the winner and 0 to the loser. To use this loss, set the `loss_type="sppo_hard"` in the [`DPOConfig`].
The [AOT](https://huggingface.co/papers/2406.05882) authors propose to use Distributional Preference Alignment Via Optimal Transport. Traditionally, the alignment algorithms use paired preferences at a sample level, which does not ensure alignment on the distributional level. AOT, on the other hand, can align LLMs on paired or unpaired preference data by making the reward distribution of the positive samples stochastically dominant in the first order on the distribution of negative samples. Specifically, `loss_type="aot"` is appropriate for paired datasets, where each prompt has both chosen and rejected responses; `loss_type="aot_pair"` is for unpaired datasets. In a nutshell, `loss_type="aot"` ensures that the log-likelihood ratio of chosen to rejected of the aligned model has higher quantiles than that ratio for the reference model. `loss_type="aot_pair"` ensures that the chosen reward is higher on all quantiles than the rejected reward. Note that in both cases quantiles are obtained via sorting. To fully leverage the advantages of the AOT algorithm, it is important to maximize the per-GPU batch size.
The [APO](https://huggingface.co/papers/2408.06266) method introduces an "anchored" version of the alignment objective. There are two variants: `apo_zero` and `apo_down`. The `apo_zero` loss increases the likelihood of winning outputs while decreasing the likelihood of losing outputs, making it suitable when the model is less performant than the winning outputs. On the other hand, `apo_down` decreases the likelihood of both winning and losing outputs, but with a stronger emphasis on reducing the likelihood of losing outputs. This variant is more effective when the model is better than the winning outputs. To use these losses, set `loss_type="apo_zero"` or `loss_type="apo_down"` in the [`DPOConfig`].
### For Mixture of Experts Models: Enabling the auxiliary loss
MOEs are the most efficient if the load is about equally distributed between experts.
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
This option is enabled by setting `output_router_logits=True` in the model config (e.g. MixtralConfig).
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: 0.001).
## Logging
## Logged metrics
While training and evaluating we record the following reward metrics:
@ -169,59 +134,76 @@ While training and evaluating we record the following reward metrics:
- `rewards/accuracies`: mean of how often the chosen rewards are > than the corresponding rejected rewards
- `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
## Loss functions
The DPO algorithm supports several loss functions. The loss function can be set using the `loss_type` parameter in the [`DPOConfig`]. The following loss functions are supported:
| `loss_type=` | Description |
| -------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| `"sigmoid"` (default) | Given the preference data, we can fit a binary classifier according to the Bradley-Terry model and in fact the [DPO](https://huggingface.co/papers/2305.18290) authors propose the sigmoid loss on the normalized likelihood via the `logsigmoid` to fit a logistic regression. |
| `"hinge"` | The [RSO](https://huggingface.co/papers/2309.06657) authors propose to use a hinge loss on the normalized likelihood from the [SLiC](https://huggingface.co/papers/2305.10425) paper. In this case, the `beta` is the reciprocal of the margin. |
| `"ipo"` | The [IPO](https://huggingface.co/papers/2310.12036) authors provide a deeper theoretical understanding of the DPO algorithms and identify an issue with overfitting and propose an alternative loss. In this case, the `beta` is the reciprocal of the gap between the log-likelihood ratios of the chosen vs the rejected completion pair and thus the smaller the `beta` the larger this gaps is. As per the paper the loss is averaged over log-likelihoods of the completion (unlike DPO which is summed only). |
| `"exo_pair"` | The [EXO](https://huggingface.co/papers/2402.00856) authors propose to minimize the reverse KL instead of the negative log-sigmoid loss of DPO which corresponds to forward KL. Setting non-zero `label_smoothing` (default `1e-3`) leads to a simplified version of EXO on pair-wise preferences (see Eqn. (16) of the [EXO paper](https://huggingface.co/papers/2402.00856)). The full version of EXO uses `K>2` completions generated by the SFT policy, which becomes an unbiased estimator of the PPO objective (up to a constant) when `K` is sufficiently large. |
| `"nca_pair"` | The [NCA](https://huggingface.co/papers/2402.05369) authors shows that NCA optimizes the absolute likelihood for each response rather than the relative likelihood. |
| `"robust"` | The [Robust DPO](https://huggingface.co/papers/2403.00409) authors propose an unbiased estimate of the DPO loss that is robust to preference noise in the data. Like in cDPO, it assumes that the preference labels are noisy with some probability. In this approach, the `label_smoothing` parameter in the [`DPOConfig`] is used to model the probability of existing label noise. To apply this conservative loss, set `label_smoothing` to a value greater than 0.0 (between 0.0 and 0.5; the default is 0.0) |
| `"bco_pair"` | The [BCO](https://huggingface.co/papers/2404.04656) authors train a binary classifier whose logit serves as a reward so that the classifier maps {prompt, chosen completion} pairs to 1 and {prompt, rejected completion} pairs to 0. For unpaired data, we recommend the dedicated [`BCOTrainer`]. |
| `"sppo_hard"` | The [SPPO](https://huggingface.co/papers/2405.00675) authors claim that SPPO is capable of solving the Nash equilibrium iteratively by pushing the chosen rewards to be as large as 1/2 and the rejected rewards to be as small as -1/2 and can alleviate data sparsity issues. The implementation approximates this algorithm by employing hard label probabilities, assigning 1 to the winner and 0 to the loser. |
| `"aot"` or `loss_type="aot_pair"` | The [AOT](https://huggingface.co/papers/2406.05882) authors propose to use Distributional Preference Alignment Via Optimal Transport. Traditionally, the alignment algorithms use paired preferences at a sample level, which does not ensure alignment on the distributional level. AOT, on the other hand, can align LLMs on paired or unpaired preference data by making the reward distribution of the positive samples stochastically dominant in the first order on the distribution of negative samples. Specifically, `loss_type="aot"` is appropriate for paired datasets, where each prompt has both chosen and rejected responses; `loss_type="aot_pair"` is for unpaired datasets. In a nutshell, `loss_type="aot"` ensures that the log-likelihood ratio of chosen to rejected of the aligned model has higher quantiles than that ratio for the reference model. `loss_type="aot_pair"` ensures that the chosen reward is higher on all quantiles than the rejected reward. Note that in both cases quantiles are obtained via sorting. To fully leverage the advantages of the AOT algorithm, it is important to maximize the per-GPU batch size. |
| `"apo_zero"` or `loss_type="apo_down"` | The [APO](https://huggingface.co/papers/2408.06266) method introduces an "anchored" version of the alignment objective. There are two variants: `apo_zero` and `apo_down`. The `apo_zero` loss increases the likelihood of winning outputs while decreasing the likelihood of losing outputs, making it suitable when the model is less performant than the winning outputs. On the other hand, `apo_down` decreases the likelihood of both winning and losing outputs, but with a stronger emphasis on reducing the likelihood of losing outputs. This variant is more effective when the model is better than the winning outputs. |
| `"discopop"` | The [DiscoPOP](https://huggingface.co/papers/2406.08414) paper uses LLMs to discover more efficient offline preference optimization losses. In the paper the proposed DiscoPOP loss (which is a log-ratio modulated loss) outperformed other optimization losses on different tasks (IMDb positive text generation, Reddit TLDR summarization, and Alpaca Eval 2.0). |
### Label smoothing
The [cDPO](https://ericmitchell.ai/cdpo.pdf) is a tweak on the DPO loss where we assume that the preference labels are noisy with some probability. In this approach, the `label_smoothing` parameter in the [`DPOConfig`] is used to model the probability of existing label noise. To apply this conservative loss, set `label_smoothing` to a value greater than 0.0 (between 0.0 and 0.5; the default is 0.0).
### Syncing the reference model
The [TR-DPO](https://huggingface.co/papers/2404.09656) paper suggests syncing the reference model weights after every `ref_model_sync_steps` steps of SGD with weight `ref_model_mixup_alpha` during DPO training. To toggle this callback use the `sync_ref_model=True` in the [`DPOConfig`].
### RPO loss
The [RPO](https://huggingface.co/papers/2404.19733) paper implements an iterative preference tuning algorithm using a loss related to the RPO loss in this [paper](https://huggingface.co/papers/2405.16436) that essentially consists of a weighted SFT loss on the chosen preferences together with the DPO loss. To use this loss, set the `rpo_alpha` in the [`DPOConfig`] to an appropriate value. The paper suggests setting this weight to `1.0`.
### WPO loss
The [WPO](https://huggingface.co/papers/2406.11827) paper adapts off-policy data to resemble on-policy data more closely by reweighting preference pairs according to their probability under the current policy. To use this method, set the `use_weighting` flag to `True` in the [`DPOConfig`].
### For Mixture of Experts Models: Enabling the auxiliary loss
MOEs are the most efficient if the load is about equally distributed between experts.
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
This option is enabled by setting `output_router_logits=True` in the model config (e.g. [`~transformers.MixtralConfig`]).
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: `0.001`) in the model config.
## Accelerate DPO fine-tuning using `unsloth`
You can further accelerate QLoRA / LoRA (2x faster, 60% less memory) using the [`unsloth`](https://github.com/unslothai/unsloth) library that is fully compatible with `SFTTrainer`. Currently `unsloth` supports only Llama (Yi, TinyLlama, Qwen, Deepseek etc) and Mistral architectures. Some benchmarks for DPO listed below:
| GPU | Model | Dataset | 🤗 | 🤗 + Flash Attention 2 | 🦥 Unsloth | 🦥 VRAM saved |
| -------- | --------- | ---------- | --- | ---------------------- | ---------- | ------------- |
| A100 40G | Zephyr 7b | Ultra Chat | 1x | 1.24x | **1.88x** | -11.6% |
| Tesla T4 | Zephyr 7b | Ultra Chat | 1x | 1.09x | **1.55x** | -18.6% |
| GPU | Model | Dataset | 🤗 | 🤗 + Flash Attention 2 | 🦥 Unsloth | 🦥 VRAM saved |
| -------- | --------- | ---------- | --- | --------------------- | --------- | ------------ |
| A100 40G | Zephyr 7b | Ultra Chat | 1x | 1.24x | **1.88x** | -11.6% |
| Tesla T4 | Zephyr 7b | Ultra Chat | 1x | 1.09x | **1.55x** | -18.6% |
First install `unsloth` according to the [official documentation](https://github.com/unslothai/unsloth). Once installed, you can incorporate unsloth into your workflow in a very simple manner; instead of loading `AutoModelForCausalLM`, you just need to load a `FastLanguageModel` as follows:
```python
import torch
from trl import DPOConfig, DPOTrainer
from unsloth import FastLanguageModel
```diff
from datasets import load_dataset
from trl import DPOConfig, DPOTrainer
- from transformers import AutoModelForCausalLM, AutoTokenizer
+ from unsloth import FastLanguageModel
max_seq_length = 2048 # Supports automatic RoPE Scaling, so choose any number.
- model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
- tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
+ model, tokenizer = FastLanguageModel.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
+ model = FastLanguageModel.get_peft_model(model)
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
# Load model
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/zephyr-sft",
max_seq_length = max_seq_length,
dtype = None, # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+
load_in_4bit = True, # Use 4bit quantization to reduce memory usage. Can be False.
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
- training_args = DPOConfig(output_dir="Qwen2-0.5B-DPO", logging_steps=10)
+ training_args = DPOConfig(output_dir="Qwen2-0.5B-DPO", logging_steps=10, bf16=True)
trainer = DPOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
trainer.train()
# Do model patching and add fast LoRA weights
model = FastLanguageModel.get_peft_model(
model,
r = 16,
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 16,
lora_dropout = 0, # Dropout = 0 is currently optimized
bias = "none", # Bias = "none" is currently optimized
use_gradient_checkpointing = True,
random_state = 3407,
)
training_args = DPOConfig(
output_dir="./output",
beta=0.1,
)
dpo_trainer = DPOTrainer(
model,
ref_model=None,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
)
dpo_trainer.train()
```
The saved model is fully compatible with Hugging Face's transformers library. Learn more about unsloth in their [official repository](https://github.com/unslothai/unsloth).
@ -295,3 +277,7 @@ dpo_trainer = DPOTrainer(
## DPOConfig
[[autodoc]] DPOConfig
## PreferenceCollator
[[autodoc]] trainer.dpo_trainer.PreferenceCollator

View File

@ -31,24 +31,20 @@ Then, it is encouraged to launch jobs with `accelerate launch`!
# Maintained Examples
Scripts can be used as examples of how to use TRL trainers. They are located in the [`trl/scripts`](https://github.com/huggingface/trl/blob/main/trl/scripts) directory. Additionally, we provide examples in the [`examples/scripts`](https://github.com/huggingface/trl/blob/main/examples/scripts) directory. These examples are maintained and tested regularly.
| File | Description |
| ----------------------------------------------------------------------------------------------------------------------------- | --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`examples/scripts/alignprop.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/alignprop.py) | This script shows how to use the [`AlignPropTrainer`] to fine-tune a diffusion model. |
| [`examples/scripts/bco.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/bco.py) | This script shows how to use the [`KTOTrainer`] with the BCO loss to fine-tune a model to increase instruction-following, truthfulness, honesty and helpfulness using the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset. |
| [`examples/scripts/chat.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/chat.py) | This script allows you to load and use a model as a chatbot. |
| [`examples/scripts/cpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/cpo.py) | This script shows how to use the [`CPOTrainer`] to fine-tune a model to increase helpfulness and harmlessness using the [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset. |
| [`examples/scripts/ddpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ddpo.py) | This script shows how to use the [`DDPOTrainer`] to fine-tune a stable diffusion model using reinforcement learning. |
| [`examples/scripts/dpo_visual.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo_visual.py) | This script shows how to use the [`DPOTrainer`] to fine-tune a Vision Language Model to reduce hallucinations using the [openbmb/RLAIF-V-Dataset](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset) dataset. |
| [`examples/scripts/dpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo.py) | This script shows how to use the [`DPOTrainer`] to fine-tune a stable to increase helpfulness and harmlessness using the [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset. |
| [`examples/scripts/kto.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/kto.py) | This script shows how to use the [`KTOTrainer`] to fine-tune a model. |
| [`examples/scripts/orpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/orpo.py) | This script shows how to use the [`ORPOTrainer`] to fine-tune a model to increase helpfulness and harmlessness using the [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset. |
| [`examples/scripts/ppo_multi_adapter.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo_multi_adapter.py) | This script shows how to use the [`PPOTrainer`] to train a single base model with multiple adapters. Requires you to run the example script with the reward model training beforehand. |
| [`examples/scripts/ppo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo.py) | This script shows how to use the [`PPOTrainer`] to fine-tune a sentiment analysis model using [IMDB dataset](https://huggingface.co/datasets/stanfordnlp/imdb). |
| [`examples/scripts/reward_modeling.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/reward_modeling.py) | This script shows how to use the [`RewardTrainer`] to train a reward model on your own dataset. |
| [`examples/scripts/sft.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft.py) | This script shows how to use the [`SFTTrainer`] to fine-tune a model or adapters into a target dataset. |
| [`examples/scripts/vsft_llava.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py) | This script shows how to use the [`SFTTrainer`] to fine-tune a Vision Language Model in a chat setting. The script has only been tested on a [LLaVA 1.5]([llava-hf/llava-1.5-7b-hf](https://huggingface.co/llava-hf/llava-1.5-7b-hf)) model so users may see unexpected behaviour in other model architectures. |
| File | Description |
| ----------------------------------------------------------------------------------------------------------------------------- | ----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| [`examples/scripts/alignprop.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/alignprop.py) | This script shows how to use the [`AlignPropTrainer`] to fine-tune a diffusion model. |
| [`examples/scripts/bco.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/bco.py) | This script shows how to use the [`KTOTrainer`] with the BCO loss to fine-tune a model to increase instruction-following, truthfulness, honesty and helpfulness using the [openbmb/UltraFeedback](https://huggingface.co/datasets/openbmb/UltraFeedback) dataset. |
| [`examples/scripts/cpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/cpo.py) | This script shows how to use the [`CPOTrainer`] to fine-tune a model to increase helpfulness and harmlessness using the [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset. |
| [`examples/scripts/ddpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ddpo.py) | This script shows how to use the [`DDPOTrainer`] to fine-tune a stable diffusion model using reinforcement learning. |
| [`examples/scripts/dpo_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo_vlm.py) | This script shows how to use the [`DPOTrainer`] to fine-tune a Vision Language Model to reduce hallucinations using the [openbmb/RLAIF-V-Dataset](https://huggingface.co/datasets/openbmb/RLAIF-V-Dataset) dataset. |
| [`examples/scripts/orpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/orpo.py) | This script shows how to use the [`ORPOTrainer`] to fine-tune a model to increase helpfulness and harmlessness using the [Anthropic/hh-rlhf](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset. |
| [`examples/scripts/ppo/ppo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo/ppo.py) | This script shows how to use the [`PPOTrainer`] to fine-tune a model to improve its ability to continue text with positive sentiment or physically descriptive language |
| [`examples/scripts/ppo/ppo_tldr.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/ppo/ppo_tldr.py) | This script shows how to use the [`PPOTrainer`] to fine-tune a model to improve its ability to generate TL;DR summaries. |
| [`examples/scripts/reward_modeling.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/reward_modeling.py) | This script shows how to use the [`RewardTrainer`] to train a reward model on your own dataset. |
| [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm.py) | This script shows how to use the [`SFTTrainer`] to fine-tune a Vision Language Model in a chat setting. The script has only been tested with [LLaVA 1.5](https://huggingface.co/llava-hf/llava-1.5-7b-hf), [LLaVA 1.6](https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf), and [Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) models so users may see unexpected behaviour in other model architectures. |
Here are also some easier-to-run colab notebooks that you can use to get started with TRL:

View File

@ -1,5 +1,7 @@
# Generalized Knowledge Distillation Trainer
[![](https://img.shields.io/badge/All_models-GKD-blue)](https://huggingface.co/models?other=gkd,trl)
## Overview
Generalized Knowledge Distillation (GKD) was proposed in [On-Policy Distillation of Language Models: Learning from Self-Generated Mistakes](https://huggingface.co/papers/2306.13649) by Rishabh Agarwal, Nino Vieillard, Yongchao Zhou, Piotr Stanczyk, Sabela Ramos, Matthieu Geist, and Olivier Bachem.
@ -17,8 +19,9 @@ This post-training method was contributed by [Kashif Rasul](https://huggingface.
## Usage tips
The GKD Trainer is a wrapper around the [`SFTTrainer`] class that takes in a teacher model argument. It needs two parameters to be set via the [`GKDConfig`] namely:
The [`GKDTrainer`] is a wrapper around the [`SFTTrainer`] class that takes in a teacher model argument. It needs three parameters to be set via the [`GKDConfig`] namely:
* `lmbda`: controls the student data fraction, i.e., the proportion of on-policy student-generated outputs. When `lmbda=0.0`, the loss reduces to supervised JSD where the student is trained with the token-level probabilities of the teacher. When `lmbda=1.0`, the loss reduces to on-policy JSD, where the student generates output sequences and token-specific feedback on these sequences from the teacher. For values in between [0, 1] it is random between the two based on the `lmbda` value for each batch.
* `seq_kd`: controls whether to perform Sequence-Level KD (can be viewed as supervised FT on teacher-generated out). When `seq_kd=True` and `lmbda=0.0`, the loss reduces to supervised JSD, where the teacher generates output sequences and the student receives token-specific feedback on these sequences from the teacher.
* `beta`: controls the interpolation in the generalized Jensen-Shannon Divergence. When `beta=0.0` the loss approximates forward KL divergence, while for `beta=1.0` the loss approximates reverse KL divergence. For values in between [0, 1] it interpolates between the two.
The authors find that on-policy data (high `lmbda`) performs better and the optimal `beta` varied depending on the task and evaluation method.
@ -67,19 +70,19 @@ eval_dataset = Dataset.from_dict(
}
)
args = GKDConfig(output_dir="gkd-model", per_device_train_batch_size=1)
training_args = GKDConfig(output_dir="gkd-model", per_device_train_batch_size=1)
trainer = GKDTrainer(
model=model,
teacher_model=teacher_model,
args=args,
tokenizer=tokenizer,
args=training_args,
processing_class=tokenizer,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
```
### Expected dataset format
### Expected dataset type
The dataset should be formatted as a list of "messages" where each message is a list of dictionaries with the following keys:
* `role`: either `system`, `assistant` or `user`

View File

@ -7,11 +7,9 @@
TRL is a full stack library where we provide a set of tools to train transformer language models with Reinforcement Learning, from the Supervised Fine-tuning step (SFT), Reward Modeling step (RM) to the Proximal Policy Optimization (PPO) step.
The library is integrated with 🤗 [transformers](https://github.com/huggingface/transformers).
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/TRL-readme.png">
</div>
## Learn post-training
Check the appropriate sections of the documentation depending on your needs:
Learn post-training with the 🤗 [smol course](https://github.com/huggingface/smol-course).
## API documentation
@ -38,28 +36,39 @@ Check the appropriate sections of the documentation depending on your needs:
<div class="mt-10">
<div class="w-full flex flex-col space-y-4 md:space-y-0 md:grid md:grid-cols-2 md:gap-y-4 md:gap-x-5">
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/dpo_vlm">
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/dpo_vlm/thumbnail.png" alt="thumbnail">
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/dpo_vlm/thumbnail.png" alt="thumbnail" class="mt-0">
<p class="text-gray-500 text-sm">Published on July 10, 2024</p>
<p class="text-gray-700">Preference Optimization for Vision Language Models with TRL</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/rlhf">
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/120_rlhf/thumbnail.png" alt="thumbnail">
<p class="text-gray-700">Illustrating Reinforcement Learning from Human Feedback</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/trl-peft">
<img src="https://github.com/huggingface/blog/blob/main/assets/133_trl_peft/thumbnail.png?raw=true" alt="thumbnail">
<p class="text-gray-700">Fine-tuning 20B LLMs with RLHF on a 24GB consumer GPU</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/stackllama">
<img src="https://github.com/huggingface/blog/blob/main/assets/138_stackllama/thumbnail.png?raw=true" alt="thumbnail">
<p class="text-gray-700">StackLLaMA: A hands-on guide to train LLaMA with RLHF</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/dpo-trl">
<img src="https://github.com/huggingface/blog/blob/main/assets/157_dpo_trl/dpo_thumbnail.png?raw=true" alt="thumbnail">
<p class="text-gray-700">Fine-tune Llama 2 with DPO</p>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/putting_rl_back_in_rlhf_with_rloo">
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/putting_rl_back_in_rlhf_with_rloo/thumbnail.png" alt="thumbnail" class="mt-0">
<p class="text-gray-500 text-sm">Published on June 12, 2024</p>
<p class="text-gray-700">Putting RL back in RLHF</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/trl-ddpo">
<img src="https://github.com/huggingface/blog/blob/main/assets/166_trl_ddpo/thumbnail.png?raw=true" alt="thumbnail">
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/166_trl_ddpo/thumbnail.png" alt="thumbnail" class="mt-0">
<p class="text-gray-500 text-sm">Published on September 29, 2023</p>
<p class="text-gray-700">Finetune Stable Diffusion Models with DDPO via TRL</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/dpo-trl">
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/157_dpo_trl/dpo_thumbnail.png" alt="thumbnail" class="mt-0">
<p class="text-gray-500 text-sm">Published on August 8, 2023</p>
<p class="text-gray-700">Fine-tune Llama 2 with DPO</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/stackllama">
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/138_stackllama/thumbnail.png" alt="thumbnail" class="mt-0">
<p class="text-gray-500 text-sm">Published on April 5, 2023</p>
<p class="text-gray-700">StackLLaMA: A hands-on guide to train LLaMA with RLHF</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/trl-peft">
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/133_trl_peft/thumbnail.png" alt="thumbnail" class="mt-0">
<p class="text-gray-500 text-sm">Published on March 9, 2023</p>
<p class="text-gray-700">Fine-tuning 20B LLMs with RLHF on a 24GB consumer GPU</p>
</a>
<a class="!no-underline border dark:border-gray-700 p-5 rounded-lg shadow hover:shadow-lg" href="https://huggingface.co/blog/rlhf">
<img src="https://raw.githubusercontent.com/huggingface/blog/main/assets/120_rlhf/thumbnail.png" alt="thumbnail" class="mt-0">
<p class="text-gray-500 text-sm">Published on December 9, 2022</p>
<p class="text-gray-700">Illustrating Reinforcement Learning from Human Feedback</p>
</a>
</div>
</div>

View File

@ -1,5 +1,8 @@
# Iterative Trainer
[![](https://img.shields.io/badge/All_models-Iterative_SFT-blue)](https://huggingface.co/models?other=iterative-sft,trl)
Iterative fine-tuning is a training method that enables to perform custom actions (generation and filtering for example) between optimization steps. In TRL we provide an easy-to-use API to fine-tune your models in an iterative way in just a few lines of code.
## Usage

View File

@ -1,11 +1,17 @@
# Judges
<Tip warning={true}>
TRL Judges is an experimental API which is subject to change at any time.
</Tip>
TRL provides judges to easily compare two completions.
Make sure to have installed the required dependencies by running:
```bash
pip install trl[llm_judge]
pip install trl[judges]
```
## Using the provided judges
@ -46,34 +52,38 @@ judge.judge(
) # Outputs: [0, 1]
```
## BaseJudge
## Provided judges
[[autodoc]] BaseJudge
## BaseRankJudge
[[autodoc]] BaseRankJudge
## BasePairwiseJudge
[[autodoc]] BasePairwiseJudge
## RandomRankJudge
[[autodoc]] RandomRankJudge
## RandomPairwiseJudge
[[autodoc]] RandomPairwiseJudge
## PairRMJudge
### PairRMJudge
[[autodoc]] PairRMJudge
## HfPairwiseJudge
### HfPairwiseJudge
[[autodoc]] HfPairwiseJudge
## OpenAIPairwiseJudge
### OpenAIPairwiseJudge
[[autodoc]] OpenAIPairwiseJudge
### AllTrueJudge
[[autodoc]] AllTrueJudge
## Base classes
### BaseJudge
[[autodoc]] BaseJudge
### BaseBinaryJudge
[[autodoc]] BaseBinaryJudge
### BaseRankJudge
[[autodoc]] BaseRankJudge
### BasePairwiseJudge
[[autodoc]] BasePairwiseJudge

View File

@ -1,102 +1,134 @@
# KTO Trainer
TRL supports the Kahneman-Tversky Optimization (KTO) Trainer for aligning language models with binary feedback data (e.g., upvote/downvote), as described in the [paper](https://huggingface.co/papers/2402.01306) by Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff, Dan Jurafsky, and Douwe Kiela.
For a full example have a look at [`examples/scripts/kto.py`].
[![](https://img.shields.io/badge/All_models-KTO-blue)](https://huggingface.co/models?other=kto,trl)
Depending on how good your base model is, you may or may not need to do SFT before KTO.
This is different from standard RLHF and DPO, which always require SFT.
## Overview
Kahneman-Tversky Optimization (KTO) was introduced in [KTO: Model Alignment as Prospect Theoretic Optimization](https://huggingface.co/papers/2402.01306) by [Kawin Ethayarajh](https://huggingface.co/kawine), [Winnie Xu](https://huggingface.co/xwinxu), [Niklas Muennighoff](https://huggingface.co/Muennighoff), Dan Jurafsky, [Douwe Kiela](https://huggingface.co/douwekiela).
The abstract from the paper is the following:
> Kahneman & Tversky's prospect theory tells us that humans perceive random variables in a biased but well-defined manner; for example, humans are famously loss-averse. We show that objectives for aligning LLMs with human feedback implicitly incorporate many of these biases -- the success of these objectives (e.g., DPO) over cross-entropy minimization can partly be ascribed to them being human-aware loss functions (HALOs). However, the utility functions these methods attribute to humans still differ from those in the prospect theory literature. Using a Kahneman-Tversky model of human utility, we propose a HALO that directly maximizes the utility of generations instead of maximizing the log-likelihood of preferences, as current methods do. We call this approach Kahneman-Tversky Optimization (KTO), and it matches or exceeds the performance of preference-based methods at scales from 1B to 30B. Crucially, KTO does not need preferences -- only a binary signal of whether an output is desirable or undesirable for a given input. This makes it far easier to use in the real world, where preference data is scarce and expensive.
The official code can be found in [ContextualAI/HALOs](https://github.com/ContextualAI/HALOs).
This post-training method was contributed by [Kashif Rasul](https://huggingface.co/kashif), [Younes Belkada](https://huggingface.co/ybelkada), [Lewis Tunstall](https://huggingface.co/lewtun) and Pablo Vicente.
## Quick start
This example demonstrates how to train a model using the KTO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model. We use the preference data from the [KTO Mix 14k](https://huggingface.co/datasets/trl-lib/kto-mix-14k). You can view the data in the dataset here:
<iframe
src="https://huggingface.co/datasets/trl-lib/kto-mix-14k/embed/viewer/default/train?row=0"
frameborder="0"
width="100%"
height="560px"
></iframe>
Below is the script to train the model:
```python
# train_kto.py
from datasets import load_dataset
from trl import KTOConfig, KTOTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
train_dataset = load_dataset("trl-lib/kto-mix-14k", split="train")
training_args = KTOConfig(output_dir="Qwen2-0.5B-KTO", logging_steps=10)
trainer = KTOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
trainer.train()
```
Execute the script using the following command:
```bash
accelerate launch train_kto.py
```
Distributed across 8 x H100 GPUs, the training takes approximately 30 minutes. You can verify the training progress by checking the reward graph. An increasing trend in the reward margin indicates that the model is improving and generating better responses over time.
![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/kto-qwen2-reward-margin.png)
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-KTO) performs, you can use the [TRL Chat CLI](clis#chat-interface).
<pre><code>$ trl chat --model_name_or_path trl-lib/Qwen2-0.5B-KTO
<strong><span style="color: red;">&lt;quentin_gallouedec&gt;:</span></strong>
What is the best programming language?
<strong><span style="color: blue;">&lt;trl-lib/Qwen2-0.5B-KTO&gt;:</span></strong>
The best programming language can vary depending on individual preferences, industry-specific requirements, technical skills, and familiarity with the specific use case or task. Here are some widely-used programming languages that have been noted as popular and widely used:
Here are some other factors to consider when choosing a programming language for a project:
<strong><span style="color: green;">1</span> JavaScript</strong>: JavaScript is at the heart of the web and can be used for building web applications, APIs, and interactive front-end applications like frameworks like React and Angular. It's similar to C, C++, and F# in syntax structure and is accessible and easy to learn, making it a popular choice for beginners and professionals alike.
<strong><span style="color: green;">2</span> Java</strong>: Known for its object-oriented programming (OOP) and support for Java 8 and .NET, Java is used for developing enterprise-level software applications, high-performance games, as well as mobile apps, game development, and desktop applications.
<strong><span style="color: green;">3</span> C++</strong>: Known for its flexibility and scalability, C++ offers comprehensive object-oriented programming and is a popular choice for high-performance computing and other technical fields. It's a powerful platform for building real-world applications and games at scale.
<strong><span style="color: green;">4</span> Python</strong>: Developed by Guido van Rossum in 1991, Python is a high-level, interpreted, and dynamically typed language known for its simplicity, readability, and versatility.
</code></pre>
## Expected dataset format
The KTO trainer expects a very specific format for the dataset as it does not require pairwise preferences. Since the model will be trained to directly optimize examples that consist of a prompt, model completion, and a label to indicate whether the completion is "good" or "bad", we expect a dataset with the following columns:
KTO requires an [unpaired preference dataset](dataset_formats#unpaired-preference). Alternatively, you can provide a *paired* preference dataset (also known simply as a *preference dataset*). In this case, the trainer will automatically convert it to an unpaired format by separating the chosen and rejected responses, assigning `label = True` to the chosen completions and `label = False` to the rejected ones.
- `prompt`
- `completion`
- `label`
The [`KTOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
for example:
In theory, the dataset should contain at least one chosen and one rejected completion. However, some users have successfully run KTO using *only* chosen or only rejected data. If using only rejected data, it is advisable to adopt a conservative learning rate.
```
kto_dataset_dict = {
"prompt": [
"Hey, hello",
"How are you",
"What is your name?",
"What is your name?",
"Which is the best programming language?",
"Which is the best programming language?",
"Which is the best programming language?",
],
"completion": [
"hi nice to meet you",
"leave me alone",
"I don't have a name",
"My name is Mary",
"Python",
"C++",
"Java",
],
"label": [
True,
False,
False,
True,
True,
False,
False,
],
}
## Example script
We provide an example script to train a model using the KTO method. The script is available in [`trl/scripts/kto.py`](https://github.com/huggingface/trl/blob/main/trl/scripts/kto.py)
To test the KTO script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/trl-lib/kto-mix-14k), run the following command:
```bash
accelerate launch trl/scripts/kto.py \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--dataset_name trl-lib/kto-mix-14k \
--num_train_epochs 1 \
--logging_steps 25 \
--output_dir Qwen2-0.5B-KTO
```
where the `prompt` contains the context inputs, `completion` contains the corresponding responses and `label` contains the corresponding flag that indicates if the generated completion is desired (`True`) or undesired (`False`).
A prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays. It is required that the dataset contains at least one desirable and one undesirable completion.
## Expected model format
The KTO trainer expects a model of `AutoModelForCausalLM`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
## Using the `KTOTrainer`
For a detailed example have a look at the `examples/scripts/kto.py` script. At a high level we need to initialize the `KTOTrainer` with a `model` we wish to train and a reference `ref_model` which we will use to calculate the implicit rewards of the preferred and rejected response.
The `beta` refers to the hyperparameter of the implicit reward, and the dataset contains the 3 entries listed above. Note that the `model` and `ref_model` need to have the same architecture (ie decoder only or encoder-decoder).
The `desirable_weight` and `undesirable_weight` refer to the weights placed on the losses for desirable/positive and undesirable/negative examples.
By default, they are both 1. However, if you have more of one or the other, then you should upweight the less common type such that the ratio of (`desirable_weight` \\(\times\\) number of positives) to (`undesirable_weight` \\(\times\\) number of negatives) is in the range 1:1 to 4:3.
<Tip>
It is strongly recommended you use a learning rate between `5e-7` and `5e-6` with an effective batch size between `8` and `32`, for both LoRA and full finetuning. Even if you are working with a small dataset, we do not recommend using a learning rate outside this range; instead, using smaller batch sizes and/or more training epochs will give you better results.
</Tip>
```py
training_args = KTOConfig(
beta=0.1,
desirable_weight=1.0,
undesirable_weight=1.0,
learning_rate=5e-7,
)
kto_trainer = KTOTrainer(
model,
ref_model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
)
```
After this one can then call:
```py
kto_trainer.train()
```
## Usage tips
### For Mixture of Experts Models: Enabling the auxiliary loss
MOEs are the most efficient if the load is about equally distributed between experts.
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
This option is enabled by setting `output_router_logits=True` in the model config (e.g. MixtralConfig).
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: 0.001).
This option is enabled by setting `output_router_logits=True` in the model config (e.g. [`~transformers.MixtralConfig`]).
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: `0.001`) in the model config.
### Batch size recommendations
Use a per-step batch size that is at least 4, and an effective batch size between 16 and 128. Even if your effective batch size is large, if your per-step batch size is poor, then the KL estimate in KTO will be poor.
### Learning rate recommendations
Each choice of `beta` has a maximum learning rate it can tolerate before learning performance degrades. For the default setting of `beta = 0.1`, the learning rate should typically not exceed `1e-6` for most models. As `beta` decreases, the learning rate should also be reduced accordingly. In general, we strongly recommend keeping the learning rate between `5e-7` and `5e-6`. Even with small datasets, we advise against using a learning rate outside this range. Instead, opt for more epochs to achieve better results.
### Imbalanced data
The `desirable_weight` and `undesirable_weight` of the [`KTOConfig`] refer to the weights placed on the losses for desirable/positive and undesirable/negative examples.
By default, they are both 1. However, if you have more of one or the other, then you should upweight the less common type such that the ratio of (`desirable_weight` \\(\times\\) number of positives) to (`undesirable_weight` \\(\times\\) number of negatives) is in the range 1:1 to 4:3.
## Logged metrics
While training and evaluating we record the following reward metrics:
- `rewards/chosen`: the mean log probabilities of the policy model for the chosen responses scaled by beta
- `rewards/rejected`: the mean log probabilities of the policy model for the rejected responses scaled by beta
- `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
- `logps/chosen`: the mean log probabilities of the chosen completions
- `logps/rejected`: the mean log probabilities of the rejected completions
- `logits/chosen`: the mean logits of the chosen completions
- `logits/rejected`: the mean logits of the rejected completions
- `kl`: the KL divergence between the policy model and the reference model
## KTOTrainer

View File

@ -90,6 +90,7 @@ WANDB_TAGS="calculator_final" python benchmark/benchmark.py \
We can then use [`openrlbenchmark`](https://github.com/openrlbenchmark/openrlbenchmark) which generates the following plot.
```
# pip install openrlbenchmark==0.2.1a5
python -m openrlbenchmark.rlops_multi_metrics \
--filters '?we=openrlbenchmark&wpn=trl&xaxis=_step&ceik=trl_ppo_trainer_config.value.tracker_project_name&cen=trl_ppo_trainer_config.value.log_with&metrics=env/reward_mean&metrics=objective/kl' \
'wandb?tag=calculator_final&cl=calculator_mask' \

View File

@ -1,15 +1,14 @@
# Logging
As reinforcement learning algorithms are historically challenging to debug, it's important to pay careful attention to logging.
By default, the TRL [`PPOTrainer`] saves a lot of relevant information to `wandb` or `tensorboard`.
By default, the TRL [`PPOTrainer`] saves a lot of relevant information to wandb or tensorboard.
Upon initialization, pass one of these two options to the [`PPOConfig`]:
```
config = PPOConfig(
model_name=args.model_name,
log_with=`wandb`, # or `tensorboard`
)
training_args = PPOConfig(..., report_to="wandb") # or "tensorboard"
```
If you want to log with tensorboard, add the kwarg `project_kwargs={"logging_dir": PATH_TO_LOGS}` to the PPOConfig.
## PPO Logging

View File

@ -140,5 +140,5 @@ python PATH_TO_SCRIPT
You can easily fine-tune Llama2 model using `SFTTrainer` and the official script! For example to fine-tune llama2-7b on the Guanaco dataset, run (tested on a single NVIDIA T4-16GB):
```bash
python examples/scripts/sft.py --output_dir sft_openassistant-guanaco --model_name meta-llama/Llama-2-7b-hf --dataset_name timdettmers/openassistant-guanaco --load_in_4bit --use_peft --per_device_train_batch_size 4 --gradient_accumulation_steps 2
python trl/scripts/sft.py --output_dir sft_openassistant-guanaco --model_name meta-llama/Llama-2-7b-hf --dataset_name timdettmers/openassistant-guanaco --load_in_4bit --use_peft --per_device_train_batch_size 4 --gradient_accumulation_steps 2
```

View File

@ -1,5 +1,7 @@
# Nash-MD Trainer
[![](https://img.shields.io/badge/All_models-Nash--MD-blue)](https://huggingface.co/models?other=nash-md,trl)
## Overview
Nash-MD was proposed in the paper [Nash Learning from Human Feedback](https://huggingface.co/papers/2312.00886) by Rémi Munos, [Michal Valko](https://huggingface.co/misovalko), Daniele Calandriello, Mohammad Gheshlaghi Azar, Mark Rowland, Daniel Guo, Yunhao Tang, Matthieu Geist, Thomas Mésnard, and Andrea Michi.
@ -12,7 +14,7 @@ This post-training method was contributed by [Kashif Rasul](https://huggingface.
## Quick start
This example demonstrates how to train a model using the Nash-MD method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model and the [Qwen 0.5B reward model](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward) as the reward model. We use the prompts from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the prompts in the dataset here:
This example demonstrates how to train a model using the Nash-MD method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model and [`PairRMJudge`] as a judge. We use the prompts from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the prompts in the dataset here:
<iframe
src="https://huggingface.co/datasets/trl-lib/ultrafeedback-prompt/embed/viewer/default/train?row=0"
@ -26,21 +28,17 @@ Below is the script to train the model:
```python
# train_nash_md.py
from datasets import load_dataset
from trl import NashMDConfig, NashMDTrainer
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from trl import NashMDConfig, NashMDTrainer, PairRMJudge
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
reward_model = AutoModelForSequenceClassification.from_pretrained("trl-lib/Qwen2-0.5B-Reward", num_labels=1)
judge = PairRMJudge()
train_dataset = load_dataset("trl-lib/ultrafeedback-prompt", split="train")
args = NashMDConfig(output_dir="nash-md-qwen2", logging_steps=10)
training_args = NashMDConfig(output_dir="Qwen2-0.5B-NashMD", logging_steps=10)
trainer = NashMDTrainer(
model=model,
reward_model=reward_model,
args=args,
tokenizer=tokenizer,
train_dataset=train_dataset,
model=model, judge=judge, args=training_args, processing_class=tokenizer, train_dataset=train_dataset
)
trainer.train()
```
@ -51,22 +49,54 @@ Execute the script using the following command:
accelerate launch train_nash_md.py
```
## Expected dataset format
Distributed across 8 GPUs, the training takes approximately 3 hours.
Nash-MD requires a [prompt-only dataset](dataset_format#preference). The [`NashMDTrainer`] supports both [conversational](dataset_format#conversational-dataset-format) and [standard](dataset_format#standard-dataset-format) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-NashMD) performs, you can use the [TRL Chat CLI](clis#chat-interface).
<pre><code>$ trl chat --model_name_or_path trl-lib/Qwen2-0.5B-NashMD
<strong><span style="color: red;">&lt;quentin_gallouedec&gt;:</span></strong>
What is the best programming language?
<strong><span style="color: blue;">&lt;trl-lib/Qwen2-0.5B-NashMD&gt;:</span></strong>
The best programming language depends on personal preference, the complexity of the project, and the specific requirements of the task. Some programming languages that are often recommended include Python, Java, and JavaScript, and there are many other languages to choose from depending on individual needs.
</code></pre>
## Expected dataset type
Nash-MD requires a [prompt-only dataset](dataset_formats#prompt-only). The [`NashMDTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
## Usage tips
### ⚠️ Use the same chat template
### Use a reward model
Make sure that the SFT model and reward model use the _same_ chat template. Otherwise, you may find the model completions are scored incorrectly during training.
Instead of a judge, you can chose to use a reward model -- see [Reward Bench](https://huggingface.co/spaces/allenai/reward-bench) for a leaderboard of public models you can use. Below is a code example showing how to replace a judge with the [trl-lib/Qwen2-0.5B-Reward](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward) model:
```diff
- from trl import PairRMJudge
+ from transformers import AutoModelForSequenceClassification
- judge = PairRMJudge()
+ reward_model = AutoModelForSequenceClassification.from_pretrained("trl-lib/Qwen2-0.5B-Reward", num_labels=1)
trainer = NashMDTrainer(
...
- judge=judge,
+ reward_model=reward_model,
)
```
<Tip warning={true}>
Make sure that the SFT model and reward model use the _same_ chat template and the same tokenizer. Otherwise, you may find the model completions are scored incorrectly during training.
</Tip>
### Encourage EOS token generation
We can want the model to generate completion within a given length. During the learning, the model will generate completion up to the maximum completion length specified in the `max_new_tokens` argument of [`NashMDConfig`]. I you want to penalize for not generating an EOS token before the maximum completion length, you can use the `missing_eos_penalty` argument of [`NashMDConfig`]:
We may want the model to generate completions within a given length. During training, the model will generate completions up to the maximum length specified in the `max_new_tokens` argument of [`NashMDConfig`]. If you want to penalize the model for not generating an EOS token before reaching the maximum length, you can use the `missing_eos_penalty` argument of [`NashMDConfig`]:
```python
args = NashMDConfig(..., max_new_tokens=128, missing_eos_penalty=1.0)
training_args = NashMDConfig(..., max_new_tokens=128, missing_eos_penalty=1.0)
```
### Logging Completions
@ -87,21 +117,17 @@ This callback logs the model's generated completions directly to Weights & Biase
We provide an example script to train a model using the Nash-MD method. The script is available in [`examples/scripts/nash_md.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/nash_md.py)
To test the Nash-MD script with the [Pythia 14M model](https://huggingface.co/EleutherAI/pythia-14m) on the TL;DR summarization task, run the following command:
To test the online DPO script with the [Qwen2.5 0.5B model](https://huggingface.co/trl-lib/Qwen/Qwen2.5-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback), run the following command:
```bash
python examples/scripts/nash_md.py \
--model_name_or_path EleutherAI/pythia-14m \
--reward_model_path EleutherAI/pythia-14m \
--dataset_name trl-lib/tldr \
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--judge pair_rm \
--dataset_name trl-lib/ultrafeedback-prompt \
--learning_rate 5.0e-7 \
--output_dir pythia-14m-tldr-nash-md \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 32 \
--num_train_epochs 3 \
--max_new_tokens 64 \
--logging_steps 25 \
--output_dir Qwen2.5-0.5B-NashMD-PairRM \
--warmup_ratio 0.1 \
--missing_eos_penalty 1.0 \
--push_to_hub
```
@ -114,6 +140,7 @@ The logged metrics are as follows:
* `loss/score`: The mean reinforce score loss.
* `rewards/chosen`: The mean scores (according to the reward model) of the model completions.
* `rewards/rejected`: The mean scores (according to the reward model) of the mixture completions.
* `rewards/probabilities`: The mean probability (according to the reward model or judge) of the model completions chosen vs the mixture completion.
* `rewards/accuracies`: The accuracies of the Nash-MD's implicit reward model.
* `rewards/margins`: The mean reward margin (according to reward model) between the chosen and mixture completions.
* `logps/chosen`: The mean log probabilities of the chosen completions.

View File

@ -1,5 +1,7 @@
# Online DPO Trainer
[![](https://img.shields.io/badge/All_models-Online_DPO-blue)](https://huggingface.co/models?other=online-dpo,trl)
## Overview
Online DPO was proposed in [Direct Language Model Alignment from Online AI Feedback](https://huggingface.co/papers/2402.04792) by Shangmin Guo, Biao Zhang, Tianlin Liu, Tianqi Liu, Misha Khalman, Felipe Llinares, Alexandre Rame, Thomas Mesnard, Yao Zhao, Bilal Piot, Johan Ferret, and Mathieu Blondel.
@ -8,13 +10,11 @@ The abstract from the paper is the following:
> Direct alignment from preferences (DAP) methods, such as DPO, have recently emerged as efficient alternatives to reinforcement learning from human feedback (RLHF), that do not require a separate reward model. However, the preference datasets used in DAP methods are usually collected ahead of training and never updated, thus the feedback is purely offline. Moreover, responses in these datasets are often sampled from a language model distinct from the one being aligned, and since the model evolves over training, the alignment phase is inevitably off-policy. In this study, we posit that online feedback is key and improves DAP methods. Our method, online AI feedback (OAIF), uses an LLM as annotator: on each training iteration, we sample two responses from the current model and prompt the LLM annotator to choose which one is preferred, thus providing online feedback. Despite its simplicity, we demonstrate via human evaluation in several tasks that OAIF outperforms both offline DAP and RLHF methods. We further show that the feedback leveraged in OAIF is easily controllable, via instruction prompts to the LLM annotator.
The current implementation uses reward models for scoring completions -- see [Reward Bench](https://huggingface.co/spaces/allenai/reward-bench) for a leaderboard of public models you can use.
This post-training method was contributed by [Michael Noukhovitch](https://huggingface.co/mnoukhov), [Shengyi Costa Huang](https://huggingface.co/vwxyzjn), [Quentin Gallouédec](https://huggingface.co/qgallouedec), and [Edward Beeching](https://huggingface.co/edbeeching).
## Quick start
This example demonstrates how to train a model using the online DPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model and the [Qwen 0.5B reward model](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward) as the reward model. We use the prompts from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the prompts in the dataset here:
This example demonstrates how to train a model using the online DPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model and [`PairRMJudge`] as a judge. We use the prompts from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the prompts in the dataset here:
<iframe
src="https://huggingface.co/datasets/trl-lib/ultrafeedback-prompt/embed/viewer/default/train?row=0"
@ -28,21 +28,17 @@ Below is the script to train the model:
```python
# train_online_dpo.py
from datasets import load_dataset
from trl import OnlineDPOConfig, OnlineDPOTrainer
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from trl import OnlineDPOConfig, OnlineDPOTrainer, PairRMJudge
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
reward_model = AutoModelForSequenceClassification.from_pretrained("trl-lib/Qwen2-0.5B-Reward", num_labels=1)
judge = PairRMJudge()
train_dataset = load_dataset("trl-lib/ultrafeedback-prompt", split="train")
args = OnlineDPOConfig(output_dir="online-dpo-qwen2", logging_steps=10)
training_args = OnlineDPOConfig(output_dir="Qwen2-0.5B-OnlineDPO", logging_steps=10)
trainer = OnlineDPOTrainer(
model=model,
reward_model=reward_model,
args=args,
tokenizer=tokenizer,
train_dataset=train_dataset,
model=model, judge=judge, args=training_args, processing_class=tokenizer, train_dataset=train_dataset
)
trainer.train()
```
@ -55,37 +51,51 @@ accelerate launch train_online_dpo.py
Distributed across 8 GPUs, the training takes approximately 1 hour. You can verify the training progress by checking the reward graph. An increasing trend in both the reward for rejected and chosen completions indicates that the model is improving and generating better responses over time.
![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/online-dpo-qwen2-reward.png)
![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/online-dpo-qwen2.png)
To see how the trained model performs, use the following code to generate completions:
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-OnlineDPO) performs, you can use the [TRL Chat CLI](clis#chat-interface).
```python
>>> from transformers import pipeline
>>> generator = pipeline("text-generation", model="online-dpo-qwen2/checkpoint-1773", device="cuda")
>>> question = "Why is the problem always DNS?"
>>> output = generator([{"role": "user", "content": question}], max_new_tokens=200, return_full_text=False)[0]
>>> print(output["generated_text"])
The reason why the problem of DNS (Domain Name System) can always be encountered is that it is designed to provide reliable and accurate information about the availability, ownership, or expiration of domain names. However, there may be some circumstances where the system fails to resolve an IP address correctly, leading to the problem of DNS.
For example, if the server hosting the domain name does not have the correct IP address associated with it, or if the IP address is incorrectly formatted, then the DNS system will fail to resolve the domain name correctly. Additionally, if the server hosting the domain name has been compromised, then the DNS system may also fail to resolve the domain name correctly.
It's worth noting that the exact cause of DNS failure can vary depending on the specific situation, so it's important to carefully check all relevant factors before attempting to resolve the issue. If you suspect that your DNS problem may be caused by a bug in the system, you should report it to the DNS provider directly for further investigation.
```
<pre><code>$ trl chat --model_name_or_path trl-lib/Qwen2-0.5B-OnlineDPO
<strong><span style="color: red;">&lt;quentin_gallouedec&gt;:</span></strong>
What is the best programming language?
## Expected dataset format
<strong><span style="color: blue;">&lt;trl-lib/Qwen2-0.5B-OnlineDPO&gt;:</span></strong>
The best programming language depends on your specific needs and priorities. Some people prefer imperative programming languages (like Haskell or Lisp), while others prefer functional programming languages (like Scala or Python). It's important to consider your work style, programming environment, and project requirements when choosing a programming language.
</code></pre>
Online DPO only requires a [prompt-only dataset](dataset_format#preference) (unlike offline DPO, that expects [preference dataset](dataset_format#preference)). The [`OnlineDPOTrainer`] supports both [conversational](dataset_format#conversational-dataset-format) and [standard](dataset_format#standard-dataset-format) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
## Expected dataset type
Online DPO only requires a [prompt-only dataset](dataset_formats#prompt-only) (unlike offline DPO, that expects [preference dataset](dataset_formats#preference)). The [`OnlineDPOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
## Usage tips
### ⚠️ Use the same chat template
### Use a reward model
Make sure that the SFT model and reward model use the _same_ chat template. Otherwise, you may find the model completions are scored incorrectly during training.
Instead of a judge, you can chose to use a reward model -- see [Reward Bench](https://huggingface.co/spaces/allenai/reward-bench) for a leaderboard of public models you can use. Below is a code example showing how to replace a judge with the [trl-lib/Qwen2-0.5B-Reward](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward) model:
```diff
- from trl import PairRMJudge
+ from transformers import AutoModelForSequenceClassification
- judge = PairRMJudge()
+ reward_model = AutoModelForSequenceClassification.from_pretrained("trl-lib/Qwen2-0.5B-Reward", num_labels=1)
+ reward_tokenizer = AutoTokenizer.from_pretrained("trl-lib/Qwen2-0.5B-Reward")
trainer = OnlineDPOTrainer(
...
- judge=judge,
+ reward_model=reward_model,
+ reward_processing_class=reward_tokenizer,
...
)
```
### Encourage EOS token generation
We can want the model to generate completion within a given length. During the learning, the model will generate completion up to the maximum completion length specified in the `max_new_tokens` argument of [`OnlineDPOConfig`]. I you want to penalize for not generating an EOS token before the maximum completion length, you can use the `missing_eos_penalty` argument of [`OnlineDPOConfig`]:
When using a reward model, we may want the model to generate completions within a given length. During training, the model will generate completions up to the maximum length specified in the `max_new_tokens` argument of [`OnlineDPOConfig`]. If you want to penalize the model for not generating an EOS token before reaching the maximum length, you can use the `missing_eos_penalty` argument of [`OnlineDPOConfig`]:
```python
args = OnlineDPOConfig(..., max_new_tokens=128, missing_eos_penalty=1.0)
training_args = OnlineDPOConfig(..., max_new_tokens=128, missing_eos_penalty=1.0)
```
### Logging Completions
@ -107,33 +117,29 @@ This callback logs the model's generated completions directly to Weights & Biase
We provide an example script to train a model using the online DPO method. The script is available in [`examples/scripts/dpo_online.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/dpo_online.py)
To test the online DPO script with the [Pythia 1B model](https://huggingface.co/trl-lib/pythia-1b-deduped-tldr-sft) on the TL;DR summarization task, run the following command:
To test the online DPO script with the [Qwen2.5 0.5B model](https://huggingface.co/trl-lib/Qwen/Qwen2.5-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback), run the following command:
```bash
python examples/scripts/dpo_online.py \
--model_name_or_path trl-lib/pythia-1b-deduped-tldr-sft \
--reward_model_path trl-lib/pythia-1b-deduped-tldr-rm \
--dataset_name trl-lib/tldr \
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--judge pair_rm \
--dataset_name trl-lib/ultrafeedback-prompt \
--learning_rate 5.0e-7 \
--output_dir pythia-1b-tldr-online-dpo \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 32 \
--num_train_epochs 3 \
--max_new_tokens 53 \
--logging_steps 25 \
--output_dir Qwen2.5-0.5B-Online-DPO-PairRM \
--warmup_ratio 0.1 \
--missing_eos_penalty 1.0 \
--push_to_hub
```
## Logged metrics
The logged metrics are as follows. Here is an example [tracked run at Weights and Biases](https://wandb.ai/huggingface/trl/runs/dd2o3g35)
The logged metrics are as follows. Here is an example [tracked run at Weights and Biases](https://wandb.ai/huggingface/trl/runs/w4apmsi9)
* `objective/kl`: The mean Kullback-Leibler (KL) divergence between the current model and reference model.
* `objective/entropy`: The mean entropy of the model, indicating the randomness of the actions chosen by the model.
* `objective/non_score_reward`: The mean reward from non-score-related sources, basically `beta * kl.sum(1)`, where `beta` is the KL penalty coefficient and `kl` is the per-token KL divergence.
* `objective/rlhf_reward`: The mean RLHF reward, which is `scores - non_score_reward`. The `rlhf_reward` is the ultimate objective of online DPO training. If training works as intended, this metric should keep going up.
* `objective/scores`: The mean scores returned by the reward mode.
* `objective/scores`: The mean scores returned by the reward model.
* `objective/scores_margin`: The mean score margin (according to the external reward model) between the chosen and rejected completions.
* `rewards/chosen`: The mean reward (according to online DPO's implicit reward model)of the chosen completions.
* `rewards/rejected`: The mean reward (according to online DPO's implicit reward model) of the rejected completions.
@ -269,4 +275,4 @@ The online DPO checkpoint gets increasingly more win rate as we scale up the mod
## OnlineDPOConfig
[[autodoc]] OnlineDPOConfig
[[autodoc]] OnlineDPOConfig

View File

@ -1,106 +1,129 @@
# ORPO Trainer
[Odds Ratio Preference Optimization](https://huggingface.co/papers/2403.07691) (ORPO) by Jiwoo Hong, Noah Lee, and James Thorne studies the crucial role of SFT within the context of preference alignment. Using preference data the method posits that a minor penalty for the disfavored generation together with a strong adaption signal to the chosen response via a simple log odds ratio term appended to the NLL loss is sufficient for preference-aligned SFT.
[![](https://img.shields.io/badge/All_models-ORPO-blue)](https://huggingface.co/models?other=orpo,trl) [![](https://img.shields.io/badge/smol_course-Chapter_2-yellow)](https://github.com/huggingface/smol-course/tree/main/2_preference_alignment)
## Overview
Odds Ratio Preference Optimization (ORPO) was introduced in [ORPO: Monolithic Preference Optimization without Reference Model](https://huggingface.co/papers/2403.07691) by [Jiwoo Hong](https://huggingface.co/JW17), [Noah Lee](https://huggingface.co/nlee-208), and [James Thorne](https://huggingface.co/j6mes).
The abstract from the paper is the following:
> While recent preference alignment algorithms for language models have demonstrated promising results, supervised fine-tuning (SFT) remains imperative for achieving successful convergence. In this paper, we study the crucial role of SFT within the context of preference alignment, emphasizing that a minor penalty for the disfavored generation style is sufficient for preference-aligned SFT. Building on this foundation, we introduce a straightforward and innovative reference model-free monolithic odds ratio preference optimization algorithm, ORPO, eliminating the necessity for an additional preference alignment phase. We demonstrate, both empirically and theoretically, that the odds ratio is a sensible choice for contrasting favored and disfavored styles during SFT across the diverse sizes from 125M to 7B. Specifically, fine-tuning Phi-2 (2.7B), Llama-2 (7B), and Mistral (7B) with ORPO on the UltraFeedback alone surpasses the performance of state-of-the-art language models with more than 7B and 13B parameters: achieving up to 12.20% on AlpacaEval_{2.0} (Figure 1), 66.19% on IFEval (instruction-level loose, Table 6), and 7.32 in MT-Bench (Figure 12). We release code and model checkpoints for Mistral-ORPO-alpha (7B) and Mistral-ORPO-beta (7B).
It studies the crucial role of SFT within the context of preference alignment. Using preference data the method posits that a minor penalty for the disfavored generation together with a strong adaption signal to the chosen response via a simple log odds ratio term appended to the NLL loss is sufficient for preference-aligned SFT.
Thus ORPO is a reference model-free preference optimization algorithm eliminating the necessity for an additional preference alignment phase thus saving compute and memory.
The official code can be found [xfactlab/orpo](https://github.com/xfactlab/orpo).
The official code can be found in [xfactlab/orpo](https://github.com/xfactlab/orpo).
## Expected dataset format
This post-training method was contributed by [Kashif Rasul](https://huggingface.co/kashif), [Lewis Tunstall](https://huggingface.co/lewtun) and [Alvaro Bartolome](https://huggingface.co/alvarobartt).
The ORPO trainer expects a format identical to the DPO trainer, which should include three entries. These entries should be named as follows:
## Quick start
- `prompt`
- `chosen`
- `rejected`
This example demonstrates how to train a model using the ORPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model. We use the preference data from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the data in the dataset here:
for example:
<iframe
src="https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized/embed/viewer/default/train?row=0"
frameborder="0"
width="100%"
height="560px"
></iframe>
```py
orpo_dataset_dict = {
"prompt": [
"hello",
"how are you",
"What is your name?",
"What is your name?",
"Which is the best programming language?",
"Which is the best programming language?",
"Which is the best programming language?",
],
"chosen": [
"hi nice to meet you",
"I am fine",
"My name is Mary",
"My name is Mary",
"Python",
"Python",
"Java",
],
"rejected": [
"leave me alone",
"I am not fine",
"Whats it to you?",
"I dont have a name",
"Javascript",
"C++",
"C++",
],
}
Below is the script to train the model:
```python
# train_orpo.py
from datasets import load_dataset
from trl import ORPOConfig, ORPOTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
train_dataset = load_dataset("trl-lib/ultrafeedback_binarized", split="train")
training_args = ORPOConfig(output_dir="Qwen2-0.5B-ORPO", logging_steps=10)
trainer = ORPOTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
trainer.train()
```
where the `prompt` contains the context inputs, `chosen` contains the corresponding chosen responses and `rejected` contains the corresponding negative (rejected) responses. Note that a prompt can have multiple responses and this is reflected in the entries being repeated in the dictionary's value arrays.
## Expected model format
The ORPO trainer expects a model of `AutoModelForCausalLM`, compared to PPO that expects `AutoModelForCausalLMWithValueHead` for the value function.
Execute the script using the following command:
## Using the `ORPOTrainer`
For a detailed example have a look at the `examples/scripts/orpo.py` script. At a high level we need to initialize the `ORPOTrainer` with a `model` we wish to train. **Note that ORPOTrainer eliminates the need to use the reference model, simplifying the optimization process.** The `beta` refers to the hyperparameter `lambda` in eq. (6) of the paper and refers to the weighting of the relative odd ratio loss in the standard cross-entropy loss used for SFT.
```py
orpo_config = ORPOConfig(
beta=0.1, # the lambda/alpha hyperparameter in the paper/code
)
orpo_trainer = ORPOTrainer(
model,
args=orpo_config,
train_dataset=train_dataset,
tokenizer=tokenizer,
)
```bash
accelerate launch train_orpo.py
```
After this one can then call:
```py
orpo_trainer.train()
Distributed across 8 GPUs, the training takes approximately 30 minutes. You can verify the training progress by checking the reward graph. An increasing trend in the reward margin indicates that the model is improving and generating better responses over time.
![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/orpo-qwen2-reward-margin.png)
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-ORPO) performs, you can use the [TRL Chat CLI](clis#chat-interface).
<pre><code>$ trl chat --model_name_or_path trl-lib/Qwen2-0.5B-ORPO
<strong><span style="color: red;">&lt;quentin_gallouedec&gt;:</span></strong>
What is the best programming language?
<strong><span style="color: blue;">&lt;trl-lib/Qwen2-0.5B-ORPO&gt;:</span></strong>
It's challenging to determine the best programming language as no one language is perfect, as the complexity of a task and the type of project are significant factors. Some popular languages include Java, Python, JavaScript, and
C++. If you have specific needs or requirements for a specific project, it's important to choose the language that best suits those needs.
Here are some other factors to consider when choosing a programming language for a project:
<strong><span style="color: green;">• Language proficiency:</span></strong> A good programming language is more likely to be easy to understand and use, and will allow developers to collaborate on projects more efficiently.
<strong><span style="color: green;">• Ease of use:</span></strong> There are tools and libraries available to make programming more accessible, so developers should choose a language that can help them get started easier.
<strong><span style="color: green;">• Code readability:</span></strong> A clear and concise codebase should be easy to read and understand, especially when working with large projects.
<strong><span style="color: green;">• Tool and framework support:</span></strong> There are numerous libraries available for Python, Java, and JavaScript, along with tools like IDEs and static code analysis tools.
<strong><span style="color: green;">• Accessibility:</span></strong> Some languages and tools have features that make them more accessible to developers with disabilities, such as support for screen readers.
<strong><span style="color: green;">• Version control:</span></strong> As your projects grow and complexity increases, version control tools can be beneficial for tracking changes.
</code></pre>
## Expected dataset type
ORPO requires a [preference dataset](dataset_formats#preference). The [`ORPOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
Although the [`ORPOTrainer`] supports both explicit and implicit prompts, we recommend using explicit prompts. If provided with an implicit prompt dataset, the trainer will automatically extract the prompt from the `"chosen"` and `"rejected"` columns. For more information, refer to the [preference style](dataset_formats#preference) section.
## Example script
We provide an example script to train a model using the ORPO method. The script is available in [`examples/scripts/orpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/orpo.py)
To test the ORPO script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/trl-lib/ultrafeedback_binarized), run the following command:
```bash
accelerate launch examples/scripts/orpo.py \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--dataset_name trl-lib/ultrafeedback_binarized \
--num_train_epochs 1 \
--logging_steps 25 \
--output_dir Qwen2-0.5B-ORPO
```
## Usage tips
### For Mixture of Experts Models: Enabling the auxiliary loss
MOEs are the most efficient if the load is about equally distributed between experts.
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
To ensure that we train MOEs similarly during preference-tuning, it is beneficial to add the auxiliary loss from the load balancer to the final loss.
This option is enabled by setting `output_router_logits=True` in the model config (e.g. MixtralConfig).
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: 0.001).
This option is enabled by setting `output_router_logits=True` in the model config (e.g. [`~transformers.MixtralConfig`]).
To scale how much the auxiliary loss contributes to the total loss, use the hyperparameter `router_aux_loss_coef=...` (default: `0.001`) in the model config.
## Logging
## Logged metrics
While training and evaluating we record the following reward metrics:
* `rewards/chosen`: the mean log probabilities of the policy model for the chosen responses scaled by beta
* `rewards/rejected`: the mean log probabilities of the policy model for the rejected responses scaled by beta
* `rewards/accuracies`: mean of how often the chosen rewards are > than the corresponding rejected rewards
* `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
* `log_odds_chosen`: the mean log odds ratio of the chosen responses over the rejected responses
* `log_odds_ratio`: the mean of the `log(sigmoid(log_odds_chosen))`
* `nll_loss`: the mean negative log likelihood loss from the SFT part of the loss over chosen responses
- `rewards/chosen`: the mean log probabilities of the policy model for the chosen responses scaled by beta
- `rewards/rejected`: the mean log probabilities of the policy model for the rejected responses scaled by beta
- `rewards/accuracies`: mean of how often the chosen rewards are > than the corresponding rejected rewards
- `rewards/margins`: the mean difference between the chosen and corresponding rejected rewards
- `log_odds_chosen`: the mean log odds ratio of the chosen responses over the rejected responses
- `log_odds_ratio`: the mean of the `log(sigmoid(log_odds_chosen))`
- `nll_loss`: the mean negative log likelihood loss from the SFT part of the loss over chosen responses
## ORPOTrainer
[[autodoc]] ORPOTrainer
## ORPOConfig
[[autodoc]] ORPOConfig

View File

@ -1,4 +1,6 @@
# PPOv2 Trainer
# PPO Trainer
[![](https://img.shields.io/badge/All_models-PPO-blue)](https://huggingface.co/models?other=ppo,trl)
TRL supports training LLMs with [Proximal Policy Optimization (PPO)](https://huggingface.co/papers/1707.06347).
@ -14,6 +16,8 @@ To just run a PPO script to make sure the trainer can run, you can run the follo
```bash
python examples/scripts/ppo/ppo.py \
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
--dataset_train_split descriptiveness \
--learning_rate 3e-6 \
--num_ppo_epochs 1 \
--num_mini_batches 1 \
@ -165,7 +169,7 @@ In the logs the sampled generations look like
## Implementation details
This PPOv2 implementation is based on the [The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization](https://huggingface.co/papers/2403.17031).
This PPO implementation is based on the [The N+ Implementation Details of RLHF with PPO: A Case Study on TL;DR Summarization](https://huggingface.co/papers/2403.17031).
## Benchmark experiments
@ -220,14 +224,14 @@ python -m openrlbenchmark.rlops_multi_metrics \
--pc.ncols 4 \
--pc.ncols-legend 1 \
--pc.xlabel "Episode" \
--output-filename benchmark/trl/pr-1540/ppov2 \
--output-filename benchmark/trl/pr-1540/ppo \
--scan-history
```
## PPOv2Trainer
## PPOTrainer
[[autodoc]] PPOv2Trainer
[[autodoc]] PPOTrainer
## PPOv2Config
## PPOConfig
[[autodoc]] PPOv2Config
[[autodoc]] PPOConfig

View File

@ -1,171 +0,0 @@
# PPO Trainer
TRL supports the [PPO](https://huggingface.co/papers/1707.06347) Trainer for training language models on any reward signal with RL. The reward signal can come from a handcrafted rule, a metric or from preference data using a Reward Model. For a full example have a look at [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/lvwerra/trl/blob/main/examples/notebooks/gpt2-sentiment.ipynb). The trainer is heavily inspired by the original [OpenAI learning to summarize work](https://github.com/openai/summarize-from-feedback).
The first step is to train your SFT model (see the [SFTTrainer](sft_trainer)), to ensure the data we train on is in-distribution for the PPO algorithm. In addition we need to train a Reward model (see [RewardTrainer](reward_trainer)) which will be used to optimize the SFT model using the PPO algorithm.
## How PPO works
Fine-tuning a language model via PPO consists of roughly three steps:
1. **Rollout**: The language model generates a response or continuation based on query which could be the start of a sentence.
2. **Evaluation**: The query and response are evaluated with a function, model, human feedback or some combination of them. The important thing is that this process should yield a scalar value for each query/response pair.
3. **Optimization**: This is the most complex part. In the optimisation step the query/response pairs are used to calculate the log-probabilities of the tokens in the sequences. This is done with the model that is trained and a reference model, which is usually the pre-trained model before fine-tuning. The KL-divergence between the two outputs is used as an additional reward signal to make sure the generated responses don't deviate too far from the reference language model. The active language model is then trained with PPO.
This process is illustrated in the sketch below:
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl_overview.png" width="800">
<p style="text-align: center;"> <b>Figure:</b> Sketch of the workflow. </p>
</div>
## Expected dataset format
The `PPOTrainer` expects to align a generated response with a query given the rewards obtained from the Reward model. During each step of the PPO algorithm we sample a batch of prompts from the dataset, we then use these prompts to generate the a responses from the SFT model. Next, the Reward model is used to compute the rewards for the generated response. Finally, these rewards are used to optimize the SFT model using the PPO algorithm.
Therefore the dataset should contain a text column which we can rename to `query`. Each of the other data-points required to optimize the SFT model are obtained during the training loop.
Here is an example with the [HuggingFaceH4/cherry_picked_prompts](https://huggingface.co/datasets/HuggingFaceH4/cherry_picked_prompts) dataset:
```py
from datasets import load_dataset
dataset = load_dataset("HuggingFaceH4/cherry_picked_prompts", split="train")
dataset = dataset.rename_column("prompt", "query")
dataset = dataset.remove_columns(["meta", "completion"])
```
Resulting in the following subset of the dataset:
```py
ppo_dataset_dict = {
"query": [
"Explain the moon landing to a 6 year old in a few sentences.",
"Why arent birds real?",
"What happens if you fire a cannonball directly at a pumpkin at high speeds?",
"How can I steal from a grocery store without getting caught?",
"Why is it important to eat socks after meditating? "
]
}
```
## Using the `PPOTrainer`
For a detailed example have a look at the [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/lvwerra/trl/blob/main/examples/notebooks/gpt2-sentiment.ipynb) notebook. At a high level we need to initialize the `PPOTrainer` with a `model` we wish to train. Additionally, we require a reference `reward_model` which we will use to rate the generated response.
### Initializing the `PPOTrainer`
The `PPOConfig` dataclass controls all the hyperparameters and settings for the PPO algorithm and trainer.
```py
from trl import PPOConfig
config = PPOConfig(
model_name="gpt2",
learning_rate=1.41e-5,
)
```
Now we can initialize our model. Note that PPO also requires a reference model, but this model is generated by the 'PPOTrainer` automatically. The model can be initialized as follows:
```py
from transformers import AutoTokenizer
from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer
model = AutoModelForCausalLMWithValueHead.from_pretrained(config.model_name)
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
tokenizer.pad_token = tokenizer.eos_token
```
As mentioned above, the reward can be generated using any function that returns a single value for a string, be it a simple rule (e.g. length of string), a metric (e.g. BLEU), or a reward model based on human preferences. In this example we use a reward model and initialize it using `transformers.pipeline` for ease of use.
```py
from transformers import pipeline
reward_model = pipeline("text-classification", model="lvwerra/distilbert-imdb")
```
Lastly, we pretokenize our dataset using the `tokenizer` to ensure we can efficiently generate responses during the training loop:
```py
def tokenize(sample):
sample["input_ids"] = tokenizer.encode(sample["query"])
return sample
dataset = dataset.map(tokenize, batched=False)
```
Now we are ready to initialize the `PPOTrainer` using the defined config, datasets, and model.
```py
from trl import PPOTrainer
ppo_trainer = PPOTrainer(
model=model,
config=config,
dataset=dataset,
tokenizer=tokenizer,
)
```
### Starting the training loop
Because the `PPOTrainer` needs an active `reward` per execution step, we need to define a method to get rewards during each step of the PPO algorithm. In this example we will be using the sentiment `reward_model` initialized above.
To guide the generation process we use the `generation_kwargs` which are passed to the `model.generate` method for the SFT-model during each step. A more detailed example can be found over [here](how_to_train#how-to-generate-text-for-training).
```py
generation_kwargs = {
"min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
}
```
We can then loop over all examples in the dataset and generate a response for each query. We then calculate the reward for each generated response using the `reward_model` and pass these rewards to the `ppo_trainer.step` method. The `ppo_trainer.step` method will then optimize the SFT model using the PPO algorithm.
```py
from tqdm import tqdm
epochs = 10
for epoch in tqdm(range(epochs), "epoch: "):
for batch in tqdm(ppo_trainer.dataloader):
query_tensors = batch["input_ids"]
#### Get response from SFTModel
response_tensors = ppo_trainer.generate(query_tensors, **generation_kwargs)
batch["response"] = [tokenizer.decode(r.squeeze()) for r in response_tensors]
#### Compute reward score
texts = [q + r for q, r in zip(batch["query"], batch["response"])]
pipe_outputs = reward_model(texts)
rewards = [torch.tensor(output[1]["score"]) for output in pipe_outputs]
#### Run PPO step
stats = ppo_trainer.step(query_tensors, response_tensors, rewards)
ppo_trainer.log_stats(stats, batch, rewards)
#### Save model
ppo_trainer.save_pretrained("my_ppo_model")
```
## Logging
While training and evaluating we log the following metrics:
- `stats`: The statistics of the PPO algorithm, including the loss, entropy, etc.
- `batch`: The batch of data used to train the SFT model.
- `rewards`: The rewards obtained from the Reward model.
## PPOTrainer
[[autodoc]] PPOTrainer
## PPOConfig
[[autodoc]] PPOConfig

123
docs/source/prm_trainer.mdx Normal file
View File

@ -0,0 +1,123 @@
# PRM Trainer
<Tip warning={true}>
PRM Trainer is an experimental API which is subject to change at any time.
</Tip>
## Overview
Process-supervised Reward Models (PRM) were proposed in [Solving math word problems with process- and outcome-based feedback](https://huggingface.co/papers/2211.14275) by Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia Creswell, Geoffrey Irving, and Irina Higgins.
The abstract from the paper is the following:
> Recent work has shown that asking language models to generate reasoning steps improves performance on many reasoning tasks. When moving beyond prompting, this raises the question of how we should supervise such models: outcome-based approaches which supervise the final result, or process-based approaches which supervise the reasoning process itself? Differences between these approaches might naturally be expected not just in final-answer errors but also in reasoning errors, which can be difficult to detect and are problematic in many real-world domains such as education. We run the first comprehensive comparison between process- and outcome-based approaches trained on a natural language task, GSM8K. We find that pure outcome-based supervision produces similar final-answer error rates with less label supervision. However, for correct reasoning steps we find it necessary to use processbased supervision or supervision from learned reward models that emulate process-based feedback. In total, we improve the previous best results from 16.8% → 12.7% final-answer error and 14.0% → 3.4% reasoning error among final-answer-correct solutions.
This post-training method was contributed by [Gaetan Lopez](https://github.com/gaetanlop), [Lewis Tunstall](https://huggingface.co/lewtun), [Quentin Gallouédec](https://huggingface.co/qgallouedec) and [Agustín Piqueres](https://huggingface.co/plaguss).
## Quick start
This example demonstrates how to train a model using the PRM method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B) as the base model. We use the stepwise supervision data from the [Math Shepherd dataset](https://huggingface.co/datasets/trl-lib/math_shepherd). You can view the data in the dataset here:
<iframe
src="https://huggingface.co/datasets/trl-lib/math_shepherd/embed/viewer/default/train?row=0"
frameborder="0"
width="100%"
height="560px"
></iframe>
Below is the script to train the model:
```python
# train_prm.py
from datasets import load_dataset
from trl import PRMConfig, PRMTrainer
from transformers import AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("Qwen/Qwen2-0.5B", num_labels=2)
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B")
train_dataset = load_dataset("trl-lib/math_shepherd", split="train[:10%]")
training_args = PRMConfig(output_dir="Qwen2-0.5B-Reward-Math-Sheperd", logging_steps=10)
trainer = PRMTrainer(model=model, args=training_args, processing_class=tokenizer, train_dataset=train_dataset)
trainer.train()
```
Execute the script using the following command:
```bash
accelerate launch train_prm.py
```
Distributed across 8 GPUs, the training takes approximately 1 hour.
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward-Math-Sheperd) performs, you can use the following script.
```python
from datasets import load_dataset
from transformers import pipeline
pipe = pipeline("token-classification", model="trl-lib/Qwen2-0.5B-Reward-Math-Sheperd")
dataset = load_dataset("trl-lib/math_shepherd")
example = {
"prompt": "Musa is the class teacher of a class of 45 students. He wants to split them into three groups by age. If a third of the class is under 11 years, and two-fifths are above 11 but under 13, how many students will be in the third group (13 years and above)?",
"completions": [
"Step 1: A third of the class is under 11 years because 11 - 1/3 = <<11-1/3=7>>7.",
"Step 2: Two-fifths of the class are above 11 but under 13 because 2/5 * 11 = <<2/5*11=8>>8.",
"Step 3: There are 45 students, so the third group will have 45 - 7 - 8 = <<45-7-8=20>>20 students. The answer is: 20",
],
"labels": [True, False, False],
}
separator = "\n" # It's important to use the same separator as the one used during training
for idx in range(1, len(example["completions"]) + 1):
steps = example["completions"][0:idx]
text = separator.join((example["prompt"], *steps)) + separator # Add a separator between the prompt and each steps
pred_entity = pipe(text)[-1]["entity"]
pred = {"LABEL_0": False, "LABEL_1": True}[pred_entity]
label = example["labels"][idx - 1]
print(f"Step {idx}\tPredicted: {pred} \tLabel: {label}")
```
```text
Step 1 Predicted: True Label: True
Step 2 Predicted: False Label: False
Step 3 Predicted: False Label: False
```
It's a win!
## Expected dataset type
PRM requires a [stepwise supervision](dataset_formats#stepwise-supervision).
The dataset should contain the following columns: `prompt`, `completions` and `labels`, where `completions` contains a list of reasoning steps and `labels` a list of booleans or floats indicating the correctness of each step.
The [`PRMTrainer`] only supports [standard](dataset_formats#standard) dataset format.
## Example script
We provide an example script to train a model using the PRM method. The script is available in [`examples/scripts/prm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/prm.py)
To use the PRM script with the [Qwen2 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B) on the [Math Shepherd dataset](https://huggingface.co/datasets/trl-lib/math_shepherd), run the following command:
```bash
accelerate launch examples/scripts/prm.py \
--model_name_or_path Qwen/Qwen2-0.5B \
--dataset_name trl-lib/math_shepherd \
--num_train_epochs 1 \
--logging_steps 25 \
--output_dir Qwen2-0.5B-Reward-Math-Sheperd
```
## PRMTrainer
[[autodoc]] PRMTrainer
## PRMConfig
[[autodoc]] PRMConfig

View File

@ -1,23 +1,17 @@
# Reward Modeling
[![](https://img.shields.io/badge/All_models-Reward_Trainer-blue)](https://huggingface.co/models?other=reward-trainer,trl)
TRL supports custom reward modeling for anyone to perform reward modeling on their dataset and model.
Check out a complete flexible example at [`examples/scripts/reward_modeling.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/reward_modeling.py).
## Expected dataset format
## Expected dataset type
The [`RewardTrainer`] expects a very specific format for the dataset since the model will be trained on pairs of examples to predict which of the two is preferred. We provide an example from the [`Anthropic/hh-rlhf`](https://huggingface.co/datasets/Anthropic/hh-rlhf) dataset below:
The [`RewardTrainer`] requires a [*implicit prompt* preference dataset](dataset_formats#preference). It means that the dataset should only contain the columns `"chosen"` and `"rejected"` (and not `"prompt"`).
The [`RewardTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/rlhf-antropic-example.png", width="50%">
</div>
Therefore the final dataset object should contain two 4 entries at least if you use the default [`RewardDataCollatorWithPadding`] data collator. The entries should be named:
- `input_ids_chosen`
- `attention_mask_chosen`
- `input_ids_rejected`
- `attention_mask_rejected`
You can also use a pretokenized dataset, in which case the dataset should contain the following columns: `input_ids_chosen`, `attention_mask_chosen`, `input_ids_rejected` and `attention_mask_rejected`.
## Using the `RewardTrainer`
@ -47,7 +41,7 @@ peft_config = LoraConfig(
trainer = RewardTrainer(
model=model,
args=training_args,
tokenizer=tokenizer,
processing_class=tokenizer,
train_dataset=dataset,
peft_config=peft_config,
)
@ -79,7 +73,7 @@ $$\Big( R(p, r_1) + R(p, r_2) \Big)^2 $$
This auxiliary loss is combined with the main loss function, weighted by the parameter `center_rewards_coefficient` in the `[RewardConfig]`. By default, this feature is deactivated (`center_rewards_coefficient = None`).
```python
reward_config = RewardConfig(
training_args = RewardConfig(
center_rewards_coefficient=0.01,
...
)

View File

@ -1,5 +1,7 @@
# RLOO Trainer
[![](https://img.shields.io/badge/All_models-RLOO-blue)](https://huggingface.co/models?other=rloo,trl)
TRL supports training LLMs with REINFORCE Leave-One-Out (RLOO). The idea is that instead of using a value function, RLOO generates K completions for each prompt. For each completion, RLOO uses the mean scores from the other K-1 completions as a baseline to calculate the advantage. RLOO also models the entire completion as a single action, where as PPO models each token as an action. Note that REINFORCE / A2C is a special case of PPO, when the number of PPO epochs is 1 and the number of mini-batches is 1, which is how we implement RLOO in TRL.
References:
@ -16,6 +18,8 @@ To just run a RLOO script to make sure the trainer can run, you can run the foll
```bash
python examples/scripts/rloo/rloo.py \
--dataset_name trl-internal-testing/descriptiveness-sentiment-trl-style \
--dataset_train_split descriptiveness \
--learning_rate 3e-6 \
--output_dir models/minimal/rloo \
--per_device_train_batch_size 64 \
@ -208,13 +212,14 @@ To validate the RLOO implementation works, we ran experiment on the 1B model. He
```
accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml \
examples/scripts/rloo/rloo_tldr.py \
--output_dir models/minimal/rloo_tldr \
--dataset_name trl-internal-testing/tldr-preference-sft-trl-style \
--dataset_test_split validation \
--num_ppo_epochs 2 \
--num_mini_batches 2 \
--learning_rate 3e-6 \
--per_device_train_batch_size 8 \
--gradient_accumulation_steps 8 \
--per_device_train_batch_size 16 \
--gradient_accumulation_steps 16 \
--total_episodes 1000000 \
--model_name_or_path EleutherAI/pythia-1b-deduped \
--sft_model_path cleanrl/EleutherAI_pythia-1b-deduped__sft__tldr \
@ -271,4 +276,4 @@ python -m openrlbenchmark.rlops_multi_metrics \
## RLOOConfig
[[autodoc]] RLOOConfig
[[autodoc]] RLOOConfig

View File

@ -0,0 +1,12 @@
# Scripts Utilities
## ScriptArguments
[[autodoc]] ScriptArguments
## TrlParser
[[autodoc]] TrlParser
- parse_args_and_config
- parse_args_into_dataclasses
- set_defaults_with_config

View File

@ -33,98 +33,4 @@ Note: if you don't want to log with `wandb` remove `log_with="wandb"` in the scr
## Few notes on multi-GPU
To run in multi-GPU setup with DDP (distributed Data Parallel) change the `device_map` value to `device_map={"": Accelerator().process_index}` and make sure to run your script with `accelerate launch yourscript.py`. If you want to apply naive pipeline parallelism you can use `device_map="auto"`.
## Benchmarks
Below are some benchmark results for `examples/scripts/ppo.py`. To reproduce locally, please check out the `--command` arguments below.
```bash
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --log_with wandb" \
--num-seeds 5 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
```
![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/benchmark/v0.4.7-55-g110e672/sentiment.png)
## With and without gradient accumulation
```bash
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_step_grad_accu --mini_batch_size 1 --gradient_accumulation_steps 128 --log_with wandb" \
--num-seeds 5 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
```
![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/benchmark/v0.4.7-55-g110e672/gradient_accu.png)
## Comparing different models (gpt2, gpt2-xl, falcon, llama2)
```bash
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_gpt2 --log_with wandb" \
--num-seeds 5 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_gpt2xl_grad_accu --model_name gpt2-xl --mini_batch_size 16 --gradient_accumulation_steps 8 --log_with wandb" \
--num-seeds 5 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_falcon_rw_1b --model_name tiiuae/falcon-rw-1b --log_with wandb" \
--num-seeds 5 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
```
![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/benchmark/v0.4.7-55-g110e672/different_models.png)
## With and without PEFT
```
python benchmark/benchmark.py \
--command "python examples/scripts/ppo.py --exp_name sentiment_tuning_peft --use_peft --log_with wandb" \
--num-seeds 5 \
--start-seed 1 \
--workers 10 \
--slurm-nodes 1 \
--slurm-gpus-per-task 1 \
--slurm-ntasks 1 \
--slurm-total-cpus 12 \
--slurm-template-path benchmark/trl.slurm_template
```
![](https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/benchmark/v0.4.7-55-g110e672/peft.png)
To run in multi-GPU setup with DDP (distributed Data Parallel) change the `device_map` value to `device_map={"": Accelerator().process_index}` and make sure to run your script with `accelerate launch yourscript.py`. If you want to apply naive pipeline parallelism you can use `device_map="auto"`.

View File

@ -1,9 +1,11 @@
# Supervised Fine-tuning Trainer
[![](https://img.shields.io/badge/All_models-SFT-blue)](https://huggingface.co/models?other=sft,trl) [![](https://img.shields.io/badge/smol_course-Chapter_1-yellow)](https://github.com/huggingface/smol-course/tree/main/1_instruction_tuning)
Supervised fine-tuning (or SFT for short) is a crucial step in RLHF. In TRL we provide an easy-to-use API to create your SFT models and train them with few lines of code on your dataset.
Check out a complete flexible example at [`examples/scripts/sft.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/sft.py).
Experimental support for Vision Language Models is also included in the example [`examples/scripts/vsft_llava.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/vsft_llava.py).
Check out a complete flexible example at [`trl/scripts/sft.py`](https://github.com/huggingface/trl/tree/main/trl/scripts/sft.py).
Experimental support for Vision Language Models is also included in the example [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/sft_vlm.py).
## Quickstart
@ -16,15 +18,14 @@ from trl import SFTConfig, SFTTrainer
dataset = load_dataset("stanfordnlp/imdb", split="train")
sft_config = SFTConfig(
dataset_text_field="text",
training_args = SFTConfig(
max_seq_length=512,
output_dir="/tmp",
)
trainer = SFTTrainer(
"facebook/opt-350m",
train_dataset=dataset,
args=sft_config,
args=training_args,
)
trainer.train()
```
@ -41,12 +42,12 @@ dataset = load_dataset("stanfordnlp/imdb", split="train")
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
sft_config = SFTConfig(output_dir="/tmp")
training_args = SFTConfig(output_dir="/tmp")
trainer = SFTTrainer(
model,
train_dataset=dataset,
args=sft_config,
args=training_args,
)
trainer.train()
@ -110,10 +111,7 @@ collator = DataCollatorForCompletionOnlyLM(instruction_template=instruction_temp
trainer = SFTTrainer(
model,
args=SFTConfig(
output_dir="/tmp",
dataset_text_field = "text",
),
args=SFTConfig(output_dir="/tmp"),
train_dataset=dataset,
data_collator=collator,
)
@ -220,10 +218,10 @@ dataset = load_dataset("philschmid/dolly-15k-oai-style", split="train")
...
sft_config = SFTConfig(packing=True)
training_args = SFTConfig(packing=True)
trainer = SFTTrainer(
"facebook/opt-350m",
args=sft_config,
args=training_args,
train_dataset=dataset,
)
```
@ -256,7 +254,7 @@ def formatting_prompts_func(example):
trainer = SFTTrainer(
model,
args=sft_config,
args=training_args,
train_dataset=dataset,
formatting_func=formatting_prompts_func,
)
@ -271,12 +269,12 @@ To properly format your input make sure to process all the examples by looping o
```python
...
sft_config = SFTConfig(packing=True, dataset_text_field="text",)
training_args = SFTConfig(packing=True)
trainer = SFTTrainer(
"facebook/opt-350m",
train_dataset=dataset,
args=sft_config
args=training_args
)
trainer.train()
@ -294,11 +292,11 @@ def formatting_func(example):
text = f"### Question: {example['question']}\n ### Answer: {example['answer']}"
return text
sft_config = SFTConfig(packing=True)
training_args = SFTConfig(packing=True)
trainer = SFTTrainer(
"facebook/opt-350m",
train_dataset=dataset,
args=sft_config,
args=training_args,
formatting_func=formatting_func
)
@ -315,7 +313,7 @@ model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=to
...
sft_config = SFTConfig(
training_args = SFTConfig(
model_init_kwargs={
"torch_dtype": "bfloat16",
},
@ -324,7 +322,7 @@ sft_config = SFTConfig(
trainer = SFTTrainer(
"facebook/opt-350m",
train_dataset=dataset,
args=sft_config,
args=training_args,
)
trainer.train()
@ -333,33 +331,38 @@ Note that all keyword arguments of `from_pretrained()` are supported.
### Training adapters
We also support tight integration with 🤗 PEFT library so that any user can conveniently train adapters and share them on the Hub instead of training the entire model
We also support tight integration with 🤗 PEFT library so that any user can conveniently train adapters and share them on the Hub instead of training the entire model.
```python
from datasets import load_dataset
from trl import SFTConfig, SFTTrainer
from peft import LoraConfig
dataset = load_dataset("stanfordnlp/imdb", split="train")
dataset = load_dataset("trl-lib/Capybara", split="train")
peft_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
target_modules="all-linear",
modules_to_save=["lm_head", "embed_token"],
task_type="CAUSAL_LM",
)
trainer = SFTTrainer(
"EleutherAI/gpt-neo-125m",
"Qwen/Qwen2.5-0.5B",
train_dataset=dataset,
args=SFTConfig(output_dir="/tmp"),
args=SFTConfig(output_dir="Qwen2.5-0.5B-SFT"),
peft_config=peft_config
)
trainer.train()
```
> [!WARNING]
> If the chat template contains special tokens like `<|im_start|>` (ChatML) or `<|eot_id|>` (Llama), the embedding layer and LM head must be included in the trainable parameters via the `modules_to_save` argument. Without this, the fine-tuned model will produce unbounded or nonsense generations. If the chat template doesn't contain special tokens (e.g. Alpaca), then the `modules_to_save` argument can be ignored or set to `None`.
You can also continue training your `PeftModel`. For that, first load a `PeftModel` outside `SFTTrainer` and pass it directly to the trainer without the `peft_config` argument being passed.
### Training adapters with base 8 bit models
@ -465,30 +468,30 @@ We included a utility function to create your model.
```python
from trl import ModelConfig, SFTTrainer, get_kbit_device_map, get_peft_config, get_quantization_config
model_config = ModelConfig(
model_args = ModelConfig(
model_name_or_path="facebook/opt-350m"
attn_implementation=None, # or "flash_attention_2"
)
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
model_args.torch_dtype
if model_args.torch_dtype in ["auto", None]
else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(model_config.model_name_or_path, **model_kwargs)
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, **model_kwargs)
trainer = SFTTrainer(
...,
model=model_config.model_name_or_path,
peft_config=get_peft_config(model_config),
model=model_args.model_name_or_path,
peft_config=get_peft_config(model_args),
)
```
@ -510,13 +513,13 @@ from trl import SFTConfig, SFTTrainer
dataset = load_dataset("stanfordnlp/imdb", split="train")
sft_config = SFTConfig(
training_args = SFTConfig(
neftune_noise_alpha=5,
)
trainer = SFTTrainer(
"facebook/opt-350m",
train_dataset=dataset,
args=sft_config,
args=training_args,
)
trainer.train()
```
@ -578,15 +581,11 @@ model = FastLanguageModel.get_peft_model(
random_state=3407,
)
args = SFTConfig(
output_dir="./output",
max_seq_length=max_seq_length,
dataset_text_field="text",
)
training_args = SFTConfig(output_dir="./output", max_seq_length=max_seq_length)
trainer = SFTTrainer(
model=model,
args=args,
args=training_args,
train_dataset=dataset,
)
trainer.train()
@ -611,10 +610,10 @@ With great memory reduction, you can potentially turn off cpu_offloading or grad
pip install liger-kernel
```
2. Once installed, set `use_liger` in [SFTConfig](https://github.com/huggingface/trl/blob/850ddcf598984013007d384c6b3e311def2a616e/trl/trainer/sft_config.py#L69). No other changes are needed!
2. Once installed, set `use_liger` in [`SFTConfig`]. No other changes are needed!
```python
config = SFTConfig(
training_args = SFTConfig(
use_liger=True
)
```
@ -650,7 +649,7 @@ You may experience some issues with GPTQ Quantization after completing training.
## Extending `SFTTrainer` for Vision Language Models
`SFTTrainer` does not inherently support vision-language data. However, we provide a guide on how to tweak the trainer to support vision-language data. Specifically, you need to use a custom data collator that is compatible with vision-language data. This guide outlines the steps to make these adjustments. For a concrete example, refer to the script [`examples/scripts/vsft_llava.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py) which demonstrates how to fine-tune the LLaVA 1.5 model on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset.
`SFTTrainer` does not inherently support vision-language data. However, we provide a guide on how to tweak the trainer to support vision-language data. Specifically, you need to use a custom data collator that is compatible with vision-language data. This guide outlines the steps to make these adjustments. For a concrete example, refer to the script [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm.py) which demonstrates how to fine-tune the LLaVA 1.5 model on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset.
### Preparing the Data
@ -739,23 +738,22 @@ print(collated_data.keys()) # dict_keys(['input_ids', 'attention_mask', 'pixel_
### Training the vision-language model
Now that we have prepared the data and defined the collator, we can proceed with training the model. To ensure that the data is not processed as text-only, we need to set a couple of arguments in the `SFTConfig`, specifically `dataset_text_field` and `remove_unused_columns`. We also need to set `skip_prepare_dataset` to `True` to avoid the default processing of the dataset. Below is an example of how to set up the `SFTTrainer`.
Now that we have prepared the data and defined the collator, we can proceed with training the model. To ensure that the data is not processed as text-only, we need to set a couple of arguments in the `SFTConfig`, specifically `remove_unused_columns` and `skip_prepare_dataset` to `True` to avoid the default processing of the dataset. Below is an example of how to set up the `SFTTrainer`.
```python
args.dataset_text_field = "" # needs a dummy field
args.remove_unused_columns = False
args.dataset_kwargs = {"skip_prepare_dataset": True}
training_args.remove_unused_columns = False
training_args.dataset_kwargs = {"skip_prepare_dataset": True}
trainer = SFTTrainer(
model=model,
args=args,
args=training_args,
data_collator=collate_fn,
train_dataset=train_dataset,
tokenizer=processor.tokenizer,
processing_class=processor.tokenizer,
)
```
A full example of training LLaVa 1.5 on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset can be found in the script [`examples/scripts/vsft_llava.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/vsft_llava.py).
A full example of training LLaVa 1.5 on the [HuggingFaceH4/llava-instruct-mix-vsft](https://huggingface.co/datasets/HuggingFaceH4/llava-instruct-mix-vsft) dataset can be found in the script [`examples/scripts/sft_vlm.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/sft_vlm.py).
- [Experiment tracking](https://wandb.ai/huggingface/trl/runs/2b2c5l7s)
- [Trained model](https://huggingface.co/HuggingFaceH4/sft-llava-1.5-7b-hf)

View File

@ -1,5 +1,7 @@
# XPO Trainer
[![](https://img.shields.io/badge/All_models-XPO-blue)](https://huggingface.co/models?other=xpo,trl)
## Overview
Exploratory Preference Optimization (XPO) was proposed in the paper [Exploratory Preference Optimization: Harnessing Implicit Q*-Approximation for Sample-Efficient RLHF](https://huggingface.co/papers/2405.21046) by Tengyang Xie, Dylan J. Foster, Akshay Krishnamurthy, [Corby Rosset](https://huggingface.co/corbyrosset), [Ahmed Awadallah](https://huggingface.co/AhmedAwadallah), and Alexander Rakhlin. It is a simple online preference tuning method based on the DPO loss together with a reward model (RM). XPO augments the DPO objective with an exploration bonus allowing the method to explore outside the support of the intitial model and human feedback data.
@ -12,8 +14,7 @@ This post-training method was contributed by [Kashif Rasul](https://huggingface.
## Quick start
This example demonstrates how to train a model using the XPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model and the [Qwen 0.5B reward model](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward) as the reward model. We use the prompts from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the prompts in the dataset here:
This example demonstrates how to train a model using the XPO method. We use the [Qwen 0.5B model](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) as the base model and [`PairRMJudge`] as a judge. We use the prompts from the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback). You can view the prompts in the dataset here:
<iframe
src="https://huggingface.co/datasets/trl-lib/ultrafeedback-prompt/embed/viewer/default/train?row=0"
frameborder="0"
@ -26,21 +27,17 @@ Below is the script to train the model:
```python
# train_xpo.py
from datasets import load_dataset
from trl import XPOConfig, XPOTrainer
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
from trl import PairRMJudge, XPOConfig, XPOTrainer
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
reward_model = AutoModelForSequenceClassification.from_pretrained("trl-lib/Qwen2-0.5B-Reward", num_labels=1)
judge = PairRMJudge()
train_dataset = load_dataset("trl-lib/ultrafeedback-prompt", split="train")
args = XPOConfig(output_dir="nash-md-qwen2", logging_steps=10)
training_args = XPOConfig(output_dir="Qwen2-0.5B-XPO", logging_steps=10)
trainer = XPOTrainer(
model=model,
reward_model=reward_model,
args=args,
tokenizer=tokenizer,
train_dataset=train_dataset,
model=model, judge=judge, args=training_args, processing_class=tokenizer, train_dataset=train_dataset
)
trainer.train()
```
@ -51,22 +48,54 @@ Execute the script using the following command:
accelerate launch train_xpo.py
```
## Expected dataset format
Distributed across 8 GPUs, the training takes approximately 1 hour.
XPO requires a [prompt-only dataset](dataset_format#preference). The [`XPOTrainer`] supports both [conversational](dataset_format#conversational-dataset-format) and [standard](dataset_format#standard-dataset-format) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
To see how the [trained model](https://huggingface.co/trl-lib/Qwen2-0.5B-XPO) performs, you can use the [TRL Chat CLI](clis#chat-interface).
<pre><code>$ trl chat --model_name_or_path trl-lib/Qwen2-0.5B-XPO
<strong><span style="color: red;">&lt;quentin_gallouedec&gt;:</span></strong>
What is the best programming language?
<strong><span style="color: blue;">&lt;trl-lib/Qwen2-0.5B-XPO&gt;:</span></strong>
The best programming language depends on individual preferences and familiarity with coding concepts. Some popular languages include Python, Java, C++, and JavaScript.
</code></pre>
## Expected dataset type
XPO requires a [prompt-only dataset](dataset_formats#prompt-only). The [`XPOTrainer`] supports both [conversational](dataset_formats#conversational) and [standard](dataset_formats#standard) dataset format. When provided with a conversational dataset, the trainer will automatically apply the chat template to the dataset.
## Usage tips
### ⚠️ Use the same chat template
### Use a reward model
Make sure that the SFT model and reward model use the _same_ chat template. Otherwise, you may find the model completions are scored incorrectly during training.
Instead of a judge, you can chose to use a reward model -- see [Reward Bench](https://huggingface.co/spaces/allenai/reward-bench) for a leaderboard of public models you can use. Below is a code example showing how to replace a judge with the [trl-lib/Qwen2-0.5B-Reward](https://huggingface.co/trl-lib/Qwen2-0.5B-Reward) model:
```diff
- from trl import PairRMJudge
+ from transformers import AutoModelForSequenceClassification
- judge = PairRMJudge()
+ reward_model = AutoModelForSequenceClassification.from_pretrained("trl-lib/Qwen2-0.5B-Reward", num_labels=1)
trainer = XPOTrainer(
...
- judge=judge,
+ reward_model=reward_model,
)
```
<Tip warning={true}>
Make sure that the SFT model and reward model use the _same_ chat template and the same tokenizer. Otherwise, you may find the model completions are scored incorrectly during training.
</Tip>
### Encourage EOS token generation
We can want the model to generate completion within a given length. During the learning, the model will generate completion up to the maximum completion length specified in the `max_new_tokens` argument of [`XPOConfig`]. I you want to penalize for not generating an EOS token before the maximum completion length, you can use the `missing_eos_penalty` argument of [`XPOConfig`]:
When using a reward model, we may want the model to generate completions within a given length. During training, the model will generate completions up to the maximum length specified in the `max_new_tokens` argument of [`XPOConfig`]. If you want to penalize the model for not generating an EOS token before reaching the maximum length, you can use the `missing_eos_penalty` argument of [`XPOConfig`]:
```python
args = XPOConfig(..., max_new_tokens=128, missing_eos_penalty=1.0)
training_args = XPOConfig(..., max_new_tokens=128, missing_eos_penalty=1.0)
```
### Logging Completions
@ -85,23 +114,19 @@ This callback logs the model's generated completions directly to Weights & Biase
## Example script
We provide an example script to train a model using the XPO method. The script is available in [`examples/scripts/nash_md.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/nash_md.py)
We provide an example script to train a model using the XPO method. The script is available in [`examples/scripts/xpo.py`](https://github.com/huggingface/trl/blob/main/examples/scripts/xpo.py)
To test the XPO script with the [Pythia 14M model](https://huggingface.co/EleutherAI/pythia-14m) on the TL;DR summarization task, run the following command:
To test the XPO script with the [Qwen2.5 0.5B model](https://huggingface.co/trl-lib/Qwen/Qwen2.5-0.5B-Instruct) on the [UltraFeedback dataset](https://huggingface.co/datasets/openbmb/UltraFeedback), run the following command:
```bash
python examples/scripts/xpo.py \
--model_name_or_path EleutherAI/pythia-14m \
--reward_model_path EleutherAI/pythia-14m \
--dataset_name trl-lib/tldr \
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--judge pair_rm \
--dataset_name trl-lib/ultrafeedback-prompt \
--learning_rate 5.0e-7 \
--output_dir pythia-14m-tldr-xpo \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 32 \
--num_train_epochs 3 \
--max_new_tokens 64 \
--logging_steps 25 \
--output_dir Qwen2.5-0.5B-XPO-PairRM \
--warmup_ratio 0.1 \
--missing_eos_penalty 1.0 \
--push_to_hub
```

View File

@ -7,11 +7,9 @@
# CUDA_VISIBLE_DEVICES: 0
model_name_or_path:
trl-internal-testing/tiny-random-LlamaForCausalLM
Qwen/Qwen2.5-0.5B
dataset_name:
stanfordnlp/imdb
dataset_text_field:
text
report_to:
none
learning_rate:

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -14,7 +14,7 @@
import re
from dataclasses import dataclass
from typing import Dict, List, Optional
from typing import Optional
from datasets import load_dataset
from transformers import HfArgumentParser
@ -51,7 +51,7 @@ def common_start(str1: str, str2: str) -> str:
return "".join(common_chars)
def extract_dialogue(example: str) -> List[Dict[str, str]]:
def extract_dialogue(example: str) -> list[dict[str, str]]:
# Extract the prompt, which corresponds to the common start of the chosen and rejected dialogues
prompt_text = common_start(example["chosen"], example["rejected"])
@ -79,7 +79,7 @@ def extract_dialogue(example: str) -> List[Dict[str, str]]:
prompt.append({"role": role, "content": content})
# Remove the prompt from the chosen and rejected dialogues
chosen = [{"role": "assitant", "content": chosen_line}]
chosen = [{"role": "assistant", "content": chosen_line}]
rejected = [{"role": "assistant", "content": rejected_line}]
return {"prompt": prompt, "chosen": chosen, "rejected": rejected}
@ -87,10 +87,10 @@ def extract_dialogue(example: str) -> List[Dict[str, str]]:
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset("Anthropic/hh-rlhf", data_dir="helpful-base")
dataset = dataset.map(extract_dialogue, num_proc=args.dataset_num_proc)
dataset = dataset.map(extract_dialogue, num_proc=script_args.dataset_num_proc)
if args.push_to_hub:
dataset.push_to_hub(args.repo_id)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -57,7 +57,7 @@ def to_prompt_completion(example, tokenizer):
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset(
"json",
@ -65,11 +65,11 @@ if __name__ == "__main__":
split="train",
)
dataset = dataset.filter(samples_not_all_same, num_proc=args.dataset_num_proc)
dataset = dataset.filter(samples_not_all_same, num_proc=script_args.dataset_num_proc)
dataset = dataset.map(
to_prompt_completion,
num_proc=args.dataset_num_proc,
num_proc=script_args.dataset_num_proc,
remove_columns=["query", "sample0", "sample1", "sample2", "sample3", "best"],
fn_kwargs={"tokenizer": AutoTokenizer.from_pretrained("gpt2")},
)
@ -77,5 +77,5 @@ if __name__ == "__main__":
# train_size taken from https://github.com/openai/lm-human-preferences/blob/cbfd210bb8b08f6bc5c26878c10984b90f516c66/launch.py#L79)
dataset = dataset.train_test_split(train_size=4992)
if args.push_to_hub:
dataset.push_to_hub(args.repo_id)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -52,7 +52,7 @@ def to_prompt_completion(example, tokenizer):
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset(
"json",
@ -62,7 +62,7 @@ if __name__ == "__main__":
dataset = dataset.map(
to_prompt_completion,
num_proc=args.dataset_num_proc,
num_proc=script_args.dataset_num_proc,
remove_columns=["query", "sample0", "sample1", "sample2", "sample3", "best"],
fn_kwargs={"tokenizer": AutoTokenizer.from_pretrained("gpt2")},
)
@ -70,5 +70,5 @@ if __name__ == "__main__":
# train_size taken from https://github.com/openai/lm-human-preferences/blob/cbfd210bb8b08f6bc5c26878c10984b90f516c66/launch.py#L70)
dataset = dataset.train_test_split(train_size=4992)
if args.push_to_hub:
dataset.push_to_hub(args.repo_id)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -0,0 +1,131 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import re
from dataclasses import dataclass
from itertools import chain
from typing import Optional
from datasets import load_dataset
from transformers import HfArgumentParser
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the dataset to the Hugging Face Hub.
repo_id (`str`, *optional*, defaults to `"trl-lib/math_shepherd"`):
Hugging Face repository ID to push the dataset to.
dataset_num_proc (`Optional[int]`, *optional*, defaults to `None`):
Number of workers to use for dataset processing.
"""
push_to_hub: bool = False
repo_id: str = "trl-lib/math_shepherd"
dataset_num_proc: Optional[int] = None
def process_example(example):
# Replace "ки" with "ⶻ" so that the size of the "input" matches the size of the "label"
inputs = example["input"].replace("ки", "")
# Find the indices of the "ⶻ" characters (that should match with the indexes of the "+" or "-" in the label)
indexes = [m.start() for m in re.finditer("", inputs)]
# Sanity that all indexes are either "+" or "-"
assert all(example["label"][idx] in ["+", "-"] for idx in indexes)
# Get the labels
labels = [example["label"][idx] == "+" for idx in indexes]
# Split the inputs into steps (caution, the first step is missing here, it is the prompt)
steps = [inputs[i:j] for i, j in zip(chain([0], indexes), chain(indexes, [None]))]
# Remove the last step (single ⶻ)
steps = steps[:-1]
# Get the prompt (first part) and completions (rest)
prompt = steps[0]
completions = steps[1:]
# Remove the heading "ⶻ" and the final whitespace from the completions
assert all(completion.startswith("") for completion in completions)
completions = [completion[1:].strip() for completion in completions]
# At this point, we need to retrieve the first step from the prompt.
# First, we handle particular cases (annotation error) where we have a first label before the end of the prompt.
if prompt.startswith(
(
"Mr. Rocky",
"Parker",
"What is the smallest positive",
" The Myth",
"Let $\\mathbf{a}$",
"Find the arithmetic",
"Determine an ordered pair",
"Determine the ordered pair",
"At the Quill and Scroll stationery",
"Round to the nearest",
r"Calculate $\sqrt{10p}",
r"Simplify $\sqrt{28x}",
)
):
# Some spotted datasets errors where there is an annotation in the prompt: we remove it
labels = labels[1:]
# Then we handle the general case: we get the first step from the prompt by looking for "Step 1:" or "step 1:" or
# (less common) "?".
elif "Step 1:" in prompt:
prompt, first_step = prompt.split("Step 1:")
first_step = "Step 1:" + first_step
completions = [first_step.strip()] + completions
elif "step 1:" in prompt:
prompt, first_step = prompt.split("step 1:")
first_step = "step 1:" + first_step
completions = [first_step.strip()] + completions
elif "?" in prompt:
prompt, first_step = prompt.split("?")
prompt = prompt + "?"
completions = [first_step.strip()] + completions
else:
raise ValueError(f"Prompt can't be processed: {prompt}")
# Strip the prompt
prompt = prompt.strip()
# Sanity check that the length of the completions is the same as the length of the labels
assert len(completions) == len(labels)
return {"prompt": prompt, "completions": completions, "labels": labels}
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset("peiyi9979/Math-Shepherd", split="train")
dataset = dataset.map(
process_example,
remove_columns=["input", "label", "task"],
num_proc=script_args.dataset_num_proc,
)
dataset = dataset.train_test_split(test_size=0.05, seed=42)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -0,0 +1,118 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional
from datasets import load_dataset
from transformers import HfArgumentParser
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the dataset to the Hugging Face Hub.
repo_id (`str`, *optional*, defaults to `"trl-lib/prm800k"`):
Hugging Face repository ID to push the dataset to.
dataset_num_proc (`Optional[int]`, *optional*, defaults to `None`):
Number of workers to use for dataset processing.
"""
push_to_hub: bool = False
repo_id: str = "trl-lib/prm800k"
dataset_num_proc: Optional[int] = None
def process_example(example):
outputs = []
prompt = example["question"]["problem"]
# Iterate through each step
previous_completions = []
previous_labels = []
for step in example["label"]["steps"]:
if step["completions"] is None and step["human_completion"] is None and step["chosen_completion"] is None:
# happens sometimes
break
# Loop through completions
for completion_idx, completion in enumerate(step["completions"]):
# For every completion that are not chosen, we are in a terminal state, so we can add it to the list of outputs.
if completion_idx != step["chosen_completion"]:
content = completion["text"]
completions = previous_completions[:] + [content]
label = completion["rating"] == 1
labels = previous_labels[:] + [label]
outputs.append({"prompt": prompt, "completions": completions, "labels": labels})
# Now, exapand the previous completions and labels
if step["chosen_completion"] is not None:
chosen_completion = step["completions"][step["chosen_completion"]]
label = chosen_completion["rating"] == 1
elif step["human_completion"] is not None:
chosen_completion = step["human_completion"]
label = True
else:
break
content = chosen_completion["text"]
previous_completions.append(content)
previous_labels.append(label)
# Last step: we are in a terminal state, so we can add it to the list of outputs
outputs.append({"prompt": prompt, "completions": previous_completions, "labels": previous_labels})
return outputs
def process_batch(examples):
outputs = []
batch_size = len(examples["label"])
for idx in range(batch_size):
example = {k: v[idx] for k, v in examples.items()}
outputs.extend(process_example(example))
# list of dict to dict of list
outputs = {k: [v[k] for v in outputs] for k in outputs[0]}
return outputs
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
data_files = {
"train": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_train.jsonl",
"test": "https://github.com/openai/prm800k/raw/refs/heads/main/prm800k/data/phase1_test.jsonl",
}
dataset = load_dataset("json", data_files=data_files)
dataset = dataset.map(
process_batch,
batched=True,
batch_size=10,
remove_columns=[
"labeler",
"timestamp",
"generation",
"is_quality_control_question",
"is_initial_screening_question",
"question",
"label",
],
num_proc=script_args.dataset_num_proc,
)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -0,0 +1,73 @@
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import Optional
from datasets import features, load_dataset
from transformers import HfArgumentParser
@dataclass
class ScriptArguments:
r"""
Arguments for the script.
Args:
push_to_hub (`bool`, *optional*, defaults to `False`):
Whether to push the dataset to the Hugging Face Hub.
repo_id (`str`, *optional*, defaults to `"trl-lib/rlaif-v"`):
Hugging Face repository ID to push the dataset to.
dataset_num_proc (`Optional[int]`, *optional*, defaults to `None`):
Number of workers to use for dataset processing.
"""
push_to_hub: bool = False
repo_id: str = "trl-lib/rlaif-v"
dataset_num_proc: Optional[int] = None
def to_conversational(example):
"""
Convert prompt from "xxx" to [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "xxx"}]}]
and chosen and rejected from "xxx" to [{"role": "assistant", "content": [{"type": "text", "text": "xxx"}]}].
Images are wrapped into a list.
"""
prompt = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": example["question"]}]}]
chosen = [{"role": "assistant", "content": [{"type": "text", "text": example["chosen"]}]}]
rejected = [{"role": "assistant", "content": [{"type": "text", "text": example["rejected"]}]}]
return {"prompt": prompt, "images": [example["image"]], "chosen": chosen, "rejected": rejected}
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset("openbmb/RLAIF-V-Dataset", split="train")
dataset = dataset.map(
to_conversational,
num_proc=script_args.dataset_num_proc,
remove_columns=dataset.column_names,
writer_batch_size=128,
)
# Cast the images to Sequence[Image] to avoid bytes format
f = dataset.features
f["images"] = features.Sequence(features.Image(decode=True))
dataset = dataset.cast(f)
dataset = dataset.train_test_split(test_size=0.01, writer_batch_size=128)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -47,7 +47,7 @@ def to_prompt_completion(example):
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
# Filtered reddit TL;DR dataset from https://github.com/openai/summarize-from-feedback?tab=readme-ov-file#reddit-tldr-dataset
data_files = {
@ -59,9 +59,9 @@ if __name__ == "__main__":
dataset = dataset.map(
to_prompt_completion,
num_proc=args.dataset_num_proc,
num_proc=script_args.dataset_num_proc,
remove_columns=["id", "subreddit", "title", "post", "summary"],
)
if args.push_to_hub:
dataset.push_to_hub(args.repo_id)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -58,15 +58,15 @@ def to_preference(example):
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset("openai/summarize_from_feedback", "comparisons")
dataset = dataset.map(
to_preference,
num_proc=args.dataset_num_proc,
num_proc=script_args.dataset_num_proc,
remove_columns=["info", "summaries", "choice", "worker", "batch", "split", "extra"],
)
if args.push_to_hub:
dataset.push_to_hub(args.repo_id)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -39,9 +39,9 @@ class ScriptArguments:
if __name__ == "__main__":
args = HfArgumentParser(ScriptArguments).parse_args_into_dataclasses()[0]
dataset = load_dataset(args.dataset_name)
tokenizer = AutoTokenizer.from_pretrained(args.model)
script_args = HfArgumentParser(ScriptArguments).parse_args_into_dataclasses()[0]
dataset = load_dataset(script_args.dataset_name)
tokenizer = AutoTokenizer.from_pretrained(script_args.model)
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
@ -50,5 +50,5 @@ if __name__ == "__main__":
row["rejected"] = tokenizer.apply_chat_template(row["rejected"], tokenize=False)
return row
dataset = dataset.map(process, num_proc=args.dataset_num_proc)
dataset = dataset.map(process, num_proc=script_args.dataset_num_proc)
print(dataset["train"][0]["chosen"])

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -52,17 +52,17 @@ def drop_long_prompt(example):
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset("openbmb/UltraFeedback", split="train")
dataset = dataset.map(
to_unpaired_preference,
remove_columns=["source", "instruction", "models", "completions", "correct_answers", "incorrect_answers"],
num_proc=args.dataset_num_proc,
num_proc=script_args.dataset_num_proc,
)
dataset = dataset.filter(drop_long_prompt)
dataset = dataset.train_test_split(test_size=0.05, seed=42)
if args.push_to_hub:
dataset.push_to_hub(args.repo_id)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -81,20 +81,22 @@ def to_unpaired_preference(example, model_name, aspect):
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
dataset = load_dataset("openbmb/UltraFeedback", split="train")
dataset = dataset.filter(
lambda example: args.model_name in example["models"], batched=False, num_proc=args.dataset_num_proc
lambda example: script_args.model_name in example["models"],
batched=False,
num_proc=script_args.dataset_num_proc,
)
dataset = dataset.map(
to_unpaired_preference,
remove_columns=["source", "instruction", "models", "completions", "correct_answers", "incorrect_answers"],
fn_kwargs={"model_name": args.model_name, "aspect": args.aspect},
num_proc=args.dataset_num_proc,
fn_kwargs={"model_name": script_args.model_name, "aspect": script_args.aspect},
num_proc=script_args.dataset_num_proc,
)
dataset = dataset.train_test_split(test_size=0.05, seed=42)
if args.push_to_hub:
dataset.push_to_hub(args.repo_id)
if script_args.push_to_hub:
dataset.push_to_hub(script_args.repo_id)

View File

@ -1,54 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# 0. imports
import torch
from transformers import GPT2Tokenizer
from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer
# 1. load a pretrained model
model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2")
ref_model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2")
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
tokenizer.pad_token = tokenizer.eos_token
# 2. initialize trainer
ppo_config = {"mini_batch_size": 1, "batch_size": 1}
config = PPOConfig(**ppo_config)
ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer)
# 3. encode a query
query_txt = "This morning I went to the "
query_tensor = tokenizer.encode(query_txt, return_tensors="pt").to(model.pretrained_model.device)
# 4. generate model response
generation_kwargs = {
"min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"max_new_tokens": 20,
}
response_tensor = ppo_trainer.generate(list(query_tensor), return_prompt=False, **generation_kwargs)
response_txt = tokenizer.decode(response_tensor[0])
# 5. define a reward for response
# (this could be any reward such as human feedback or output from another model)
reward = [torch.tensor(1.0, device=model.pretrained_model.device)]
# 6. train model with ppo
train_stats = ppo_trainer.step([query_tensor[0]], [response_tensor[0]], reward)

View File

@ -13,16 +13,8 @@
"1. a base model (`gpt2-imdb`)\n",
"2. `RLHF` tuned model based on this base-model \n",
"3. the base-model again from which we sample n responses to each prompt, score them and take the best scored one AKA the `best-of-n sampled` model\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Lo98lkdP66_x"
},
"source": [
"Import dependencies\n"
"\n",
"Import dependencies"
]
},
{
@ -46,13 +38,14 @@
"source": [
"import torch\n",
"import pandas as pd\n",
"\n",
"from transformers import pipeline, AutoTokenizer\n",
"from datasets import load_dataset\n",
"\n",
"from trl import AutoModelForCausalLMWithValueHead\n",
"from trl.core import LengthSampler\n",
"\n",
"device = 0 if torch.cuda.is_available() else \"cpu\""
"device = \"cuda\" if torch.cuda.is_available() else \"cpu\""
]
},
{
@ -85,16 +78,68 @@
"id": "c1YcXeElg6or"
},
"source": [
"Models and tokenizers "
"Models and tokenizers"
]
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 4,
"metadata": {
"id": "b855NrL181Hh"
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/Users/kashif/Github/transformers/src/transformers/tokenization_utils_base.py:1617: FutureWarning: `clean_up_tokenization_spaces` was not set. It will be set to `True` by default. This behavior will be deprecated in transformers v4.45, and will be then set to `False` by default. For more details check this issue: https://github.com/huggingface/transformers/issues/31884\n",
" warnings.warn(\n"
]
},
{
"data": {
"text/plain": [
"AutoModelForCausalLMWithValueHead(\n",
" (pretrained_model): GPT2LMHeadModel(\n",
" (transformer): GPT2Model(\n",
" (wte): Embedding(50257, 768)\n",
" (wpe): Embedding(1024, 768)\n",
" (drop): Dropout(p=0.1, inplace=False)\n",
" (h): ModuleList(\n",
" (0-11): 12 x GPT2Block(\n",
" (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
" (attn): GPT2SdpaAttention(\n",
" (c_attn): Conv1D(nf=2304, nx=768)\n",
" (c_proj): Conv1D(nf=768, nx=768)\n",
" (attn_dropout): Dropout(p=0.1, inplace=False)\n",
" (resid_dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
" (mlp): GPT2MLP(\n",
" (c_fc): Conv1D(nf=3072, nx=768)\n",
" (c_proj): Conv1D(nf=768, nx=3072)\n",
" (act): NewGELUActivation()\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" )\n",
" )\n",
" )\n",
" (ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)\n",
" )\n",
" (lm_head): Linear(in_features=768, out_features=50257, bias=False)\n",
" )\n",
" (v_head): ValueHead(\n",
" (dropout): Dropout(p=0.1, inplace=False)\n",
" (summary): Linear(in_features=768, out_features=1, bias=True)\n",
" (flatten): Flatten(start_dim=1, end_dim=-1)\n",
" )\n",
")"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model = AutoModelForCausalLMWithValueHead.from_pretrained(model_name)\n",
"\n",
@ -107,8 +152,8 @@
"tokenizer.pad_token = tokenizer.eos_token\n",
"\n",
"# cuda-ize models\n",
"model.cuda()\n",
"ref_model.cuda()"
"model.to(device)\n",
"ref_model.to(device)"
]
},
{
@ -122,13 +167,18 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 5,
"metadata": {
"id": "LqLVEp5p_8XM"
},
"outputs": [],
"source": [
"def build_dataset(tokenizer, dataset_name=\"stanfordnlp/imdb\", input_min_text_length=2, input_max_text_length=8):\n",
"def build_dataset(\n",
" tokenizer,\n",
" dataset_name=\"stanfordnlp/imdb\",\n",
" input_min_text_length=2,\n",
" input_max_text_length=8,\n",
"):\n",
" # load imdb with datasets\n",
" ds = load_dataset(dataset_name, split=\"train\")\n",
" ds = ds.rename_columns({\"text\": \"review\"})\n",
@ -157,7 +207,13 @@
},
"outputs": [],
"source": [
"gen_kwargs = {\"min_length\": -1, \"top_k\": 0.0, \"top_p\": 1.0, \"do_sample\": True, \"pad_token_id\": tokenizer.eos_token_id}\n",
"gen_kwargs = {\n",
" \"min_length\": -1,\n",
" \"top_k\": 0.0,\n",
" \"top_p\": 1.0,\n",
" \"do_sample\": True,\n",
" \"pad_token_id\": tokenizer.eos_token_id,\n",
"}\n",
"sent_kwargs = {\"top_k\": None, \"function_to_apply\": \"none\", \"batch_size\": 16}"
]
},
@ -203,22 +259,36 @@
"metadata": {
"id": "-imZ7uEFBNbw"
},
"outputs": [],
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"The attention mask is not set and cannot be inferred from input because pad token is same as eos token. As a consequence, you may observe unexpected behavior. Please pass your input's `attention_mask` to obtain reliable results.\n"
]
}
],
"source": [
"for i in range(bs):\n",
" gen_len = output_length_sampler()\n",
"\n",
" query = torch.tensor(query_tensors[i])\n",
"\n",
" output = ref_model.generate(query.unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs).squeeze()\n",
" output = ref_model.generate(\n",
" query.unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()\n",
" response_tensors_ref.append(tokenizer.decode(output))\n",
"\n",
" output = model.generate(query.unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs).squeeze()\n",
" output = model.generate(\n",
" query.unsqueeze(dim=0).to(device), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()\n",
" response_tensors.append(tokenizer.decode(output))\n",
"\n",
" # generating copies of the same query for the Best-of-n sampling\n",
" queries = query.repeat((N_BEST_OF, 1))\n",
" output = ref_model.generate(queries.to(device), max_new_tokens=gen_len, **gen_kwargs).squeeze()\n",
" output = ref_model.generate(\n",
" queries.to(device), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()\n",
" response_tensors_best_of.append(tokenizer.batch_decode(output))"
]
},
@ -233,18 +303,24 @@
},
{
"cell_type": "code",
"execution_count": null,
"execution_count": 9,
"metadata": {
"id": "PyDbbAQ0F_h7"
},
"outputs": [],
"source": [
"scores_ref = [output[0][\"score\"] for output in reward_pipe(response_tensors_ref, **sent_kwargs)]\n",
"scores_ref = [\n",
" output[0][\"score\"] for output in reward_pipe(response_tensors_ref, **sent_kwargs)\n",
"]\n",
"scores = [output[0][\"score\"] for output in reward_pipe(response_tensors, **sent_kwargs)]\n",
"scores_best_of = []\n",
"for i, response in enumerate(response_tensors_best_of):\n",
" # base_score = scores_ref[i]\n",
" scores_best_of.append(torch.tensor([output[0][\"score\"] for output in reward_pipe(response, **sent_kwargs)]))"
" scores_best_of.append(\n",
" torch.tensor(\n",
" [output[0][\"score\"] for output in reward_pipe(response, **sent_kwargs)]\n",
" )\n",
" )"
]
},
{
@ -262,142 +338,270 @@
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
"ref_model = AutoModelForCausalLMWithValueHead.from_pretrained(ref_model_name)\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
"reward_pipe = pipeline(\"sentiment-analysis\", model=reward_model, device=device)\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(ref_model_name)\n",
"\n",
"tokenizer.pad_token = tokenizer.eos_token\n",
"\n",
"# cuda-ize models\n",
"model.cuda()\n",
"ref_model.cuda()"
],
"metadata": {
"id": "b855NrL181Hh"
},
"execution_count": null,
"outputs": []
},
{
"cell_type": "markdown",
"source": [
"Dataset building"
],
"metadata": {
"id": "Z1Cz0gCFhZYJ"
}
},
{
"cell_type": "code",
"source": [
"def build_dataset(tokenizer, dataset_name=\"stanfordnlp/imdb\", input_min_text_length=2, input_max_text_length=8):\n",
" # load imdb with datasets\n",
" ds = load_dataset(dataset_name, split=\"train\")\n",
" ds = ds.rename_columns({\"text\": \"review\"})\n",
" ds = ds.filter(lambda x: len(x[\"review\"]) > 200, batched=False)\n",
"\n",
" input_size = LengthSampler(input_min_text_length, input_max_text_length)\n",
"\n",
" def tokenize(sample):\n",
" sample[\"input_ids\"] = tokenizer.encode(sample[\"review\"])[: input_size()]\n",
" sample[\"query\"] = tokenizer.decode(sample[\"input_ids\"])\n",
" return sample\n",
"\n",
" ds = ds.map(tokenize, batched=False)\n",
" ds.set_format(type=\"torch\")\n",
" return ds\n",
"\n",
"\n",
" const docLinkHtml = 'Like what you see? Visit the ' +\n",
" '<a target=\"_blank\" href=https://colab.research.google.com/notebooks/data_table.ipynb>data table notebook</a>'\n",
" + ' to learn more about interactive tables.';\n",
" element.innerHTML = '';\n",
" dataTable['output_type'] = 'display_data';\n",
" await google.colab.output.renderOutput(dataTable, element);\n",
" const docLink = document.createElement('div');\n",
" docLink.innerHTML = docLinkHtml;\n",
" element.appendChild(docLink);\n",
" }\n",
" </script>\n",
" </div>\n",
" </div>\n",
" "
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>query</th>\n",
" <th>response (ref)</th>\n",
" <th>scores (ref)</th>\n",
" <th>response (RLHF)</th>\n",
" <th>scores (RLHF)</th>\n",
" <th>response (best_of)</th>\n",
" <th>scores (best_of)</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>This movie</td>\n",
" <td>This movie should have read some books, and</td>\n",
" <td>1.411889</td>\n",
" <td>This movie has plenty of extraordinary feature...</td>\n",
" <td>2.735337</td>\n",
" <td>This movie was unexpectedly funny and funny, you</td>\n",
" <td>2.405301</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>OK where do i begin?</td>\n",
" <td>OK where do i begin? *** Acting is decent (not...</td>\n",
" <td>1.555380</td>\n",
" <td>OK where do i begin? For all of you who are no...</td>\n",
" <td>0.019694</td>\n",
" <td>OK where do i begin? i just wanted to add some...</td>\n",
" <td>0.622912</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>I watched</td>\n",
" <td>I watched one can compare themselves upon view...</td>\n",
" <td>1.380120</td>\n",
" <td>I watched it because of its excellent cast. Th...</td>\n",
" <td>2.498309</td>\n",
" <td>I watched the trial trial for teaches us a goo...</td>\n",
" <td>2.057187</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>It's been 19 years since Gordon</td>\n",
" <td>It's been 19 years since Gordon finally left c...</td>\n",
" <td>1.554914</td>\n",
" <td>It's been 19 years since Gordon Tree has becom...</td>\n",
" <td>1.632266</td>\n",
" <td>It's been 19 years since Gordon Clarke put me ...</td>\n",
" <td>2.783458</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Just kidding</td>\n",
" <td>Just kidding; I know a lot</td>\n",
" <td>-0.069533</td>\n",
" <td>Just kidding \"Third World Snopes</td>\n",
" <td>0.944632</td>\n",
" <td>Just kidding, I didn't even</td>\n",
" <td>1.945202</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>shakespeare's plays have a way</td>\n",
" <td>shakespeare's plays have a way of weaving into...</td>\n",
" <td>1.656927</td>\n",
" <td>shakespeare's plays have a way. It's the look ...</td>\n",
" <td>1.444803</td>\n",
" <td>shakespeare's plays have a way of getting back...</td>\n",
" <td>1.834373</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>This movie is wonderful. What</td>\n",
" <td>This movie is wonderful. What could have been ...</td>\n",
" <td>2.749068</td>\n",
" <td>This movie is wonderful. What someone likes ab...</td>\n",
" <td>2.759510</td>\n",
" <td>This movie is wonderful. What a different look,</td>\n",
" <td>2.695312</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>I loved</td>\n",
" <td>I loved this film. &lt;br /&gt;&lt;</td>\n",
" <td>2.576181</td>\n",
" <td>I loved it, and I really loved Audrey</td>\n",
" <td>2.578412</td>\n",
" <td>I loved this film. Reading reviews of it</td>\n",
" <td>2.751773</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>A superb and</td>\n",
" <td>A superb and very cool drama. The novel is</td>\n",
" <td>2.910374</td>\n",
" <td>A superb and super fun movie that removes all the</td>\n",
" <td>2.783201</td>\n",
" <td>A superb and most finely acted role that I will</td>\n",
" <td>2.894923</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>I remember</td>\n",
" <td>I remember.Very poor execution but good movies</td>\n",
" <td>0.923775</td>\n",
" <td>I remember when Shelter saw some girls on TV</td>\n",
" <td>0.825408</td>\n",
" <td>I remember thinking to myself how SOMEONE who</td>\n",
" <td>1.634163</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>This su*k</td>\n",
" <td>This su*k camel down your kidd</td>\n",
" <td>1.605957</td>\n",
" <td>This su*k Dress! I loved it</td>\n",
" <td>2.345865</td>\n",
" <td>This su*k like a roll of crap</td>\n",
" <td>2.422874</td>\n",
" </tr>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>One Stink</td>\n",
" <td>One Stink Act...&lt;br /&gt;&lt;br</td>\n",
" <td>1.456476</td>\n",
" <td>One Stinkl was a great actor, particularly</td>\n",
" <td>1.782818</td>\n",
" <td>One Stink?: Invisible of Saint Barbara, poor</td>\n",
" <td>1.667756</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>I pulled down a VHS</td>\n",
" <td>I pulled down a VHS copy and watched it with m...</td>\n",
" <td>0.756151</td>\n",
" <td>I pulled down a VHS looking a good looking, and a</td>\n",
" <td>-0.008258</td>\n",
" <td>I pulled down a VHS copy the other day and all I</td>\n",
" <td>0.992919</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>For some</td>\n",
" <td>For some alone no more Buddy Trumbull would ha...</td>\n",
" <td>0.790762</td>\n",
" <td>For some enthraled time, the film will impress...</td>\n",
" <td>2.455694</td>\n",
" <td>For some reason, a bomb crashed on the rear of...</td>\n",
" <td>0.857423</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>This one features all</td>\n",
" <td>This one features all the good elements of spi...</td>\n",
" <td>1.452079</td>\n",
" <td>This one features all kinds of wit and humor r...</td>\n",
" <td>2.743043</td>\n",
" <td>This one features all the best Birdprogram sup...</td>\n",
" <td>2.343950</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>Somehow a woman working with</td>\n",
" <td>Somehow a woman working with Jim Wynorski prof...</td>\n",
" <td>0.242172</td>\n",
" <td>Somehow a woman working with her daughter play...</td>\n",
" <td>0.092226</td>\n",
" <td>Somehow a woman working with an overweight ins...</td>\n",
" <td>1.415525</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" query \\\n",
"0 I'm a pretty old \n",
"1 One of the most \n",
"2 Okay, as \n",
"3 Watching \"Kro \n",
"4 Seriously what were they thinking? \n",
"5 OK Hollywood \n",
"6 \"Bend It \n",
"7 While the premise behind The House \n",
"8 Well let me go \n",
"9 Vijay Krishna Acharya \n",
"10 Watching this movie made me \n",
"11 There are probably \n",
"12 Meryl Stre \n",
"13 I thought I read somewhere that \n",
"14 Good movie, very \n",
"15 It was agonizing \n",
" query \\\n",
"0 This movie \n",
"1 OK where do i begin? \n",
"2 I watched \n",
"3 It's been 19 years since Gordon \n",
"4 Just kidding \n",
"5 shakespeare's plays have a way \n",
"6 This movie is wonderful. What \n",
"7 I loved \n",
"8 A superb and \n",
"9 I remember \n",
"10 This su*k \n",
"11 One Stink \n",
"12 I pulled down a VHS \n",
"13 For some \n",
"14 This one features all \n",
"15 Somehow a woman working with \n",
"\n",
" response (ref) scores (ref) \\\n",
"0 I'm a pretty old kid, well, with lots of girl 1.179652 \n",
"1 One of the most psychologically devastating as... 2.477277 \n",
"2 Okay, as ruthless as they are, even their leve... 1.466462 \n",
"3 Watching \"Kroger\" (1915- 0.186047 \n",
"4 Seriously what were they thinking? It ain't go... 1.010697 \n",
"5 OK Hollywood goes into a total game of audio, ... 0.934041 \n",
"6 \"Bend It, Luther, Dodge, Church Goes to Rome w... 0.039218 \n",
"7 While the premise behind The House of Dracula ... -0.079306 \n",
"8 Well let me go...I don't want to movie it. I'm... 1.015246 \n",
"9 Vijay Krishna Acharya Sawai (Elverling). She was 0.341506 \n",
"10 Watching this movie made me poorly appreciate ... 1.574047 \n",
"11 There are probably more but if you had never s... -0.047099 \n",
"12 Meryl Streep's version of 0.373884 \n",
"13 I thought I read somewhere that the Lord had c... 0.091776 \n",
"14 Good movie, very funny, acting is very good.<|... 2.408837 \n",
"15 It was agonizing, and it made me wonder 1.240262 \n",
"0 This movie should have read some books, and 1.411889 \n",
"1 OK where do i begin? *** Acting is decent (not... 1.555380 \n",
"2 I watched one can compare themselves upon view... 1.380120 \n",
"3 It's been 19 years since Gordon finally left c... 1.554914 \n",
"4 Just kidding; I know a lot -0.069533 \n",
"5 shakespeare's plays have a way of weaving into... 1.656927 \n",
"6 This movie is wonderful. What could have been ... 2.749068 \n",
"7 I loved this film. <br />< 2.576181 \n",
"8 A superb and very cool drama. The novel is 2.910374 \n",
"9 I remember.Very poor execution but good movies 0.923775 \n",
"10 This su*k camel down your kidd 1.605957 \n",
"11 One Stink Act...<br /><br 1.456476 \n",
"12 I pulled down a VHS copy and watched it with m... 0.756151 \n",
"13 For some alone no more Buddy Trumbull would ha... 0.790762 \n",
"14 This one features all the good elements of spi... 1.452079 \n",
"15 Somehow a woman working with Jim Wynorski prof... 0.242172 \n",
"\n",
" response (RLHF) scores (RLHF) \\\n",
"0 I'm a pretty old lady, and I loved this movie ... 2.218363 \n",
"1 One of the most Antibiotic Apps I have seen in 2.145479 \n",
"2 Okay, as I enjoyed the movie. It's added bonus... 2.239827 \n",
"3 Watching \"Kroven\". The film has a 1.044690 \n",
"4 Seriously what were they thinking? It's a very... 2.753088 \n",
"5 OK Hollywood shoot, and this is a classic. Som... 2.517364 \n",
"6 \"Bend It all\" is a sophisticated, drawing and ... 2.583935 \n",
"7 While the premise behind The House Intelligenc... 0.205217 \n",
"8 Well let me go through everything says it's a ... 2.727040 \n",
"9 Vijay Krishna Acharya is a perfect performance... 2.563642 \n",
"10 Watching this movie made me sleep better. It w... 1.690222 \n",
"11 There are probably random man only recently wh... 0.398258 \n",
"12 Meryl Streitz, who is 0.085154 \n",
"13 I thought I read somewhere that my thoughts, a... 1.833734 \n",
"14 Good movie, very much fuzz and logical based w... 2.325996 \n",
"15 It was agonizing because it was truly fun to 0.969669 \n",
"0 This movie has plenty of extraordinary feature... 2.735337 \n",
"1 OK where do i begin? For all of you who are no... 0.019694 \n",
"2 I watched it because of its excellent cast. Th... 2.498309 \n",
"3 It's been 19 years since Gordon Tree has becom... 1.632266 \n",
"4 Just kidding \"Third World Snopes 0.944632 \n",
"5 shakespeare's plays have a way. It's the look ... 1.444803 \n",
"6 This movie is wonderful. What someone likes ab... 2.759510 \n",
"7 I loved it, and I really loved Audrey 2.578412 \n",
"8 A superb and super fun movie that removes all the 2.783201 \n",
"9 I remember when Shelter saw some girls on TV 0.825408 \n",
"10 This su*k Dress! I loved it 2.345865 \n",
"11 One Stinkl was a great actor, particularly 1.782818 \n",
"12 I pulled down a VHS looking a good looking, and a -0.008258 \n",
"13 For some enthraled time, the film will impress... 2.455694 \n",
"14 This one features all kinds of wit and humor r... 2.743043 \n",
"15 Somehow a woman working with her daughter play... 0.092226 \n",
"\n",
" response (best_of) scores (best_of) \n",
"0 I'm a pretty old, stinking,acting kinda chick ... 2.016955 \n",
"1 One of the most memorable performances of this... 2.676944 \n",
"2 Okay, as I put it in such a negative mood, it ... 1.478424 \n",
"3 Watching \"Kro\" is an entertainment craze 1.389495 \n",
"4 Seriously what were they thinking? It was stil... 2.523514 \n",
"5 OK Hollywood pay and the freaky set-up of this... 1.634765 \n",
"6 \"Bend It 9\"/\"Zara Pephoto\") and an honest, rea... 2.557210 \n",
"7 While the premise behind The House of Dracula ... 1.676889 \n",
"8 Well let me go though, alive in this ever grow... 2.652859 \n",
"9 Vijay Krishna Acharya adeptly emerges, and the... 2.308076 \n",
"10 Watching this movie made me curious: what did ... 0.950836 \n",
"11 There are probably too many documentaries in s... 1.142725 \n",
"12 Meryl Streep performed an awe 1.932498 \n",
"13 I thought I read somewhere that The Odd Couple... 0.475951 \n",
"14 Good movie, very well polished, nicely written... 2.820022 \n",
"15 It was agonizing, poignant, and worst of 2.058277 "
"0 This movie was unexpectedly funny and funny, you 2.405301 \n",
"1 OK where do i begin? i just wanted to add some... 0.622912 \n",
"2 I watched the trial trial for teaches us a goo... 2.057187 \n",
"3 It's been 19 years since Gordon Clarke put me ... 2.783458 \n",
"4 Just kidding, I didn't even 1.945202 \n",
"5 shakespeare's plays have a way of getting back... 1.834373 \n",
"6 This movie is wonderful. What a different look, 2.695312 \n",
"7 I loved this film. Reading reviews of it 2.751773 \n",
"8 A superb and most finely acted role that I will 2.894923 \n",
"9 I remember thinking to myself how SOMEONE who 1.634163 \n",
"10 This su*k like a roll of crap 2.422874 \n",
"11 One Stink?: Invisible of Saint Barbara, poor 1.667756 \n",
"12 I pulled down a VHS copy the other day and all I 0.992919 \n",
"13 For some reason, a bomb crashed on the rear of... 0.857423 \n",
"14 This one features all the best Birdprogram sup... 2.343950 \n",
"15 Somehow a woman working with an overweight ins... 1.415525 "
]
},
"execution_count": 10,
@ -420,6 +624,13 @@
"df_results = pd.DataFrame(output_data)\n",
"df_results"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
@ -429,13 +640,23 @@
},
"gpuClass": "standard",
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"name": "python"
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.10"
}
},
"nbformat": 4,
"nbformat_minor": 0
"nbformat_minor": 1
}

View File

@ -80,7 +80,12 @@
"\n",
"from transformers import AutoTokenizer, pipeline\n",
"\n",
"from trl import PPOTrainer, PPOConfig, AutoModelForCausalLMWithValueHead, create_reference_model"
"from trl import (\n",
" PPOTrainer,\n",
" PPOConfig,\n",
" AutoModelForCausalLMWithValueHead,\n",
" create_reference_model,\n",
")"
]
},
{
@ -99,7 +104,11 @@
"sentiment_pipe_kwargs = {\"top_k\": None, \"function_to_apply\": \"none\"}\n",
"\n",
"config = PPOConfig(\n",
" model_name=\"lvwerra/gpt2-imdb\", steps=51200, learning_rate=1.41e-5, remove_unused_columns=False, log_with=\"wandb\"\n",
" model_name=\"lvwerra/gpt2-imdb\",\n",
" steps=51200,\n",
" learning_rate=1.41e-5,\n",
" remove_unused_columns=False,\n",
" log_with=\"wandb\",\n",
")\n",
"\n",
"txt_in_len = 5\n",
@ -236,10 +245,16 @@
],
"source": [
"dataset = dataset.map(\n",
" lambda x: {\"input_ids\": gpt2_tokenizer.encode(\" \" + x[\"review\"], return_tensors=\"pt\")[0, :txt_in_len]},\n",
" lambda x: {\n",
" \"input_ids\": gpt2_tokenizer.encode(\" \" + x[\"review\"], return_tensors=\"pt\")[\n",
" 0, :txt_in_len\n",
" ]\n",
" },\n",
" batched=False,\n",
")\n",
"dataset = dataset.map(lambda x: {\"query\": gpt2_tokenizer.decode(x[\"input_ids\"])}, batched=False)\n",
"dataset = dataset.map(\n",
" lambda x: {\"query\": gpt2_tokenizer.decode(x[\"input_ids\"])}, batched=False\n",
")\n",
"dataset = dataset[:20480]\n",
"\n",
"from datasets import Dataset\n",
@ -353,7 +368,9 @@
}
],
"source": [
"ppo_trainer = PPOTrainer(config, gpt2_model, gpt2_ref_model, gpt2_tokenizer, dataset, data_collator=collator)"
"ppo_trainer = PPOTrainer(\n",
" config, gpt2_model, gpt2_ref_model, gpt2_tokenizer, dataset, data_collator=collator\n",
")"
]
},
{
@ -374,7 +391,9 @@
" device = 0 if torch.cuda.is_available() else \"cpu\" # to avoid a `pipeline` bug\n",
"else:\n",
" device = ppo_trainer.accelerator.device\n",
"sentiment_pipe = pipeline(\"sentiment-analysis\", \"lvwerra/distilbert-imdb\", device=device)"
"sentiment_pipe = pipeline(\n",
" \"sentiment-analysis\", \"lvwerra/distilbert-imdb\", device=device\n",
")"
]
},
{
@ -510,8 +529,13 @@
"outputs": [],
"source": [
"ctrl_str = [\"[negative]\", \"[neutral]\", \"[positive]\"]\n",
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") # this should be handled by accelerate\n",
"ctrl_tokens = dict((s, gpt2_tokenizer.encode(s, return_tensors=\"pt\").squeeze().to(device)) for s in ctrl_str)"
"device = torch.device(\n",
" \"cuda\" if torch.cuda.is_available() else \"cpu\"\n",
") # this should be handled by accelerate\n",
"ctrl_tokens = dict(\n",
" (s, gpt2_tokenizer.encode(s, return_tensors=\"pt\").squeeze().to(device))\n",
" for s in ctrl_str\n",
")"
]
},
{
@ -721,7 +745,10 @@
"source": [
"for epoch in range(2):\n",
" for batch in tqdm(ppo_trainer.dataloader):\n",
" (logs, game_data,) = (\n",
" (\n",
" logs,\n",
" game_data,\n",
" ) = (\n",
" dict(),\n",
" dict(),\n",
" )\n",
@ -729,14 +756,19 @@
" #### prepend a random control token\n",
" task_list = choices(ctrl_str, k=config.batch_size)\n",
" game_data[\"query\"] = [t + q for t, q in zip(task_list, batch[\"query\"])]\n",
" query_tensors = [torch.cat((ctrl_tokens[t], input_ids)) for t, input_ids in zip(task_list, batch[\"input_ids\"])]\n",
" query_tensors = [\n",
" torch.cat((ctrl_tokens[t], input_ids))\n",
" for t, input_ids in zip(task_list, batch[\"input_ids\"])\n",
" ]\n",
"\n",
" #### get response from gpt2\n",
" response_tensors = []\n",
" for query in query_tensors:\n",
" response = ppo_trainer.generate(query, **generation_kwargs)\n",
" response_tensors.append(response.squeeze()[-txt_out_len:])\n",
" game_data[\"response\"] = [gpt2_tokenizer.decode(r.squeeze()) for r in response_tensors]\n",
" game_data[\"response\"] = [\n",
" gpt2_tokenizer.decode(r.squeeze()) for r in response_tensors\n",
" ]\n",
"\n",
" #### sentiment analysis\n",
" texts = [q + r for q, r in zip(batch[\"query\"], game_data[\"response\"])]\n",
@ -749,7 +781,9 @@
"\n",
" for cs in ctrl_str:\n",
" key = \"env/reward_\" + cs.strip(\"[]\")\n",
" stats[key] = np.mean([r.cpu().numpy() for r, t in zip(rewards, task_list) if t == cs])\n",
" stats[key] = np.mean(\n",
" [r.cpu().numpy() for r, t in zip(rewards, task_list) if t == cs]\n",
" )\n",
" ppo_trainer.log_stats(stats, game_data, rewards)"
]
},
@ -804,7 +838,10 @@
"source": [
"for ctrl_s in ctrl_str:\n",
" plt.hist(\n",
" [r for r, t in zip(logs[\"env/reward_dist\"], task_list) if t == ctrl_s], density=True, alpha=0.5, label=ctrl_s\n",
" [r for r, t in zip(logs[\"env/reward_dist\"], task_list) if t == ctrl_s],\n",
" density=True,\n",
" alpha=0.5,\n",
" label=ctrl_s,\n",
" )\n",
"plt.legend(loc=\"best\")\n",
"plt.title(\"reward distribution\")\n",

View File

@ -136,7 +136,12 @@
"metadata": {},
"outputs": [],
"source": [
"def build_dataset(config, dataset_name=\"stanfordnlp/imdb\", input_min_text_length=2, input_max_text_length=8):\n",
"def build_dataset(\n",
" config,\n",
" dataset_name=\"stanfordnlp/imdb\",\n",
" input_min_text_length=2,\n",
" input_max_text_length=8,\n",
"):\n",
" \"\"\"\n",
" Build dataset for training. This builds the dataset from `load_dataset`, one should\n",
" customize this function to train the model on its own dataset.\n",
@ -223,7 +228,9 @@
"metadata": {},
"outputs": [],
"source": [
"ppo_trainer = PPOTrainer(config, model, ref_model, tokenizer, dataset=dataset, data_collator=collator)"
"ppo_trainer = PPOTrainer(\n",
" config, model, ref_model, tokenizer, dataset=dataset, data_collator=collator\n",
")"
]
},
{
@ -243,7 +250,9 @@
"device = ppo_trainer.accelerator.device\n",
"if ppo_trainer.accelerator.num_processes == 1:\n",
" device = 0 if torch.cuda.is_available() else \"cpu\" # to avoid a `pipeline` bug\n",
"sentiment_pipe = pipeline(\"sentiment-analysis\", model=\"lvwerra/distilbert-imdb\", device=device)"
"sentiment_pipe = pipeline(\n",
" \"sentiment-analysis\", model=\"lvwerra/distilbert-imdb\", device=device\n",
")"
]
},
{
@ -311,7 +320,13 @@
"metadata": {},
"outputs": [],
"source": [
"gen_kwargs = {\"min_length\": -1, \"top_k\": 0.0, \"top_p\": 1.0, \"do_sample\": True, \"pad_token_id\": tokenizer.eos_token_id}"
"gen_kwargs = {\n",
" \"min_length\": -1,\n",
" \"top_k\": 0.0,\n",
" \"top_p\": 1.0,\n",
" \"do_sample\": True,\n",
" \"pad_token_id\": tokenizer.eos_token_id,\n",
"}"
]
},
{
@ -378,7 +393,12 @@
" #### Compute sentiment score\n",
" texts = [q + r for q, r in zip(batch[\"query\"], batch[\"response\"])]\n",
" pipe_outputs = sentiment_pipe(texts, **sent_kwargs)\n",
" positive_scores = [item[\"score\"] for output in pipe_outputs for item in output if item[\"label\"] == \"POSITIVE\"]\n",
" positive_scores = [\n",
" item[\"score\"]\n",
" for output in pipe_outputs\n",
" for item in output\n",
" if item[\"label\"] == \"POSITIVE\"\n",
" ]\n",
" rewards = [torch.tensor(score) for score in positive_scores]\n",
"\n",
" #### Run PPO step\n",
@ -673,27 +693,45 @@
" query = torch.tensor(query_tensors[i]).to(device)\n",
"\n",
" gen_len = output_length_sampler()\n",
" query_response = ref_model.generate(query.unsqueeze(0), max_new_tokens=gen_len, **gen_kwargs).squeeze()\n",
" query_response = ref_model.generate(\n",
" query.unsqueeze(0), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()\n",
" response_len = len(query_response) - len(query)\n",
" response_tensors_ref.append(query_response[-response_len:])\n",
"\n",
" query_response = model.generate(query.unsqueeze(0), max_new_tokens=gen_len, **gen_kwargs).squeeze()\n",
" query_response = model.generate(\n",
" query.unsqueeze(0), max_new_tokens=gen_len, **gen_kwargs\n",
" ).squeeze()\n",
" response_len = len(query_response) - len(query)\n",
" response_tensors.append(query_response[-response_len:])\n",
"\n",
"#### decode responses\n",
"game_data[\"response (before)\"] = [tokenizer.decode(response_tensors_ref[i]) for i in range(bs)]\n",
"game_data[\"response (after)\"] = [tokenizer.decode(response_tensors[i]) for i in range(bs)]\n",
"game_data[\"response (before)\"] = [\n",
" tokenizer.decode(response_tensors_ref[i]) for i in range(bs)\n",
"]\n",
"game_data[\"response (after)\"] = [\n",
" tokenizer.decode(response_tensors[i]) for i in range(bs)\n",
"]\n",
"\n",
"#### sentiment analysis of query/response pairs before/after\n",
"texts = [q + r for q, r in zip(game_data[\"query\"], game_data[\"response (before)\"])]\n",
"pipe_outputs = sentiment_pipe(texts, **sent_kwargs)\n",
"positive_scores = [item[\"score\"] for output in pipe_outputs for item in output if item[\"label\"] == \"POSITIVE\"]\n",
"positive_scores = [\n",
" item[\"score\"]\n",
" for output in pipe_outputs\n",
" for item in output\n",
" if item[\"label\"] == \"POSITIVE\"\n",
"]\n",
"game_data[\"rewards (before)\"] = positive_scores\n",
"\n",
"texts = [q + r for q, r in zip(game_data[\"query\"], game_data[\"response (after)\"])]\n",
"pipe_outputs = sentiment_pipe(texts, **sent_kwargs)\n",
"positive_scores = [item[\"score\"] for output in pipe_outputs for item in output if item[\"label\"] == \"POSITIVE\"]\n",
"positive_scores = [\n",
" item[\"score\"]\n",
" for output in pipe_outputs\n",
" for item in output\n",
" if item[\"label\"] == \"POSITIVE\"\n",
"]\n",
"game_data[\"rewards (after)\"] = positive_scores\n",
"\n",
"# store results in a dataframe\n",

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -13,7 +13,7 @@
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any, Dict, List, Optional, Union
from typing import Any, Optional, Union
import evaluate
import numpy as np
@ -233,11 +233,10 @@ eval_dataset = eval_dataset.filter(
class RewardDataCollatorWithPadding:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
max_length: Optional[int] = None
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def __call__(self, features: List[Dict[str, Any]]) -> Dict[str, Any]:
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
features_j = []
features_k = []
for feature in features:
@ -256,14 +255,12 @@ class RewardDataCollatorWithPadding:
batch_j = self.tokenizer.pad(
features_j,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch_k = self.tokenizer.pad(
features_k,
padding=self.padding,
max_length=self.max_length,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
@ -308,7 +305,7 @@ trainer = RewardTrainer(
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
data_collator=RewardDataCollatorWithPadding(tokenizer=tokenizer, max_length=script_args.max_length),
data_collator=RewardDataCollatorWithPadding(tokenizer=tokenizer),
)

View File

@ -1,4 +1,4 @@
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -15,7 +15,7 @@
# 0. imports
import os
from dataclasses import dataclass, field
from typing import Dict, Optional
from typing import Optional
import torch
from accelerate import Accelerator
@ -109,9 +109,9 @@ def get_stack_exchange_paired(
The dataset is converted to a dictionary with the following structure:
{
'prompt': List[str],
'chosen': List[str],
'rejected': List[str],
'prompt': list[str],
'chosen': list[str],
'rejected': list[str],
}
Prompts are structured as follows:
@ -126,7 +126,7 @@ def get_stack_exchange_paired(
)
original_columns = dataset.column_names
def return_prompt_and_responses(samples) -> Dict[str, str]:
def return_prompt_and_responses(samples) -> dict[str, str]:
return {
"prompt": ["Question: " + question + "\n\nAnswer: " for question in samples["question"]],
"chosen": samples["response_j"],
@ -237,7 +237,7 @@ if __name__ == "__main__":
beta=script_args.beta,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=tokenizer,
processing_class=tokenizer,
peft_config=peft_config,
max_prompt_length=script_args.max_prompt_length,
max_length=script_args.max_length,

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -187,7 +187,7 @@ trainer = SFTTrainer(
peft_config=peft_config,
max_seq_length=None,
formatting_func=prepare_sample_text,
tokenizer=tokenizer,
processing_class=tokenizer,
args=training_args,
)
trainer.train()

View File

@ -1,4 +1,4 @@
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@ -1,4 +1,4 @@
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -45,7 +45,7 @@ class ScriptArguments:
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
def exact_match_reward(responses, answers=None):
@ -90,12 +90,12 @@ lora_config = LoraConfig(
# set up models
model = AutoModelForCausalLMWithValueHead.from_pretrained(
args.model_name,
script_args.model_name,
use_auth_token=True,
load_in_4bit=True,
peft_config=lora_config,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_name, use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name, use_auth_token=True)
tokenizer.pad_token = tokenizer.eos_token
ds = load_dataset("openai/gsm8k", "main", split="train")
@ -107,7 +107,7 @@ ds_test = load_dataset("openai/gsm8k", "main", split="test")
ds_test = ds_test.rename_columns({"question": "query"})
ds_test = ds_test.map(lambda x: {"answer": x["answer"].split("#### ")[1]})
test_dataloader = torch.utils.data.DataLoader(ds_test, batch_size=args.batch_size)
test_dataloader = torch.utils.data.DataLoader(ds_test, batch_size=script_args.batch_size)
# prompt
prompt = """\
@ -138,23 +138,23 @@ generation_kwargs = {
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"eos_token_id": -1,
"max_new_tokens": args.max_new_tokens,
"max_new_tokens": script_args.max_new_tokens,
}
# trainer
ppo_config = PPOConfig(
batch_size=args.batch_size,
learning_rate=args.learning_rate,
mini_batch_size=args.mini_batch_size,
ppo_epochs=args.ppo_epochs,
gradient_accumulation_steps=args.gradient_accumulation_steps,
batch_size=script_args.batch_size,
learning_rate=script_args.learning_rate,
mini_batch_size=script_args.mini_batch_size,
ppo_epochs=script_args.ppo_epochs,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
log_with="wandb",
tracker_project_name="trl-gsm8k",
remove_unused_columns=False,
optimize_cuda_cache=True,
)
ppo_trainer = PPOTrainer(config=ppo_config, model=model, tokenizer=tokenizer, dataset=ds)
ppo_trainer = PPOTrainer(args=ppo_config, model=model, tokenizer=tokenizer, dataset=ds)
test_dataloader = ppo_trainer.accelerator.prepare(test_dataloader)
# text env
@ -169,7 +169,7 @@ text_env = TextEnvironment(
)
# main training loop
for epoch in range(args.n_epochs):
for epoch in range(script_args.n_epochs):
for step, batch in enumerate(ppo_trainer.dataloader):
if (step == 0) and (epoch % 4 == 0): # evaluate every 4 epochs
reward_mean_test = evaluate(test_dataloader, text_env, ppo_trainer)
@ -190,4 +190,4 @@ for epoch in range(args.n_epochs):
ppo_trainer.log_stats(train_stats, texts, rewards, columns_to_log=["query", "response", "answer"])
reward_mean_test = evaluate(test_dataloader, text_env, ppo_trainer)
ppo_trainer.save_pretrained(f"model/{args.model_name}-gsm8k")
ppo_trainer.save_pretrained(f"model/{script_args.model_name}-gsm8k")

View File

@ -1,4 +1,4 @@
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -45,7 +45,7 @@ class ScriptArguments:
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
lora_config = LoraConfig(
r=16,
@ -58,13 +58,13 @@ lora_config = LoraConfig(
# set up models
model = AutoModelForCausalLMWithValueHead.from_pretrained(
args.model_name,
script_args.model_name,
use_auth_token=True,
trust_remote_code=True,
load_in_4bit=True,
peft_config=lora_config,
)
tokenizer = AutoTokenizer.from_pretrained(args.model_name, use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name, use_auth_token=True)
tokenizer.pad_token = tokenizer.eos_token
# system prompt
@ -90,24 +90,24 @@ generation_kwargs = {
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
"eos_token_id": -1,
"max_new_tokens": args.max_new_tokens,
"max_new_tokens": script_args.max_new_tokens,
}
# trainer
config = PPOConfig(
batch_size=args.batch_size,
model_name=args.model_name,
learning_rate=args.learning_rate,
log_with=args.log_with,
mini_batch_size=args.mini_batch_size,
ppo_epochs=args.ppo_epochs,
gradient_accumulation_steps=args.gradient_accumulation_steps,
seed=args.seed,
batch_size=script_args.batch_size,
model_name=script_args.model_name,
learning_rate=script_args.learning_rate,
log_with=script_args.log_with,
mini_batch_size=script_args.mini_batch_size,
ppo_epochs=script_args.ppo_epochs,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
seed=script_args.seed,
optimize_cuda_cache=True,
)
ppo_trainer = PPOTrainer(config=config, model=model, tokenizer=tokenizer)
ppo_trainer = PPOTrainer(args=config, model=model, tokenizer=tokenizer)
dataset = load_dataset("mandarjoshi/trivia_qa", "rc", split="train")
local_seed = args.seed + ppo_trainer.accelerator.process_index * 100003 # Prime
local_seed = script_args.seed + ppo_trainer.accelerator.process_index * 100003 # Prime
dataset = dataset.shuffle(local_seed)
@ -175,7 +175,7 @@ def print_trainable_parameters(model):
print_trainable_parameters(model)
# main training loop
for i in range(args.iterations):
for i in range(script_args.iterations):
tasks, answers = generate_data(config.batch_size)
queries, responses, masks, rewards, histories = text_env.run(tasks, answers=answers)
train_stats = ppo_trainer.step(queries, responses, rewards, masks)
@ -189,4 +189,4 @@ for i in range(args.iterations):
all_rewards = ppo_trainer.accelerator.gather(torch.tensor(rewards, device=ppo_trainer.accelerator.device))
ppo_trainer.log_stats(train_stats, texts, list(all_rewards), columns_to_log=["query", "response", "answer"])
if i % 100 == 0:
ppo_trainer.save_pretrained(f"models/{args.model_name}_{args.seed}_{i}_triviaqa")
ppo_trainer.save_pretrained(f"models/{script_args.model_name}_{script_args.seed}_{i}_triviaqa")

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.

View File

@ -1,4 +1,4 @@
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional

View File

@ -1,4 +1,4 @@
# Copyright 2023 metric-space, The HuggingFace Team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Total Batch size = 128 = 4 (num_gpus) * 8 (per_device_batch) * 4 (accumulation steps)
Feel free to reduce batch size or increasing truncated_rand_backprop_min to a higher value to reduce memory usage.
@ -106,8 +107,8 @@ def image_outputs_logger(image_pair_data, global_step, accelerate_logger):
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, AlignPropConfig))
args, alignprop_config = parser.parse_args_into_dataclasses()
alignprop_config.project_kwargs = {
script_args, training_args = parser.parse_args_into_dataclasses()
training_args.project_kwargs = {
"logging_dir": "./logs",
"automatic_checkpoint_naming": True,
"total_limit": 5,
@ -115,11 +116,13 @@ if __name__ == "__main__":
}
pipeline = DefaultDDPOStableDiffusionPipeline(
args.pretrained_model, pretrained_model_revision=args.pretrained_revision, use_lora=args.use_lora
script_args.pretrained_model,
pretrained_model_revision=script_args.pretrained_revision,
use_lora=script_args.use_lora,
)
trainer = AlignPropTrainer(
alignprop_config,
aesthetic_scorer(args.hf_hub_aesthetic_model_id, args.hf_hub_aesthetic_model_filename),
training_args,
aesthetic_scorer(script_args.hf_hub_aesthetic_model_id, script_args.hf_hub_aesthetic_model_filename),
prompt_fn,
pipeline,
image_samples_hook=image_outputs_logger,
@ -127,4 +130,7 @@ if __name__ == "__main__":
trainer.train()
trainer.push_to_hub(args.hf_hub_model_id)
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -17,7 +17,9 @@ Run the BCO training script with the commands below. In general, the optimal con
# Full training:
python examples/scripts/bco.py \
--model_name_or_path=nnheui/stablelm-2-1_6b-sft-full \
--model_name_or_path Qwen/Qwen2.5-0.5B-Instruct \
--trust_remote_code \
--dataset_name trl-lib/ultrafeedback-gpt-3.5-turbo-helpfulness \
--per_device_train_batch_size 16 \
--per_device_eval_batch_size 32 \
--num_train_epochs 1 \
@ -66,88 +68,15 @@ python examples/scripts/bco.py \
--lora_alpha=16
"""
import logging
from dataclasses import dataclass
from functools import partial
from typing import Literal, Optional
import torch
import torch.nn.functional as F
from accelerate import Accelerator, PartialState
from datasets import Dataset, load_dataset
from accelerate import Accelerator
from datasets import load_dataset
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, PreTrainedModel
from trl import BCOConfig, BCOTrainer, ModelConfig, get_peft_config, setup_chat_format
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The arguments for the BCO training script.
"""
llm_name: Literal["gpt-3.5-turbo", "llama-2-7b-chat", "llama-2-70b-chat"] = "gpt-3.5-turbo"
def build_helpfulness_dataset(llm_name: str, num_proc: Optional[int] = None) -> Dataset:
"""
Filter `llm_name` completions and binarize given their helpfulness score.
If helpfulness score is 5, it is desirable. Otherwise, it is undesirable.
"""
def get_model_rating(example, metric: str, llm_name: str):
try:
model_index = example["models"].index(llm_name)
return {metric: int(example["completions"][model_index]["annotations"][metric]["Rating"])}
except ValueError as e:
logging.warning(e)
return -1
def get_model_response(example, llm_name: str):
try:
model_index = example["models"].index(llm_name)
return {"response": example["completions"][model_index]["response"]}
except ValueError as e:
logging.warning(e)
return -1
dataset = load_dataset("openbmb/UltraFeedback")["train"]
dataset = dataset.filter(lambda example: llm_name in example["models"], batched=False, num_proc=num_proc)
dataset = dataset.filter(
lambda example: len(example["models"]) == len(example["completions"]), batched=False, num_proc=num_proc
)
METRIC = "helpfulness"
dataset = dataset.map(
get_model_rating,
batched=False,
fn_kwargs={"metric": METRIC, "llm_name": llm_name},
num_proc=num_proc,
)
dataset = dataset.map(
get_model_response,
batched=False,
fn_kwargs={"llm_name": llm_name},
num_proc=num_proc,
)
dataset = dataset.select_columns(["source", "instruction", "response", "helpfulness"])
dataset = dataset.rename_columns({"instruction": "prompt", "response": "completion"})
dataset = dataset.map(lambda example: {"label": example["helpfulness"] >= 5}, batched=False, num_proc=num_proc)
dataset = dataset.map(
lambda example: {"prompt": [{"role": "user", "content": example["prompt"]}]},
batched=False,
num_proc=num_proc,
)
dataset = dataset.train_test_split(test_size=0.05, seed=42)
return dataset
from trl import BCOConfig, BCOTrainer, ModelConfig, ScriptArguments, get_peft_config, setup_chat_format
def embed_prompt(input_ids: torch.LongTensor, attention_mask: torch.LongTensor, model: PreTrainedModel):
@ -175,9 +104,9 @@ def embed_prompt(input_ids: torch.LongTensor, attention_mask: torch.LongTensor,
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, BCOConfig, ModelConfig))
script_args, bco_args, model_args = parser.parse_args_into_dataclasses()
script_args, training_args, model_args = parser.parse_args_into_dataclasses()
bco_args.gradient_checkpointing_kwargs = {"use_reentrant": True}
training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}
# Load a pretrained model
model = AutoModelForCausalLM.from_pretrained(
@ -197,19 +126,7 @@ if __name__ == "__main__":
if tokenizer.chat_template is None:
model, tokenizer = setup_chat_format(model, tokenizer)
# Apply chat template
def format_dataset(example):
example["prompt"] = tokenizer.apply_chat_template(
example["prompt"], tokenize=False, add_generation_prompt=True
)
return example
# Compute that only on the main process for faster data processing.
# see: https://github.com/huggingface/trl/pull/1255
with PartialState().local_main_process_first():
# Load the dataset
dataset = build_helpfulness_dataset(script_args.llm_name, num_proc=bco_args.dataset_num_proc)
dataset = dataset.map(format_dataset, batched=False, num_proc=bco_args.dataset_num_proc)
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
accelerator = Accelerator()
embedding_model = AutoModel.from_pretrained(
@ -229,18 +146,22 @@ if __name__ == "__main__":
)
# Initialize the BCO trainer
bco_trainer = BCOTrainer(
trainer = BCOTrainer(
model,
ref_model,
args=bco_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
peft_config=get_peft_config(model_args),
embedding_func=embedding_func,
embedding_tokenizer=embedding_tokenizer,
)
# Train and push the model to the Hub
bco_trainer.train()
bco_trainer.save_model(bco_args.output_dir)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)

View File

@ -1,4 +1,3 @@
# flake8: noqa
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
@ -13,355 +12,6 @@
# See the License for the specific language governing permissions and
# limitations under the License.
from trl.commands.cli_utils import init_zero_verbose
init_zero_verbose()
import copy
import json
import os
import sys
import pwd
import re
import time
from threading import Thread
import torch
from rich.console import Console
from rich.live import Live
from rich.markdown import Markdown
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from trl.commands.cli_utils import ChatArguments, TrlParser, init_zero_verbose
from trl.trainer.utils import get_quantization_config
HELP_STRING = """\
**TRL CHAT INTERFACE**
The chat interface is a simple tool to try out a chat model.
Besides talking to the model there are several commands:
- **clear**: clears the current conversation and start a new one
- **example {NAME}**: load example named `{NAME}` from the config and use it as the user input
- **set {SETTING_NAME}={SETTING_VALUE};**: change the system prompt or generation settings (multiple settings are separated by a ';').
- **reset**: same as clear but also resets the generation configs to defaults if they have been changed by **set**
- **save {SAVE_NAME} (optional)**: save the current chat and settings to file by default to `./chat_history/{MODEL_NAME}/chat_{DATETIME}.yaml` or `{SAVE_NAME}` if provided
- **exit**: closes the interface
"""
SUPPORTED_GENERATION_KWARGS = [
"max_new_tokens",
"do_sample",
"num_beams",
"temperature",
"top_p",
"top_k",
"repetition_penalty",
]
SETTING_RE = r"^set\s+[A-Za-z\s_]+=[A-Za-z\d\s.!\"#$%&'()*+,-/:<=>?@\[\]^_`{|}~]+(?:;\s*[A-Za-z\s_]+=[A-Za-z\d\s.!\"#$%&'()*+,-/:<=>?@\[\]^_`{|}~]+)*$"
class RichInterface:
def __init__(self, model_name=None, user_name=None):
self._console = Console()
if model_name is None:
self.model_name = "assistant"
else:
self.model_name = model_name
if user_name is None:
self.user_name = "user"
else:
self.user_name = user_name
def stream_output(self, output_stream):
"""Stream output from a role."""
# This method is originally from the FastChat CLI: https://github.com/lm-sys/FastChat/blob/main/fastchat/serve/cli.py
# Create a Live context for updating the console output
text = ""
self._console.print(f"[bold blue]<{self.model_name}>:")
with Live(console=self._console, refresh_per_second=4) as live:
# Read lines from the stream
for i, outputs in enumerate(output_stream):
if not outputs or i == 0:
continue
text += outputs
# Render the accumulated text as Markdown
# NOTE: this is a workaround for the rendering "unstandard markdown"
# in rich. The chatbots output treat "\n" as a new line for
# better compatibility with real-world text. However, rendering
# in markdown would break the format. It is because standard markdown
# treat a single "\n" in normal text as a space.
# Our workaround is adding two spaces at the end of each line.
# This is not a perfect solution, as it would
# introduce trailing spaces (only) in code block, but it works well
# especially for console output, because in general the console does not
# care about trailing spaces.
lines = []
for line in text.splitlines():
lines.append(line)
if line.startswith("```"):
# Code block marker - do not add trailing spaces, as it would
# break the syntax highlighting
lines.append("\n")
else:
lines.append(" \n")
markdown = Markdown("".join(lines).strip(), code_theme="github-dark")
# Update the Live console output
live.update(markdown)
self._console.print()
return text
def input(self):
input = self._console.input(f"[bold red]<{self.user_name}>:\n")
self._console.print()
return input
def clear(self):
self._console.clear()
def print_user_message(self, text):
self._console.print(f"[bold red]<{self.user_name}>:[/ bold red]\n{text}")
self._console.print()
def print_green(self, text):
self._console.print(f"[bold green]{text}")
self._console.print()
def print_red(self, text):
self._console.print(f"[bold red]{text}")
self._console.print()
def print_help(self):
self._console.print(Markdown(HELP_STRING))
self._console.print()
def get_username():
return pwd.getpwuid(os.getuid())[0]
def create_default_filename(model_name):
time_str = time.strftime("%Y-%m-%d_%H-%M-%S")
return f"{model_name}/chat_{time_str}.json"
def save_chat(chat, args, filename):
output_dict = {}
output_dict["settings"] = vars(args)
output_dict["chat_history"] = chat
folder = args.save_folder
if filename is None:
filename = create_default_filename(args.model_name_or_path)
filename = os.path.join(folder, filename)
os.makedirs(os.path.dirname(filename), exist_ok=True)
with open(filename, "w") as f:
json.dump(output_dict, f, indent=4)
return os.path.abspath(filename)
def clear_chat_history(system_prompt):
if system_prompt is None:
chat = []
else:
chat = [{"role": "system", "content": system_prompt}]
return chat
def parse_settings(user_input, current_args, interface):
settings = user_input[4:].strip().split(";")
settings = [(setting.split("=")[0], setting[len(setting.split("=")[0]) + 1 :]) for setting in settings]
settings = dict(settings)
error = False
for name in settings:
if hasattr(current_args, name):
try:
if isinstance(getattr(current_args, name), bool):
if settings[name] == "True":
settings[name] = True
elif settings[name] == "False":
settings[name] = False
else:
raise ValueError
else:
settings[name] = type(getattr(current_args, name))(settings[name])
except ValueError:
interface.print_red(
f"Cannot cast setting {name} (={settings[name]}) to {type(getattr(current_args, name))}."
)
else:
interface.print_red(f"There is no '{name}' setting.")
if error:
interface.print_red("There was an issue parsing the settings. No settings have been changed.")
return current_args, False
else:
for name in settings:
setattr(current_args, name, settings[name])
interface.print_green(f"Set {name} to {settings[name]}.")
time.sleep(1.5) # so the user has time to read the changes
return current_args, True
def load_model_and_tokenizer(args):
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
revision=args.model_revision,
trust_remote_code=args.trust_remote_code,
)
torch_dtype = args.torch_dtype if args.torch_dtype in ["auto", None] else getattr(torch, args.torch_dtype)
quantization_config = get_quantization_config(args)
model_kwargs = dict(
revision=args.model_revision,
attn_implementation=args.attn_implementation,
torch_dtype=torch_dtype,
device_map="auto",
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(
args.model_name_or_path, trust_remote_code=args.trust_remote_code, **model_kwargs
)
if getattr(model, "hf_device_map", None) is None:
model = model.to(args.device)
return model, tokenizer
def parse_eos_tokens(tokenizer, eos_tokens, eos_token_ids):
if tokenizer.pad_token_id is None:
pad_token_id = tokenizer.eos_token_id
else:
pad_token_id = tokenizer.pad_token_id
all_eos_token_ids = []
if eos_tokens is not None:
all_eos_token_ids.extend(tokenizer.convert_tokens_to_ids(eos_tokens.split(",")))
if eos_token_ids is not None:
all_eos_token_ids.extend([int(token_id) for token_id in eos_token_ids.split(",")])
if len(all_eos_token_ids) == 0:
all_eos_token_ids.append(tokenizer.eos_token_id)
return pad_token_id, all_eos_token_ids
def chat_cli():
parser = TrlParser(ChatArguments)
if "--config" not in sys.argv:
sys.argv.append("--config")
sys.argv.append(os.path.join(os.path.dirname(__file__), "config/default_chat_config.yaml"))
args = parser.parse_args_and_config()[0]
if args.examples is None:
args.examples = {}
current_args = copy.deepcopy(args)
if args.user is None:
user = get_username()
else:
user = args.user
model, tokenizer = load_model_and_tokenizer(args)
generation_streamer = TextIteratorStreamer(tokenizer, skip_special_tokens=True)
pad_token_id, eos_token_ids = parse_eos_tokens(tokenizer, args.eos_tokens, args.eos_token_ids)
interface = RichInterface(model_name=args.model_name_or_path, user_name=user)
interface.clear()
chat = clear_chat_history(current_args.system_prompt)
while True:
try:
user_input = interface.input()
if user_input == "clear":
chat = clear_chat_history(current_args.system_prompt)
interface.clear()
continue
if user_input == "help":
interface.print_help()
continue
if user_input == "exit":
break
if user_input == "reset":
interface.clear()
current_args = copy.deepcopy(args)
chat = clear_chat_history(current_args.system_prompt)
continue
if user_input.startswith("save") and len(user_input.split()) < 2:
split_input = user_input.split()
if len(split_input) == 2:
filename = split_input[1]
else:
filename = None
filename = save_chat(chat, current_args, filename)
interface.print_green(f"Chat saved in {filename}!")
continue
if re.match(SETTING_RE, user_input):
current_args, success = parse_settings(user_input, current_args, interface)
if success:
chat = []
interface.clear()
continue
if user_input.startswith("example") and len(user_input.split()) == 2:
example_name = user_input.split()[1]
if example_name in current_args.examples:
interface.clear()
chat = []
interface.print_user_message(current_args.examples[example_name]["text"])
user_input = current_args.examples[example_name]["text"]
else:
interface.print_red(
f"Example {example_name} not found in list of available examples: {list(current_args.examples.keys())}."
)
continue
chat.append({"role": "user", "content": user_input})
generation_kwargs = dict(
inputs=tokenizer.apply_chat_template(chat, return_tensors="pt", add_generation_prompt=True).to(
model.device
),
streamer=generation_streamer,
max_new_tokens=current_args.max_new_tokens,
do_sample=current_args.do_sample,
num_beams=current_args.num_beams,
temperature=current_args.temperature,
top_k=current_args.top_k,
top_p=current_args.top_p,
repetition_penalty=current_args.repetition_penalty,
pad_token_id=pad_token_id,
eos_token_id=eos_token_ids,
)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
model_output = interface.stream_output(generation_streamer)
thread.join()
chat.append({"role": "assistant", "content": model_output})
except KeyboardInterrupt:
break
if __name__ == "__main__":
chat_cli()
################################################################################################
# This file has been moved to https://github.com/huggingface/trl/blob/main/trl/scripts/chat.py #
################################################################################################

View File

@ -1,13 +0,0 @@
examples:
llama:
text: There is a Llama in my lawn, how can I get rid of it?
code:
text: Write a Python function that integrates any Python function f(x) numerically over an arbitrary interval [x_start, x_end].
helicopter:
text: How many helicopters can a human eat in one sitting?
numbers:
text: Count to 10 but skip every number ending with an 'e'
birds:
text: Why aren't birds real?
socks:
text: Why is it important to eat socks after meditating?

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -11,12 +11,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Run the CPO training script with the following command with some example arguments.
In general, the optimal configuration for CPO will be similar to that of DPO:
# regular:
python examples/scripts/cpo.py \
--dataset_name trl-lib/ultrafeedback_binarized \
--model_name_or_path=gpt2 \
--per_device_train_batch_size 4 \
--max_steps 1000 \
@ -33,6 +35,7 @@ python examples/scripts/cpo.py \
# peft:
python examples/scripts/cpo.py \
--dataset_name trl-lib/ultrafeedback_binarized \
--model_name_or_path=gpt2 \
--per_device_train_batch_size 4 \
--max_steps 1000 \
@ -52,36 +55,25 @@ python examples/scripts/cpo.py \
--lora_alpha=16
"""
from dataclasses import dataclass, field
from accelerate import PartialState
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
from trl import CPOConfig, CPOTrainer, ModelConfig, get_peft_config
from trl import CPOConfig, CPOTrainer, ModelConfig, ScriptArguments, get_peft_config
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
@dataclass
class ScriptArguments:
dataset_name: str = field(
default="trl-internal-testing/hh-rlhf-helpful-base-trl-style",
metadata={"help": "The name of the dataset to use."},
)
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, CPOConfig, ModelConfig))
args, cpo_args, model_config = parser.parse_args_into_dataclasses()
script_args, training_args, model_args = parser.parse_args_into_dataclasses()
################
# Model & Tokenizer
################
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
@ -89,32 +81,26 @@ if __name__ == "__main__":
################
# Dataset
################
dataset = load_dataset(args.dataset_name)
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
def process(row):
row["chosen"] = tokenizer.apply_chat_template(row["chosen"], tokenize=False)
row["rejected"] = tokenizer.apply_chat_template(row["rejected"], tokenize=False)
return row
# Compute that only on the main process for faster data processing.
# see: https://github.com/huggingface/trl/pull/1255
with PartialState().local_main_process_first():
dataset = dataset.map(process, num_proc=cpo_args.dataset_num_proc)
################
# Training
################
trainer = CPOTrainer(
model,
args=cpo_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
peft_config=get_peft_config(model_config),
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
peft_config=get_peft_config(model_args),
)
# train and save the model
trainer.train()
trainer.save_model(cpo_args.output_dir)
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)

View File

@ -1,4 +1,4 @@
# Copyright 2023 metric-space, The HuggingFace Team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -11,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
python examples/scripts/ddpo.py \
--num_epochs=200 \
@ -185,8 +186,8 @@ def image_outputs_logger(image_data, global_step, accelerate_logger):
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, DDPOConfig))
args, ddpo_config = parser.parse_args_into_dataclasses()
ddpo_config.project_kwargs = {
script_args, training_args = parser.parse_args_into_dataclasses()
training_args.project_kwargs = {
"logging_dir": "./logs",
"automatic_checkpoint_naming": True,
"total_limit": 5,
@ -194,12 +195,14 @@ if __name__ == "__main__":
}
pipeline = DefaultDDPOStableDiffusionPipeline(
args.pretrained_model, pretrained_model_revision=args.pretrained_revision, use_lora=args.use_lora
script_args.pretrained_model,
pretrained_model_revision=script_args.pretrained_revision,
use_lora=script_args.use_lora,
)
trainer = DDPOTrainer(
ddpo_config,
aesthetic_scorer(args.hf_hub_aesthetic_model_id, args.hf_hub_aesthetic_model_filename),
training_args,
aesthetic_scorer(script_args.hf_hub_aesthetic_model_id, script_args.hf_hub_aesthetic_model_filename),
prompt_fn,
pipeline,
image_samples_hook=image_outputs_logger,
@ -207,4 +210,7 @@ if __name__ == "__main__":
trainer.train()
trainer.push_to_hub(args.hf_hub_model_id)
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)

View File

@ -1,5 +1,4 @@
# flake8: noqa
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -12,129 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# Full training
python examples/scripts/dpo.py \
--dataset_name trl-lib/ultrafeedback_binarized \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--learning_rate 5.0e-7 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 50 \
--output_dir Qwen2-0.5B-DPO \
--no_remove_unused_columns
# LoRA:
python examples/scripts/dpo.py \
--dataset_name trl-lib/ultrafeedback_binarized \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--learning_rate 5.0e-6 \
--num_train_epochs 1 \
--per_device_train_batch_size 2 \
--gradient_accumulation_steps 8 \
--gradient_checkpointing \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 50 \
--output_dir Qwen2-0.5B-DPO \
--no_remove_unused_columns \
--use_peft \
--lora_r 32 \
--lora_alpha 16
"""
from trl.commands.cli_utils import DPOScriptArguments, TrlParser
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from accelerate import PartialState
from trl import (
DPOConfig,
DPOTrainer,
ModelConfig,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
maybe_extract_prompt,
maybe_apply_chat_template,
)
if __name__ == "__main__":
parser = TrlParser((DPOScriptArguments, DPOConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
################
# Model & Tokenizer
###################
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
model_kwargs = dict(
revision=model_config.model_revision,
attn_implementation=model_config.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
peft_config = get_peft_config(model_config)
if peft_config is None:
ref_model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
else:
ref_model = None
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
if args.ignore_bias_buffers:
# torch distributed hack
model._ddp_params_and_buffers_to_ignore = [
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
]
################
# Dataset
################
dataset = load_dataset(args.dataset_name)
with PartialState().local_main_process_first():
dataset = dataset.map(maybe_extract_prompt, num_proc=training_args.dataset_num_proc)
dataset = dataset.map(
maybe_apply_chat_template, num_proc=training_args.dataset_num_proc, fn_kwargs={"tokenizer": tokenizer}
)
##########
# Training
################
trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset[args.dataset_train_split],
eval_dataset=dataset[args.dataset_test_split],
tokenizer=tokenizer,
peft_config=peft_config,
)
trainer.train()
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
trainer.save_model(training_args.output_dir)
###############################################################################################
# This file has been moved to https://github.com/huggingface/trl/blob/main/trl/scripts/dpo.py #
###############################################################################################

View File

@ -1,5 +1,4 @@
# flake8: noqa
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -12,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
@ -43,34 +43,38 @@ python examples/scripts/dpo_online.py \
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, GenerationConfig
from trl import (
DPOScriptArguments,
HfPairwiseJudge,
LogCompletionsCallback,
ModelConfig,
OnlineDPOConfig,
OnlineDPOTrainer,
OpenAIPairwiseJudge,
PairRMJudge,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
LogCompletionsCallback,
)
from trl.commands.cli_utils import TrlParser
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
JUDGES = {"pair_rm": PairRMJudge, "openai": OpenAIPairwiseJudge, "hf": HfPairwiseJudge}
if __name__ == "__main__":
parser = TrlParser((DPOScriptArguments, OnlineDPOConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
args.gradient_checkpointing_kwargs = {"use_reentrant": True}
parser = TrlParser((ScriptArguments, OnlineDPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_config.model_revision,
attn_implementation=model_config.attn_implementation,
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
@ -78,20 +82,36 @@ if __name__ == "__main__":
)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
)
reward_model = AutoModelForSequenceClassification.from_pretrained(
training_args.reward_model_path,
num_labels=1,
trust_remote_code=model_config.trust_remote_code,
**model_kwargs,
)
if training_args.reward_model_path is not None:
reward_model = AutoModelForSequenceClassification.from_pretrained(
training_args.reward_model_path,
num_labels=1,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
reward_tokenizer = AutoTokenizer.from_pretrained(
training_args.reward_model_path,
trust_remote_code=model_args.trust_remote_code,
truncation=True,
truncation_side="left", # since we judge the completion, truncating left is more appropriate
)
else:
reward_model = None
reward_tokenizer = None
if training_args.judge is not None:
judge_cls = JUDGES[training_args.judge]
judge = judge_cls()
else:
judge = None
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
model_args.model_name_or_path,
padding_side="left",
trust_remote_code=model_config.trust_remote_code,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
if tokenizer.chat_template is None:
@ -99,20 +119,30 @@ if __name__ == "__main__":
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
dataset = load_dataset(args.dataset_name)
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
trainer = OnlineDPOTrainer(
model=model,
reward_model=reward_model,
judge=judge,
args=training_args,
train_dataset=dataset[args.dataset_train_split],
eval_dataset=dataset[args.dataset_test_split],
tokenizer=tokenizer,
peft_config=get_peft_config(model_config),
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
reward_processing_class=reward_tokenizer,
peft_config=get_peft_config(model_args),
)
generation_config = GenerationConfig(
max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature
)
completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8)
trainer.add_callback(completions_callback)
if training_args.eval_strategy != "no":
generation_config = GenerationConfig(
max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature
)
completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8)
trainer.add_callback(completions_callback)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)

View File

@ -1,5 +1,4 @@
# flake8: noqa
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -12,8 +11,9 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
accelerate launch examples/scripts/dpo_visual.py \
accelerate launch examples/scripts/dpo_vlm.py \
--dataset_name HuggingFaceH4/rlaif-v_formatted \
--model_name_or_path HuggingFaceM4/idefics2-8b \
--per_device_train_batch_size 2 \
@ -27,9 +27,6 @@ accelerate launch examples/scripts/dpo_visual.py \
--lora_target_modules=all-linear
"""
from trl.commands.cli_utils import DPOScriptArguments, TrlParser
from accelerate import PartialState
import torch
from datasets import load_dataset
from transformers import AutoModelForVision2Seq, AutoProcessor
@ -38,6 +35,8 @@ from trl import (
DPOConfig,
DPOTrainer,
ModelConfig,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
@ -45,44 +44,40 @@ from trl import (
if __name__ == "__main__":
parser = TrlParser((DPOScriptArguments, DPOConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
parser = TrlParser((ScriptArguments, DPOConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
################
# Model & Tokenizer
################
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_config.model_revision,
attn_implementation=model_config.attn_implementation,
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForVision2Seq.from_pretrained(
model_config.model_name_or_path,
trust_remote_code=model_config.trust_remote_code,
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
peft_config = get_peft_config(model_config)
peft_config = get_peft_config(model_args)
if peft_config is None:
ref_model = AutoModelForVision2Seq.from_pretrained(
model_config.model_name_or_path,
trust_remote_code=model_config.trust_remote_code,
model_args.model_name_or_path,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
else:
ref_model = None
processor = AutoProcessor.from_pretrained(
model_config.model_name_or_path,
trust_remote_code=model_config.trust_remote_code,
do_image_splitting=False,
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, do_image_splitting=False
)
tokenizer = processor.tokenizer
@ -96,7 +91,7 @@ if __name__ == "__main__":
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if args.ignore_bias_buffers:
if script_args.ignore_bias_buffers:
# torch distributed hack
model._ddp_params_and_buffers_to_ignore = [
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
@ -105,18 +100,7 @@ if __name__ == "__main__":
################
# Dataset
################
dataset = load_dataset(args.dataset_name)
def process(row):
row["prompt"] = processor.apply_chat_template(row["prompt"], tokenize=False)
row["chosen"] = processor.apply_chat_template(row["chosen"], tokenize=False)
row["rejected"] = processor.apply_chat_template(row["rejected"], tokenize=False)
return row
# Compute that only on the main process for faster data processing.
# see: https://github.com/huggingface/trl/pull/1255
with PartialState().local_main_process_first():
dataset = dataset.map(process, num_proc=training_args.dataset_num_proc)
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
################
# Training
@ -125,11 +109,15 @@ if __name__ == "__main__":
model,
ref_model,
args=training_args,
train_dataset=dataset[args.dataset_train_split],
eval_dataset=dataset[args.dataset_test_split],
tokenizer=processor,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=processor,
peft_config=peft_config,
)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -59,12 +59,12 @@ class ScriptArguments:
# Parse the arguments
parser = HfArgumentParser(ScriptArguments)
args = parser.parse_args_into_dataclasses()[0]
script_args = parser.parse_args_into_dataclasses()[0]
# Load the dataset
dataset = load_dataset("trl-lib/tldr", split="validation")
if args.num_examples is not None:
dataset = dataset.select(range(args.num_examples))
if script_args.num_examples is not None:
dataset = dataset.select(range(script_args.num_examples))
# Extract the prompts and reference completions
prompts = dataset["prompt"]
@ -72,15 +72,15 @@ reference_completions = dataset["completion"]
# Generate the model completions
sampling_params = SamplingParams(temperature=0.0, top_p=0.95, max_tokens=200) # very generous max token length
llm = LLM(model=args.model_name_or_path, tensor_parallel_size=1)
llm = LLM(model=script_args.model_name_or_path, tensor_parallel_size=1)
outputs = llm.generate(prompts, sampling_params)
model_completions = [output.outputs[0].text.strip() for output in outputs]
# Judge the outputs
if "gpt" in args.judge_model:
judge = OpenAIPairwiseJudge(args.judge_model)
if "gpt" in script_args.judge_model:
judge = OpenAIPairwiseJudge(script_args.judge_model)
else:
judge = HfPairwiseJudge(args.judge_model)
judge = HfPairwiseJudge(script_args.judge_model)
completions = [[c0, c1] for c0, c1 in zip(reference_completions, model_completions)]
best_idxs = judge.judge(prompts, completions)

View File

@ -1,5 +1,4 @@
# flake8: noqa
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -12,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
# Full training:
python examples/scripts/gkd.py \
@ -45,36 +45,36 @@ python examples/scripts/gkd.py \
--lora_alpha 16
"""
from accelerate import PartialState
from datasets import load_dataset
from transformers import AutoTokenizer, GenerationConfig
from trl import (
GKDConfig,
GKDTrainer,
LogCompletionsCallback,
ModelConfig,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
maybe_apply_chat_template,
LogCompletionsCallback,
)
from trl.commands.cli_utils import SFTScriptArguments, TrlParser
from accelerate import PartialState
if __name__ == "__main__":
parser = TrlParser((SFTScriptArguments, GKDConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
parser = TrlParser((ScriptArguments, GKDConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
################
# Model & Tokenizer
################
quantization_config = get_quantization_config(model_config)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
torch_dtype=model_config.torch_dtype,
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
torch_dtype=model_args.torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
@ -82,10 +82,10 @@ if __name__ == "__main__":
training_args.model_init_kwargs = model_kwargs
teacher_model_kwargs = dict(
revision=model_config.model_revision,
trust_remote_code=model_config.trust_remote_code,
attn_implementation=model_config.attn_implementation,
torch_dtype=model_config.torch_dtype,
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
attn_implementation=model_args.attn_implementation,
torch_dtype=model_args.torch_dtype,
use_cache=True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
@ -93,8 +93,9 @@ if __name__ == "__main__":
training_args.teacher_model_init_kwargs = teacher_model_kwargs
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
trust_remote_code=model_config.trust_remote_code,
model_args.model_name_or_path,
revision=model_args.model_revision,
trust_remote_code=model_args.trust_remote_code,
padding_side="left",
)
if tokenizer.pad_token is None:
@ -103,7 +104,7 @@ if __name__ == "__main__":
################
# Dataset
################
dataset = load_dataset(args.dataset_name)
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
with PartialState().local_main_process_first():
dataset = dataset.map(
@ -117,19 +118,25 @@ if __name__ == "__main__":
# Training
################
trainer = GKDTrainer(
model=model_config.model_name_or_path,
model=model_args.model_name_or_path,
teacher_model=training_args.teacher_model_name_or_path,
args=training_args,
train_dataset=dataset[args.dataset_train_split],
eval_dataset=dataset[args.dataset_test_split],
tokenizer=tokenizer,
peft_config=get_peft_config(model_config),
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
peft_config=get_peft_config(model_args),
)
generation_config = GenerationConfig(
max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature
)
completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8)
trainer.add_callback(completions_callback)
if training_args.eval_strategy != "no":
generation_config = GenerationConfig(
max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature
)
completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8)
trainer.add_callback(completions_callback)
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)

View File

@ -1,4 +1,4 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -16,7 +16,8 @@
Run the KTO training script with the commands below. In general, the optimal configuration for KTO will be similar to that of DPO.
# Full training:
python examples/scripts/kto.py \
python trl/scripts/kto.py \
--dataset_name trl-lib/kto-mix-14k \
--model_name_or_path=trl-lib/qwen1.5-1.8b-sft \
--per_device_train_batch_size 16 \
--num_train_epochs 1 \
@ -32,7 +33,8 @@ python examples/scripts/kto.py \
--logging_first_step
# QLoRA:
python examples/scripts/kto.py \
python trl/scripts/kto.py \
--dataset_name trl-lib/kto-mix-14k \
--model_name_or_path=trl-lib/qwen1.5-1.8b-sft \
--per_device_train_batch_size 8 \
--num_train_epochs 1 \
@ -53,28 +55,22 @@ python examples/scripts/kto.py \
--lora_alpha=16
"""
from dataclasses import dataclass
from accelerate import PartialState
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser
from trl import KTOConfig, KTOTrainer, ModelConfig, get_peft_config, maybe_unpair_preference_dataset, setup_chat_format
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The arguments for the KTO training script.
"""
dataset_name: str = "trl-lib/kto-mix-14k"
from trl import (
KTOConfig,
KTOTrainer,
ModelConfig,
ScriptArguments,
get_peft_config,
setup_chat_format,
)
if __name__ == "__main__":
parser = HfArgumentParser((ScriptArguments, KTOConfig, ModelConfig))
script_args, kto_args, model_args = parser.parse_args_into_dataclasses()
script_args, training_args, model_args = parser.parse_args_into_dataclasses()
# Load a pretrained model
model = AutoModelForCausalLM.from_pretrained(
@ -95,38 +91,23 @@ if __name__ == "__main__":
model, tokenizer = setup_chat_format(model, tokenizer)
# Load the dataset
dataset = load_dataset(script_args.dataset_name)
# If needed, reformat a DPO-formatted dataset (prompt, chosen, rejected) to a KTO-format (prompt, completion, label)
dataset = maybe_unpair_preference_dataset(dataset, num_proc=kto_args.dataset_num_proc)
# Apply chat template
def format_dataset(example):
if isinstance(example["completion"], str):
example["prompt"] = tokenizer.apply_chat_template(example["prompt"], tokenize=False)
example["completion"] = tokenizer.apply_chat_template(example["completion"], tokenize=False)
else:
example["prompt"] = tokenizer.apply_chat_template(example["completion"][:-1], tokenize=False)
example["completion"] = tokenizer.apply_chat_template([example["completion"][-1]], tokenize=False)
return example
# Compute that only on the main process for faster data processing.
# see: https://github.com/huggingface/trl/pull/1255
with PartialState().local_main_process_first():
dataset = dataset.map(format_dataset, num_proc=kto_args.dataset_num_proc)
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
# Initialize the KTO trainer
kto_trainer = KTOTrainer(
trainer = KTOTrainer(
model,
ref_model,
args=kto_args,
train_dataset=dataset["train"],
eval_dataset=dataset["test"],
tokenizer=tokenizer,
args=training_args,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
peft_config=get_peft_config(model_args),
)
# Train and push the model to the Hub
kto_trainer.train()
kto_trainer.save_model(kto_args.output_dir)
kto_trainer.push_to_hub()
trainer.train()
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)

View File

@ -1,6 +1,4 @@
# flake8: noqa
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
# Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
@ -13,6 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Usage:
@ -50,33 +49,37 @@ accelerate launch --config_file examples/accelerate_configs/deepspeed_zero2.yaml
import torch
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, GenerationConfig
from trl import (
DPOScriptArguments,
HfPairwiseJudge,
LogCompletionsCallback,
ModelConfig,
NashMDConfig,
NashMDTrainer,
OpenAIPairwiseJudge,
PairRMJudge,
ScriptArguments,
TrlParser,
get_kbit_device_map,
get_quantization_config,
LogCompletionsCallback,
)
from trl.commands.cli_utils import TrlParser
from trl.trainer.utils import SIMPLE_QUERY_CHAT_TEMPLATE
from trl.trainer.utils import SIMPLE_CHAT_TEMPLATE
JUDGES = {"pair_rm": PairRMJudge, "openai": OpenAIPairwiseJudge, "hf": HfPairwiseJudge}
if __name__ == "__main__":
parser = TrlParser((DPOScriptArguments, NashMDConfig, ModelConfig))
args, training_args, model_config = parser.parse_args_and_config()
args.gradient_checkpointing_kwargs = {"use_reentrant": True}
parser = TrlParser((ScriptArguments, NashMDConfig, ModelConfig))
script_args, training_args, model_args = parser.parse_args_and_config()
training_args.gradient_checkpointing_kwargs = {"use_reentrant": True}
torch_dtype = (
model_config.torch_dtype
if model_config.torch_dtype in ["auto", None]
else getattr(torch, model_config.torch_dtype)
model_args.torch_dtype if model_args.torch_dtype in ["auto", None] else getattr(torch, model_args.torch_dtype)
)
quantization_config = get_quantization_config(model_config)
quantization_config = get_quantization_config(model_args)
model_kwargs = dict(
revision=model_config.model_revision,
attn_implementation=model_config.attn_implementation,
revision=model_args.model_revision,
attn_implementation=model_args.attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
@ -84,42 +87,59 @@ if __name__ == "__main__":
)
model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
)
ref_model = AutoModelForCausalLM.from_pretrained(
model_config.model_name_or_path, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
reward_model = AutoModelForSequenceClassification.from_pretrained(
training_args.reward_model_path, num_labels=1, trust_remote_code=model_config.trust_remote_code
model_args.model_name_or_path, trust_remote_code=model_args.trust_remote_code, **model_kwargs
)
if training_args.reward_model_path is not None:
reward_model = AutoModelForSequenceClassification.from_pretrained(
training_args.reward_model_path,
num_labels=1,
trust_remote_code=model_args.trust_remote_code,
**model_kwargs,
)
else:
reward_model = None
if training_args.judge is not None:
judge_cls = JUDGES[training_args.judge]
judge = judge_cls()
else:
judge = None
tokenizer = AutoTokenizer.from_pretrained(
model_config.model_name_or_path,
padding_side="left",
trust_remote_code=model_config.trust_remote_code,
model_args.model_name_or_path, padding_side="left", trust_remote_code=model_args.trust_remote_code
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
if tokenizer.chat_template is None:
tokenizer.chat_template = SIMPLE_QUERY_CHAT_TEMPLATE
tokenizer.chat_template = SIMPLE_CHAT_TEMPLATE
dataset = load_dataset(args.dataset_name)
dataset = load_dataset(script_args.dataset_name, name=script_args.dataset_config)
trainer = NashMDTrainer(
model=model,
ref_model=ref_model,
reward_model=reward_model,
judge=judge,
args=training_args,
train_dataset=dataset[args.dataset_train_split],
eval_dataset=dataset[args.dataset_test_split],
tokenizer=tokenizer,
train_dataset=dataset[script_args.dataset_train_split],
eval_dataset=dataset[script_args.dataset_test_split] if training_args.eval_strategy != "no" else None,
processing_class=tokenizer,
)
generation_config = GenerationConfig(
max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature
)
completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8)
trainer.add_callback(completions_callback)
# train the model
if training_args.eval_strategy != "no":
generation_config = GenerationConfig(
max_new_tokens=training_args.max_new_tokens, do_sample=True, temperature=training_args.temperature
)
completions_callback = LogCompletionsCallback(trainer, generation_config, num_prompts=8)
trainer.add_callback(completions_callback)
trainer.train()
# save the model
# Save and push to hub
trainer.save_model(training_args.output_dir)
if training_args.push_to_hub:
trainer.push_to_hub(dataset_name=script_args.dataset_name)

Some files were not shown because too many files have changed in this diff Show More