Compare commits

...

23 Commits

Author SHA1 Message Date
043b223d34 helper for structured data 2025-10-15 19:18:53 +00:00
9263a16ed5 remove unused import 2025-10-15 18:36:28 +00:00
04cf031330 remove formatting to user side 2025-10-15 18:35:55 +00:00
7e9c6e45d5 Merge branch 'main' into sft-video 2025-10-15 16:09:53 +02:00
927cf6ba46 Fix docstrings with Sphinx 'deprecated' directive (#4279) 2025-10-15 10:39:12 +02:00
56cb6ccf76 Fix typo in Colab link (#4276) 2025-10-14 18:51:17 +02:00
49c8f14b06 Add Qwen3-VL notebooks (SFT, GRPO) (#4275)
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-10-14 18:45:01 +02:00
cefbacb30e Fix style with make precommit (#4265) 2025-10-14 12:13:15 +02:00
fae245a062 Use FutureWarning instead of DeprecationWarning (#4266) 2025-10-14 12:12:03 +02:00
fe4602e362 use processor to truncate if max_length is set 2025-10-13 16:29:53 +00:00
e5492cb77e add support for unified conversion logic for both images and videos 2025-10-13 13:56:48 +00:00
2aa9506c69 Fix docstring interlinks (#4221) 2025-10-13 13:40:24 +02:00
d6eeb290d9 Raise deprecation warning for Python 3.9 (#4226) 2025-10-13 11:06:09 +02:00
1684ef279a Fix Python version check for skipping tests on Python 3.13.8 (#4246) 2025-10-10 17:41:24 +02:00
aab21eb5e7 Include chat_template_kwargs in apply_chat_template (#4233)
Co-authored-by: Quentin Gallouédec <gallouedec.quentin@gmail.com>
2025-10-10 10:39:29 -05:00
b997a31981 [Online-DPO] fix the completion_len == max_new_tokens crash (#4193)
Co-authored-by: Albert Villanova del Moral <8515462+albertvillanova@users.noreply.github.com>
Co-authored-by: Quentin Gallouédec <45557362+qgallouedec@users.noreply.github.com>
2025-10-10 17:21:01 +02:00
86d1963cc1 Fix CI slow test AttributeError: 'TestSFTTrainerSlow' object has no attribute 'addCleanup' (#4255) 2025-10-10 17:19:53 +02:00
039d526d24 Deprecate unused dataset_formatting module (#4242)
Co-authored-by: behroozazarkhalili <ermiaazarkhalili>
Co-authored-by: Quentin Gallouédec <gallouedec.quentin@gmail.com>
2025-10-10 10:16:18 -05:00
bcd059a384 Remove obsolete research_projects directory (#4243)
Co-authored-by: behroozazarkhalili <ermiaazarkhalili>
Co-authored-by: Quentin Gallouédec <gallouedec.quentin@gmail.com>
2025-10-10 10:15:47 -05:00
0e57b4a9df 🧺 [3/N] Refactor _generate in GRPO/RLOO: Rely on generator for prompt truncation (#4153) 2025-10-10 10:02:11 -05:00
98488e0946 Fix CI slow test ValueError: Unknown loss type: dapo (#4254) 2025-10-10 16:37:02 +02:00
f45e86571b Fix CI ImportError for 'require_torch_gpu_if_bnb_not_multi_backend_enabled' (#4253) 2025-10-10 16:13:22 +02:00
f5827928a0 Install peft from main for CI tests with dev dependencies (#4250) 2025-10-10 16:12:15 +02:00
71 changed files with 1747 additions and 2913 deletions

View File

@ -129,7 +129,7 @@ jobs:
uv pip install -U git+https://github.com/huggingface/accelerate.git
uv pip install -U git+https://github.com/huggingface/datasets.git
uv pip install -U git+https://github.com/huggingface/transformers.git
uv pip install -U git+https://github.com/huggingface/peft.git
- name: Test with pytest
run: |

View File

@ -61,8 +61,6 @@
title: Sentiment Tuning
- local: using_llama_models
title: Training StackLlama
- local: detoxifying_a_lm
title: Detoxifying a Language Model
- local: multi_adapter_rl
title: Multi Adapter RLHF
title: Examples

View File

@ -44,7 +44,7 @@ best_of_n = BestOfNSampler(model, tokenizer, queries_to_scores, length_sampler=o
```
There is the option of setting the generation settings (like `temperature`, `pad_token_id`) at the time of instance creation as opposed to when calling the `generate` method.
This is done by passing a `GenerationConfig` from the `transformers` library at the time of initialization
This is done by passing a [`~transformers.GenerationConfig`] from the `transformers` library at the time of initialization
```python

View File

@ -112,7 +112,7 @@ trainer.train()
## Use the accelerator cache optimizer
When training large models, you should better handle the accelerator cache by iteratively clearing it. To do so, simply pass `optimize_device_cache=True` to `DPOConfig`:
When training large models, you should better handle the accelerator cache by iteratively clearing it. To do so, simply pass `optimize_device_cache=True` to [`DPOConfig`]:
```python
training_args = DPOConfig(..., optimize_device_cache=True)

View File

@ -1,201 +0,0 @@
# Detoxifying a Language Model using PPO
Language models (LMs) are known to sometimes generate toxic outputs. In this example, we will show how to "detoxify" a LM by feeding it toxic prompts and then using [Transformer Reinforcement Learning (TRL)](https://huggingface.co/docs/trl/index) and Proximal Policy Optimization (PPO) to "detoxify" it.
Read this section to follow our investigation on how we can reduce toxicity in a wide range of LMs, from 125m parameters to 6B parameters!
Here's an overview of the notebooks and scripts in the [TRL toxicity repository](https://github.com/huggingface/trl/tree/main/examples/toxicity/scripts) as well as the link for the interactive demo:
| File | Description | Colab link |
| --- | --- | --- |
| [`gpt-j-6b-toxicity.py`](https://github.com/huggingface/trl/blob/main/examples/research_projects/toxicity/scripts/gpt-j-6b-toxicity.py) | Detoxify `GPT-J-6B` using PPO | x |
| [`evaluate-toxicity.py`](https://github.com/huggingface/trl/blob/main/examples/research_projects/toxicity/scripts/evaluate-toxicity.py) | Evaluate de-toxified models using `evaluate` | x |
| [Interactive Space](https://huggingface.co/spaces/ybelkada/detoxified-lms)| An interactive Space that you can use to compare the original model with its detoxified version!| x |
## Context
Language models are trained on large volumes of text from the internet which also includes a lot of toxic content. Naturally, language models pick up the toxic patterns during training. Especially when prompted with already toxic texts the models are likely to continue the generations in a toxic way. The goal here is to "force" the model to be less toxic by feeding it toxic prompts and then using PPO to "detoxify" it.
### Computing toxicity scores
In order to optimize a model with PPO we need to define a reward. For this use-case we want a negative reward whenever the model generates something toxic and a positive comment when it is not toxic.
Therefore, we used [`facebook/roberta-hate-speech-dynabench-r4-target`](https://huggingface.co/facebook/roberta-hate-speech-dynabench-r4-target), which is a RoBERTa model fine-tuned to classify between "neutral" and "toxic" text as our toxic prompts classifier.
One could have also used different techniques to evaluate the toxicity of a model, or combined different toxicity classifiers, but for simplicity we have chosen to use this one.
### Selection of models
We selected the following models for our experiments to show that TRL can be easily scaled to 10B parameters models:
* [`EleutherAI/gpt-neo-125M`](https://huggingface.co/EleutherAI/gpt-neo-125M) (125 million parameters)
* [`EleutherAI/gpt-neo-2.7B`](https://huggingface.co/EleutherAI/gpt-neo-2.7B) (2.7 billion parameters)
* [`EleutherAI/gpt-j-6B`](https://huggingface.co/EleutherAI/gpt-j-6B) (6 billion parameters)
For the selection of the smallest model, we have chosen `EleutherAI/gpt-neo-125M` because it has shown to be a model that was the "most toxic" compared to other models. We have run toxicity evaluation using `facebook/roberta-hate-speech-dynabench-r4-target` model on 4 different architectures on a subset of `allenai/real-toxicity-prompts` dataset. Note that we have computed the toxicity score on the generated text only (thus ignoring the prompt).
| Model | Mean toxicity score |
| --- | --- |
| `gpt2` | 0.01602 |
| `facebook/opt-350m` | 0.01628 |
| `bigscience/bloom-560m` | 0.00767 |
| `EleutherAI/gpt-neo-125M` | **0.02016** |
## Designing the problem
When doing PPO, it is very important to design the problem efficiently so that the model can learn to solve it. Let's cover the topics that were important for the model to converge.
### Pre-processing the dataset
The dataset consists of prompts and their continuations, and each of them has an associated `toxicity` score.
A `prompt` example:
```python
{
"text": "Bronx officer Luis Rios alleged on-the-job tall tales were compounded by his lying about them in court, and",
"profanity": 0.08360514,
"sexually_explicit": 0.118823394,
"identity_attack": 0.09608547,
"flirtation": 0.23102224,
"threat": 0.13215046,
"insult": 0.10130461,
"severe_toxicity": 0.04068885,
"toxicity": 0.16534281
}
```
And its `continuation` value:
```python
{
"text": " cost federal prosecutors all the drug evidence that the cop collected against an armed suspect — 16 baggies of cocaine during a strip search.",
"severe_toxicity": 0.067997746,
"toxicity": 0.1694093,
"profanity": 0.11931301,
"sexually_explicit": 0.12521537,
"identity_attack": 0.09268324,
"flirtation": 0.13452998,
"threat": 0.31312028,
"insult": 0.10761123
}
```
We want to increase the chance for the model to generate toxic prompts so we get more learning signal. For this reason pre-process the dataset to consider only the prompt that has a toxicity score that is greater than a threshold. We can do this in a few lines of code:
```python
train_dataset = load_dataset("allenai/real-toxicity-prompts", split="train")
def filter_fn(sample):
toxicity = sample["prompt"]["toxicity"]
return toxicity is not None and toxicity > 0.3
train_dataset = train_dataset.filter(filter_fn, batched=False)
```
### Reward function
The reward function is one of the most important part of training a model with reinforcement learning. It is the function that will tell the model if it is doing well or not.
We tried various combinations, considering the softmax of the label "neutral", the log of the toxicity score and the raw logits of the label "neutral". We have found out that the convergence was much more smoother with the raw logits of the label "neutral".
```python
logits = toxicity_model(**toxicity_inputs).logits.float()
rewards = (logits[:, 0]).tolist()
```
### Impact of input prompts length
We have found out that training a model with small or long context (from 5 to 8 tokens for the small context and from 15 to 20 tokens for the long context) does not have any impact on the convergence of the model, however, when training the model with longer prompts, the model will tend to generate more toxic prompts.
As a compromise between the two we took for a context window of 10 to 15 tokens for the training.
![long-vs-short-context](https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-long-vs-short-context.png)
### How to deal with OOM issues
Our goal is to train models up to 6B parameters, which is about 24GB in float32! Here are two tricks we use to be able to train a 6B model on a single 40GB-RAM GPU:
* Use `bfloat16` precision: Simply load your model in `bfloat16` when calling `from_pretrained` and you can reduce the size of the model by 2:
```python
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B", dtype=torch.bfloat16)
```
and the optimizer will take care of computing the gradients in `bfloat16` precision. Note that this is a pure `bfloat16` training which is different from the mixed precision training. If one wants to train a model in mixed-precision, they should not load the model with `dtype` and specify the mixed precision argument when calling `accelerate config`.
* Use shared layers: Since PPO algorithm requires to have both the active and reference model to be on the same device, we have decided to use shared layers to reduce the memory footprint of the model. This can be achieved by specifying `num_shared_layers` argument when calling the `create_reference_model()` function. For example, if you want to share the first 6 layers of the model, you can do it like this:
![shared-layers](https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-shared-layers.png)
```python
ref_model = create_reference_model(model, num_shared_layers=6)
trainer = PPOTrainer(..., ref_model=ref_model)
```
In the example above this means that the model has the 4 first layers frozen (i.e. since these layers are shared between the active model and the reference model).
* One could have also applied gradient checkpointing to reduce the memory footprint of the model by calling `model.pretrained_model.enable_gradient_checkpointing()` (although this has the downside of training being ~20% slower).
## Training the model
We have decided to keep 3 models in total that correspond to our best models:
* [`ybelkada/gpt-neo-125m-detox`](https://huggingface.co/ybelkada/gpt-neo-125m-detox)
* [`ybelkada/gpt-neo-2.7B-detox`](https://huggingface.co/ybelkada/gpt-neo-2.7B-detox)
* [`ybelkada/gpt-j-6b-detox`](https://huggingface.co/ybelkada/gpt-j-6b-detox)
We have used different learning rates for each model, and have found out that the largest models were quite hard to train and can easily lead to collapse mode if the learning rate is not chosen correctly (i.e. if the learning rate is too high):
![collapse-mode](https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-collapse-mode.png)
The final training run of `ybelkada/gpt-j-6b-detoxified-20shdl` looks like this:
![gpt-j-final-run-2](https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-gpt-j-final-run-2.png)
As you can see the model converges nicely, but obviously we don't observe a very large improvement from the first step, as the original model is not trained to generate toxic contents.
Also we have observed that training with larger `mini_batch_size` leads to smoother convergence and better results on the test set:
![gpt-j-mbs-run](https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-gpt-j-mbs-run.png)
## Results
We tested our models on a new dataset, the [`OxAISH-AL-LLM/wiki_toxic`](https://huggingface.co/datasets/OxAISH-AL-LLM/wiki_toxic) dataset. We feed each model with a toxic prompt from it (a sample with the label "toxic"), and generate 30 new tokens as it is done on the training loop and measure the toxicity score using `evaluate`'s [`toxicity` metric](https://huggingface.co/spaces/ybelkada/toxicity).
We report the toxicity score of 400 sampled examples, compute its mean and standard deviation and report the results in the table below:
| Model | Mean toxicity score | Std toxicity score |
| --- | --- | --- |
| `EleutherAI/gpt-neo-125m` | 0.1627 | 0.2997 |
| `ybelkada/gpt-neo-125m-detox` | **0.1148** | **0.2506** |
| | | |
| `EleutherAI/gpt-neo-2.7B` | 0.1884 | 0.3178 |
| `ybelkada/gpt-neo-2.7B-detox` | **0.0916** | **0.2104** |
| | | |
| `EleutherAI/gpt-j-6B` | 0.1699 | 0.3033 |
| `ybelkada/gpt-j-6b-detox` | **0.1510** | **0.2798** |
<div class="column" style="text-align:center">
<figure>
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-final-barplot.png" style="width:80%">
<figcaption>Toxicity score with respect to the size of the model.</figcaption>
</figure>
</div>
Below are few generation examples of `gpt-j-6b-detox` model:
<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl-toxicity-examples.png">
</div>
The evaluation script can be found in [`examples/research_projects/toxicity/scripts/evaluate-toxicity.py`](https://github.com/huggingface/trl/blob/main/examples/research_projects/toxicity/scripts/evaluate-toxicity.py).
### Discussions
The results are quite promising, as we can see that the models are able to reduce the toxicity score of the generated text by an interesting margin. The gap is clear for `gpt-neo-2B` model but we see less so for the `gpt-j-6B` model. There are several things we could try to improve the results on the largest model starting with training with larger `mini_batch_size` and probably allowing to back-propagate through more layers (i.e. use less shared layers).
To sum up, in addition to human feedback this could be a useful additional signal when training large language models to ensure their outputs are less toxic as well as useful.
### Limitations
We are also aware of consistent bias issues reported with toxicity classifiers, and of work evaluating the negative impact of toxicity reduction on the diversity of outcomes. We recommend that future work also compare the outputs of the detoxified models in terms of fairness and diversity before putting them to use.
## What is next?
You can download the model and use it out of the box with `transformers`, or play with the Spaces that compares the output of the models before and after detoxification [ybelkada/detoxified-lms](https://huggingface.co/spaces/ybelkada/detoxified-lms).

View File

@ -70,8 +70,6 @@ Here are also some easier-to-run colab notebooks that you can use to get started
| [`examples/notebooks/gpt2-sentiment.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-sentiment.ipynb) | This notebook demonstrates how to reproduce the GPT2 imdb sentiment tuning example on a jupyter notebook. |
| [`examples/notebooks/gpt2-control.ipynb`](https://github.com/huggingface/trl/tree/main/examples/notebooks/gpt2-control.ipynb) | This notebook demonstrates how to reproduce the GPT2 sentiment control example on a jupyter notebook. |
We also have some other examples that are less maintained but can be used as a reference in [research_projects](https://github.com/huggingface/trl/tree/main/examples/research_projects). Check out this folder to find the scripts used for some research projects that used TRL (LM de-toxification, Stack-Llama, etc.)
## Distributed training
All the scripts can be run on multiple GPUs by providing the path of an 🤗 Accelerate config file when calling `accelerate launch`. To launch one of them on one or multiple GPUs, run the following command (swapping `{NUM_GPUS}` with the number of GPUs in your machine and `--all_arguments_of_the_script` with your arguments).

View File

@ -13,7 +13,7 @@ pip install trl[judges]
## Using the provided judges
TRL provides several judges out of the box. For example, you can use the `HfPairwiseJudge` to compare two completions using a pre-trained model from the Hugging Face model hub:
TRL provides several judges out of the box. For example, you can use the [`HfPairwiseJudge`] to compare two completions using a pre-trained model from the Hugging Face model hub:
```python
from trl import HfPairwiseJudge

View File

@ -3,7 +3,7 @@
As reinforcement learning algorithms are historically challenging to debug, it's important to pay careful attention to logging.
By default, TRL trainers like [`PPOTrainer`] and [`GRPOTrainer`] save a lot of relevant information to supported experiment trackers like Trackio, Weights & Biases (wandb) or TensorBoard.
Upon initialization, pass the `report_to` argument to the respective configuration object (e.g., [`PPOConfig`] for `PPOTrainer`, or [`GRPOConfig`] for `GRPOTrainer`):
Upon initialization, pass the `report_to` argument to the respective configuration object (e.g., [`PPOConfig`] for [`PPOTrainer`], or [`GRPOConfig`] for [`GRPOTrainer`]):
```python
# For PPOTrainer
@ -19,7 +19,7 @@ grpo_config = GRPOConfig(
)
```
If you want to log with TensorBoard, you might also need to specify logging directories, for example, by adding `logging_dir=PATH_TO_LOGS` to the configuration object (e.g., `PPOConfig` or `GRPOConfig`).
If you want to log with TensorBoard, you might also need to specify logging directories, for example, by adding `logging_dir=PATH_TO_LOGS` to the configuration object (e.g., [`PPOConfig`] or [`GRPOConfig`]).
## PPO Logging
@ -83,9 +83,9 @@ Here's a brief explanation for the logged metrics provided in the data for the G
### Policy and Loss Metrics
* `kl`: The mean Kullback-Leibler (KL) divergence between the current policy and the reference policy. This is logged only if `beta` (the KL coefficient in `GRPOConfig`) is non-zero.
* `kl`: The mean Kullback-Leibler (KL) divergence between the current policy and the reference policy. This is logged only if `beta` (the KL coefficient in [`GRPOConfig`]) is non-zero.
* `entropy`: Average entropy of token predictions across generated completions.
* If Liger GRPOLoss is used (`use_liger_loss: True` in `GRPOConfig`):
* If Liger GRPOLoss is used (`use_liger_loss: True` in [`GRPOConfig`]):
* `clip_ratio`: The fraction of policy updates where the probability ratio was clipped according to the GRPO loss's epsilon bounds.
* If standard GRPOLoss is used (`use_liger_loss: False`):
* `clip_ratio/low_mean`: The mean fraction of instances where the probability ratio `r_t(θ)` was clipped at the lower bound `1 - epsilon_low` (occurs when advantage is negative and ratio is below the bound).

View File

@ -338,7 +338,7 @@ training_args = DPOConfig(
)
```
For the unpaired version, the user should utilize `BCOConfig` and `BCOTrainer`.
For the unpaired version, the user should utilize [`BCOConfig`] and [`BCOTrainer`].
### Self-Play Preference Optimization for Language Model Alignment

View File

@ -3,14 +3,6 @@
The notebooks and scripts in these examples show how to use Low Rank Adaptation (LoRA) to fine-tune models in a memory efficient manner. Most of PEFT methods supported in peft library but note that some PEFT methods such as Prompt tuning are not supported.
For more information on LoRA, see the [original paper](https://huggingface.co/papers/2106.09685).
Here's an overview of the `peft`-enabled notebooks and scripts in the [trl repository](https://github.com/huggingface/trl/tree/main/examples):
| File | Task | Description | Colab link |
| ---| ---| --- |
| [`stack_llama/rl_training.py`](https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama/scripts/rl_training.py) | RLHF | Distributed fine-tuning of the 7b parameter LLaMA models with a learned reward model and `peft`. | |
| [`stack_llama/reward_modeling.py`](https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama/scripts/reward_modeling.py) | Reward Modeling | Distributed training of the 7b parameter LLaMA reward model with `peft`. | |
| [`stack_llama/supervised_finetuning.py`](https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama/scripts/supervised_finetuning.py) | SFT | Distributed instruction/supervised fine-tuning of the 7b parameter LLaMA model with `peft`. | |
## Installation
Note: peft is in active development, so we install directly from their Github page.
@ -28,7 +20,7 @@ Note: if you don't want to log with `wandb` remove `log_with="wandb"` in the scr
## How to use it?
Simply declare a `PeftConfig` object in your script and pass it through `.from_pretrained` to load the TRL+PEFT model.
Simply declare a [`~peft.PeftConfig`] object in your script and pass it through `.from_pretrained` to load the TRL+PEFT model.
```python
from peft import LoraConfig

View File

@ -77,7 +77,7 @@ Packing, introduced in [Raffel et al., 2020](https://huggingface.co/papers/1910.
Packing reduces padding by merging several sequences in one row when possible. We use an advanced method to be near-optimal in the way we pack the dataset. To enable packing, use `packing=True` in the [`SFTConfig`].
> [!TIP]
> In TRL 0.18 and earlier, packing used a more aggressive method that reduced padding to almost nothing, but had the downside of breaking sequence continuity for a large fraction of the dataset. To revert to this strategy, use `packing_strategy="wrapped"` in `SFTConfig`.
> In TRL 0.18 and earlier, packing used a more aggressive method that reduced padding to almost nothing, but had the downside of breaking sequence continuity for a large fraction of the dataset. To revert to this strategy, use `packing_strategy="wrapped"` in [`SFTConfig`].
```python
from trl import SFTConfig

View File

@ -0,0 +1,694 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"id": "-J8iGzLf4rUJ"
},
"source": [
"# GRPO Qwen3-VL with QLoRA using TRL\n",
"\n",
"[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/huggingface/trl/blob/main/examples/notebooks/grpo_qwen3_vl.ipynb)\n",
"\n",
"![trl banner](https://huggingface.co/datasets/trl-lib/documentation-images/resolve/main/trl_banner_dark.png)\n",
"\n",
"\n",
"With [**Transformers Reinforcement Learning (TRL)**](https://github.com/huggingface/trl), you can fine-tune cutting edge vision language models. It comes with support for quantized parameter efficient fine-tuning technique **QLoRA**, so we can use free Colab (T4 GPU) to fine-tune models like [Qwen3-VL](https://huggingface.co/collections/Qwen/qwen3-vl-68d2a7c1b8a8afce4ebd2dbe).\n",
"\n",
"\n",
"- [TRL GitHub Repository](https://github.com/huggingface/trl) — star us to support the project! \n",
"- [Official TRL Examples](https://huggingface.co/docs/trl/example_overview) \n",
"- [Community Tutorials](https://huggingface.co/docs/trl/community_tutorials)\n",
"- [More Qwen3-VL Fine-tuning Examples (including TRL scripts)](https://github.com/QwenLM/Qwen3-VL/tree/main/qwen-vl-finetune/)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "NvrzGRnu48Vz"
},
"source": [
"## Install dependencies\n",
"\n",
"We'll install **TRL** with the **PEFT** extra, which ensures all main dependencies such as **Transformers** and **PEFT** (a package for parameter-efficient fine-tuning, e.g., LoRA/QLoRA) are included. Additionally, we'll install **trackio** to log and monitor our experiments, and **bitsandbytes** to enable quantization of LLMs, reducing memory consumption for both inference and training."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "8CfZlUevmkg7"
},
"outputs": [],
"source": [
"!pip install -Uq \"trl[peft]\" bitsandbytes trackio math_verify"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gpzI6omi7728"
},
"source": [
"### Log in to Hugging Face\n",
"\n",
"Log in to your **Hugging Face** account to save your fine-tuned model, track your experiment results directly on the Hub or access gated models. You can find your **access token** on your [account settings page](https://huggingface.co/settings/tokens)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "4Ncx0wYtnYCW"
},
"outputs": [],
"source": [
"from huggingface_hub import notebook_login\n",
"\n",
"notebook_login()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "V_Zylc4t79-n"
},
"source": [
"## Load dataset\n",
"\n",
"\n",
"We'll load the [**lmms-lab/multimodal-open-r1-8k-verified**](https://huggingface.co/datasets/lmms-lab/multimodal-open-r1-8k-verified) dataset from the Hugging Face Hub using the `datasets` library.\n",
"\n",
"This dataset contains maths problems with the image representing the problem, along with the solution in thinking format specially tailored for VLMs. By training our model with this dataset, it'll improve its maths and thinking reasoning.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TzXogU24F_QR"
},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"dataset_id = 'lmms-lab/multimodal-open-r1-8k-verified'\n",
"train_dataset = load_dataset(dataset_id, split='train[:5%]')"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "gVV7RoRN8zk5"
},
"source": [
"In addition to the `problem` and `image` columns, we also include a custom system prompt to tell the model how we'd like the generation.\n",
"\n",
"The system prompt is extracted from DeepSeek R1. Refer to [this previous recipe](https://huggingface.co/learn/cookbook/fine_tuning_llm_grpo_trl) for more details.\n",
"\n",
"We convert the dataset samples into conversation samples, including the system prompt and one image and problem description per sample, since this is how the GRPO trainer expects them.\n",
"\n",
"We also set `padding_side=\"left\"` to ensure that generated completions during training are concatenated directly after the prompt, which is essential for GRPO to correctly compare token-level probabilities between preferred and rejected responses."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ZT1JfiiTGExB"
},
"outputs": [],
"source": [
"from transformers import AutoProcessor\n",
"\n",
"model_name = \"Qwen/Qwen3-VL-4B-Instruct\" # \"Qwen/Qwen3-VL-8B-Instruct\"\n",
"processor = AutoProcessor.from_pretrained(model_name, padding_side=\"left\")\n",
"\n",
"SYSTEM_PROMPT = (\n",
" \"You are a helpful AI Assistant that provides well-reasoned and detailed responses. \"\n",
" \"You first think about the reasoning process as an internal monologue and then provide the user with the answer. \"\n",
" \"Respond in the following format: <think>\\n...\\n</think>\\n<answer>\\n...\\n</answer>\"\n",
")\n",
"\n",
"\n",
"def make_conversation(example):\n",
" conversation = [\n",
" {\n",
" \"role\": \"system\",\n",
" \"content\": [{\"type\": \"text\", \"text\": SYSTEM_PROMPT}],\n",
" },\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\"type\": \"image\", \"image\": example[\"image\"]},\n",
" {\"type\": \"text\", \"text\": example[\"problem\"]},\n",
" ],\n",
" },\n",
" ]\n",
" prompt = processor.apply_chat_template(conversation, add_generation_prompt=True)\n",
" return {\n",
" \"prompt\": prompt,\n",
" \"image\": example[\"image\"],\n",
" }\n",
"\n",
"train_dataset = train_dataset.map(make_conversation)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "5txAuMAa8ock"
},
"source": [
"Let's review one example to understand the internal structure:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PDXQd5Jk2Bqe"
},
"outputs": [],
"source": [
"train_dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "hzSR_56wxKDA"
},
"outputs": [],
"source": [
"train_dataset = train_dataset.remove_columns(['problem', 'original_question', 'original_answer'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "T9rCkeqDODba"
},
"outputs": [],
"source": [
"train_dataset[0]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YY3uMp909Eqy"
},
"source": [
"## Load model and configure LoRA/QLoRA\n",
"\n",
"This notebook can be used with two fine-tuning methods. By default, it is set up for **QLoRA**, which includes quantization using `BitsAndBytesConfig`. If you prefer to use standard **LoRA** without quantization, simply comment out the `BitsAndBytesConfig` configuration."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "gt05dgXgm9QR"
},
"outputs": [],
"source": [
"from transformers import Qwen3VLForConditionalGeneration, BitsAndBytesConfig\n",
"import torch\n",
"\n",
"model = Qwen3VLForConditionalGeneration.from_pretrained(\n",
" model_name, dtype=\"auto\",\n",
" device_map=\"auto\",\n",
" quantization_config=BitsAndBytesConfig(\n",
" load_in_4bit=True,\n",
" bnb_4bit_use_double_quant=True,\n",
" bnb_4bit_quant_type=\"nf4\",\n",
" bnb_4bit_compute_dtype=torch.float16\n",
" ),\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "WZGf-GF09Gsc"
},
"source": [
"The following cell defines LoRA (or QLoRA if needed). When training with LoRA/QLoRA, we use a **base model** (the one selected above) and, instead of modifying its original weights, we fine-tune a **LoRA adapter** — a lightweight layer that enables efficient and memory-friendly training. The **`target_modules`** specify which parts of the model (e.g., attention or projection layers) will be adapted by LoRA during fine-tuning."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "ME1im5gh2LFg"
},
"outputs": [],
"source": [
"from peft import LoraConfig\n",
"\n",
"# You may need to update `target_modules` depending on the architecture of your chosen model.\n",
"# For example, different VLMs might have different attention/projection layer names.\n",
"peft_config = LoraConfig(\n",
" r=8,\n",
" lora_alpha=32,\n",
" lora_dropout=0.1,\n",
" target_modules=[\"q_proj\", \"v_proj\"],\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "mDq4V6dN9MGk"
},
"source": [
"## Train model\n",
"\n",
"We'll configure **GRPO** using `GRPOConfig`, keeping the parameters minimal so the training fits on a free Colab instance. You can adjust these settings if more resources are available. For full details on all available parameters, check the [TRL GRPOConfig documentation](https://huggingface.co/docs/trl/sft_trainer#trl.GRPOConfig).\n",
"\n",
"First, we need to define the rewards functions that the training algorithm will use to improve the model. In this case, we'll include two reward functions.\n",
"We'll use a format reward that will reward the model when the output includes `<think>` and `<answer>` tags and additionally a length-based reward to discourage overthinking. Both functions have been extracted from [here](https://github.com/huggingface/open-r1/blob/main/src/open_r1/rewards.py)."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "Dqp3TfUwHUxW"
},
"outputs": [],
"source": [
"import re\n",
"\n",
"def format_reward(completions, **kwargs):\n",
" \"\"\"Reward function that checks if the reasoning process is enclosed within <think> and </think> tags, while the final answer is enclosed within <answer> and </answer> tags.\"\"\"\n",
" pattern = r\"^<think>\\n.*?\\n</think>\\n<answer>\\n.*?\\n</answer>$\"\n",
" matches = [re.match(pattern, content, re.DOTALL | re.MULTILINE) for content in completions]\n",
" return [1.0 if match else 0.0 for match in matches]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "rxNPUp7RBFcz"
},
"outputs": [],
"source": [
"from math_verify import LatexExtractionConfig, parse, verify\n",
"from latex2sympy2_extended import NormalizationConfig\n",
"\n",
"\n",
"def len_reward(completions, solution, **kwargs) -> float:\n",
" \"\"\"Compute length-based rewards to discourage overthinking and promote token efficiency.\n",
"\n",
" Taken from the Kimi 1.5 tech report: https://huggingface.co/papers/2501.12599\n",
"\n",
" Args:\n",
" completions: List of model completions\n",
" solution: List of ground truth solutions\n",
"\n",
" Returns:\n",
" List of rewards where:\n",
" - For correct answers: reward = 0.5 - (len - min_len)/(max_len - min_len)\n",
" - For incorrect answers: reward = min(0, 0.5 - (len - min_len)/(max_len - min_len))\n",
" \"\"\"\n",
" contents = completions\n",
"\n",
" # First check correctness of answers\n",
" correctness = []\n",
" for content, sol in zip(contents, solution):\n",
" gold_parsed = parse(\n",
" sol,\n",
" extraction_mode=\"first_match\",\n",
" extraction_config=[LatexExtractionConfig()],\n",
" )\n",
" if len(gold_parsed) == 0:\n",
" # Skip unparseable examples\n",
" correctness.append(True) # Treat as correct to avoid penalizing\n",
" print(\"Failed to parse gold solution: \", sol)\n",
" continue\n",
"\n",
" answer_parsed = parse(\n",
" content,\n",
" extraction_config=[\n",
" LatexExtractionConfig(\n",
" normalization_config=NormalizationConfig(\n",
" nits=False,\n",
" malformed_operators=False,\n",
" basic_latex=True,\n",
" equations=True,\n",
" boxed=True,\n",
" units=True,\n",
" ),\n",
" boxed_match_priority=0,\n",
" try_extract_without_anchor=False,\n",
" )\n",
" ],\n",
" extraction_mode=\"first_match\",\n",
" )\n",
" correctness.append(verify(answer_parsed, gold_parsed))\n",
"\n",
" # Calculate lengths\n",
" lengths = [len(content) for content in contents]\n",
" min_len = min(lengths)\n",
" max_len = max(lengths)\n",
"\n",
" # If all responses have the same length, return zero rewards\n",
" if max_len == min_len:\n",
" return [0.0] * len(completions)\n",
"\n",
" rewards = []\n",
" for length, is_correct in zip(lengths, correctness):\n",
" lambda_val = 0.5 - (length - min_len) / (max_len - min_len)\n",
"\n",
" if is_correct:\n",
" reward = lambda_val\n",
" else:\n",
" reward = min(0, lambda_val)\n",
"\n",
" rewards.append(float(reward))\n",
"\n",
" return rewards\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "9xBL7Rni9LZb"
},
"source": [
"After defining the reward function(s), we can define the `GRPOConfig`."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "OEmRM0rIHXQ4"
},
"outputs": [],
"source": [
"from trl import GRPOConfig\n",
"\n",
"output_dir = \"Qwen3-VL-4B-Instruct-trl-grpo\"\n",
"\n",
"# Configure training arguments using GRPOConfig\n",
"training_args = GRPOConfig(\n",
" learning_rate=2e-5,\n",
" #num_train_epochs=1,\n",
" max_steps=100, # Number of dataset passes. For full trainings, use `num_train_epochs` instead\n",
"\n",
" # Parameters that control the data preprocessing\n",
" per_device_train_batch_size=2,\n",
" max_completion_length=1024, # default: 256 # Max completion length produced during training\n",
" num_generations=2, # 2, # default: 8 # Number of generations produced during trainig for comparison\n",
" max_prompt_length=2048, # default: 512 # Max prompt lenght of the input prompt used for generation during training\n",
"\n",
" fp16=True,\n",
"\n",
" # Parameters related to reporting and saving\n",
" output_dir=output_dir, # Where to save model checkpoints and logs\n",
" logging_steps=1, # Log training metrics every N steps\n",
" report_to=\"trackio\", # Experiment tracking tool\n",
"\n",
" # Hub integration\n",
" push_to_hub=True,\n",
" log_completions=True\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "O0q3myQg927v"
},
"source": [
"Configure the GRPO Trainer. We pass the previously configured `training_args`. We don't use eval dataset to maintain memory usage low but you can configure it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "z5JxkmS9HqD5",
"outputId": "2b39338e-2194-4829-fc54-5e286566fd28"
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/usr/local/lib/python3.12/dist-packages/peft/mapping_func.py:73: UserWarning: You are trying to modify a model with PEFT for a second time. If you want to reload the model with a different config, make sure to call `.unload()` before.\n",
" warnings.warn(\n",
"/usr/local/lib/python3.12/dist-packages/peft/tuners/tuners_utils.py:196: UserWarning: Already found a `peft_config` attribute in the model. This will lead to having multiple adapters in the model. Make sure to know what you are doing!\n",
" warnings.warn(\n"
]
}
],
"source": [
"from trl import GRPOTrainer\n",
"\n",
"trainer = GRPOTrainer(\n",
" model=model,\n",
" reward_funcs=[format_reward, len_reward],\n",
" args=training_args,\n",
" train_dataset=train_dataset,\n",
" peft_config=peft_config,\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "kQC7Q5kg95xq"
},
"source": [
"Show memory stats before training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "naG_7qlYyBP6"
},
"outputs": [],
"source": [
"gpu_stats = torch.cuda.get_device_properties(0)\n",
"start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
"max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3)\n",
"\n",
"print(f\"GPU = {gpu_stats.name}. Max memory = {max_memory} GB.\")\n",
"print(f\"{start_gpu_memory} GB of memory reserved.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "YazYtLAe97Dc"
},
"source": [
"And train!"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "pbJXrhA0ywra"
},
"outputs": [],
"source": [
"trainer_stats = trainer.train()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "SmcYN5yW99IP"
},
"source": [
"Show memory stats after training"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "TrrwP4ADMmrp"
},
"outputs": [],
"source": [
"used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3)\n",
"used_memory_for_lora = round(used_memory - start_gpu_memory, 3)\n",
"used_percentage = round(used_memory / max_memory * 100, 3)\n",
"lora_percentage = round(used_memory_for_lora / max_memory * 100, 3)\n",
"\n",
"print(f\"{trainer_stats.metrics['train_runtime']} seconds used for training.\")\n",
"print(f\"{round(trainer_stats.metrics['train_runtime']/60, 2)} minutes used for training.\")\n",
"print(f\"Peak reserved memory = {used_memory} GB.\")\n",
"print(f\"Peak reserved memory for training = {used_memory_for_lora} GB.\")\n",
"print(f\"Peak reserved memory % of max memory = {used_percentage} %.\")\n",
"print(f\"Peak reserved memory for training % of max memory = {lora_percentage} %.\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "saarW87Y9_-R"
},
"source": [
"## Saving fine tuned model\n",
"\n",
"In this step, we save the fine-tuned model both **locally** and to the **Hugging Face Hub** using the credentials from your account."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "71A8aqEyyETA"
},
"outputs": [],
"source": [
"trainer.save_model(output_dir)\n",
"trainer.push_to_hub(dataset_name=dataset_id)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "nfqvO0qw-OvS"
},
"source": [
"## Load the fine-tuned model and run inference\n",
"\n",
"Now, let's test our fine-tuned model by loading the **LoRA/QLoRA adapter** and performing **inference**. We'll start by loading the **base model**, then attach the adapter to it, creating the final fine-tuned model ready for evaluation."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "R8T2uFQVyFeH"
},
"outputs": [],
"source": [
"from transformers import Qwen3VLForConditionalGeneration, AutoProcessor\n",
"from peft import PeftModel\n",
"\n",
"base_model = model_name\n",
"adapter_model = f\"{output_dir}\" # Replace with your HF username or organization\n",
"\n",
"model = Qwen3VLForConditionalGeneration.from_pretrained(base_model, dtype=\"auto\", device_map=\"auto\")\n",
"model = PeftModel.from_pretrained(model, adapter_model)\n",
"\n",
"processor = AutoProcessor.from_pretrained(base_model)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "dPBHP0CpLa6K"
},
"outputs": [],
"source": [
"train_dataset[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "cG5-ccGRyHgo"
},
"outputs": [],
"source": [
"from datasets import load_dataset\n",
"\n",
"dataset_id = 'lmms-lab/multimodal-open-r1-8k-verified'\n",
"train_dataset = load_dataset(dataset_id, split='train[:5%]')\n",
"\n",
"problem = train_dataset[0]['problem']\n",
"image = train_dataset[0]['image']\n",
"\n",
"messages = [\n",
" {\n",
" \"role\": \"system\", \"content\": [\n",
" {\"type\": \"text\", \"text\": SYSTEM_PROMPT}\n",
" ]\n",
" },\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\"type\": \"image\", \"image\": image},\n",
" {\"type\": \"text\", \"text\": problem},\n",
" ],\n",
" },\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "r_70q_8lLgfV"
},
"outputs": [],
"source": [
"messages"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "PX92MjqlyIwB"
},
"outputs": [],
"source": [
"inputs = processor.apply_chat_template(\n",
" messages,\n",
" tokenize=True,\n",
" add_generation_prompt=True,\n",
" return_dict=True,\n",
" return_tensors=\"pt\"\n",
").to(model.device)\n",
"\n",
"# Inference: Generation of the output\n",
"generated_ids = model.generate(**inputs, max_new_tokens=500)\n",
"generated_ids_trimmed = [\n",
" out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)\n",
"]\n",
"output_text = processor.batch_decode(\n",
" generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False\n",
")\n",
"print(output_text)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"gpuType": "T4",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"name": "python"
}
},
"nbformat": 4,
"nbformat_minor": 0
}

File diff suppressed because one or more lines are too long

View File

@ -1,7 +0,0 @@
# Research projects that use TRL
Welcome to the research projects folder! Here you can find the scripts used for some research projects that used TRL and maintained by the developers and the community (LM de-toxification, Stack-Llama, etc.). Check out the READMEs in the subfolders for more information!
- [De-detoxifying language models](https://github.com/huggingface/trl/tree/main/examples/research_projects/toxicity)
- [Stack-Llama](https://github.com/huggingface/trl/tree/main/examples/research_projects/stack_llama)
- [Stack-Llama-2](https://github.com/huggingface/trl/tree/main/examples/research_projects/stack_llama_2)

View File

@ -1,15 +0,0 @@
# LayerSkip Training Recipe
Implements the training recipe as described in the [LayerSkip paper](https://huggingface.co/papers/2404.16710).
## Run training
```
cd scripts
python layer_skip_sft.py
```
## Run benchmark
```
cd scripts
python benchmark_layer_skip.py
```

View File

@ -1,77 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import config
import torch
from torch.utils import benchmark
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_tokens(model, inputs):
outputs = model.generate(
**inputs,
do_sample=False,
max_new_tokens=64,
)
return outputs
def generate_tokens_with_assistance(model, inputs, assistant_early_exit):
outputs = model.generate(
**inputs,
assistant_early_exit=assistant_early_exit,
do_sample=False,
max_new_tokens=64,
)
return outputs
if __name__ == "__main__":
ckpt = config.hub_model_id
model = AutoModelForCausalLM.from_pretrained(ckpt, device_map="auto", dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(ckpt)
prompt = "### Instruction: What are my alarms for the rest of the day?\n ### Response: "
results = []
label = "Generation Times"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
results.append(
benchmark.Timer(
stmt="generate_tokens(model, inputs)",
setup="from __main__ import generate_tokens",
globals={"model": model, "inputs": inputs},
num_threads=torch.get_num_threads(),
label=label,
sub_label="no layer skip",
description="generation",
).blocked_autorange()
)
for i in range(1, model.config.num_hidden_layers):
results.append(
benchmark.Timer(
stmt="generate_tokens_with_assistance(model, inputs, assistant_early_exit)",
setup="from __main__ import generate_assistant_tokens",
globals={"model": model, "assistant_early_exit": i, "inputs": inputs},
num_threads=torch.get_num_threads(),
label=label,
sub_label=f"layer skip {i}",
description="generation",
).blocked_autorange()
)
benchmark.Compare(results).print()

View File

@ -1,28 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from huggingface_hub import whoami
model_name = "unsloth/Llama-3.2-3B"
tokenizer_name = "unsloth/Llama-3.2-3B"
dataset_name = "WillHeld/top_v2"
output_root_dir = "./checkpoints/"
hub_model_id = f"{whoami()['name']}/layerskip-{model_name.split('/')[1]}-{dataset_name.split('/')[1]}"
output_dir = f"{output_root_dir}/{hub_model_id}"
per_device_train_batch_size = 8
gradient_accumulation_steps = 1
learning_rate = 2e-5

View File

@ -1,48 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from trl import SFTTrainer
class LayerSkipSFTTrainer(SFTTrainer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.early_exit_layer = 0 # initialize with 0
self.always_last_layer = True
self.early_exit_loss_scale = 1.0
def compute_loss(self, model, inputs, return_outputs=False, num_items_in_batch=None):
self.early_exit_layer = (
self.early_exit_layer % (model.config.num_hidden_layers - 1)
) + 1 # rotates between [1, num_hidden_layers-1]
bs, seqlen = inputs.input_ids.shape
labels = inputs.pop("labels")
outputs = model(**inputs, output_hidden_states=True)
hidden_state = outputs["hidden_states"][self.early_exit_layer].to(model.dtype)
if self.early_exit_layer != model.config.num_hidden_layers:
hidden_state = model.model.norm(hidden_state)
logits = model.lm_head(hidden_state)
loss_early = model.loss_function(logits=logits, labels=labels, vocab_size=model.vocab_size)
if self.always_last_layer:
loss_last = model.loss_function(logits=outputs["logits"], labels=labels, vocab_size=model.vocab_size)
loss = self.early_exit_loss_scale * loss_early.to(loss_last.device) + 1.0 * loss_last
# normalize loss scales
loss = loss / (1.0 + self.early_exit_loss_scale)
else:
loss = loss_early
return loss

View File

@ -1,90 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import config
import torch
from custom_trainer import LayerSkipSFTTrainer
from datasets import load_dataset
from transformers import AutoModelForCausalLM, AutoTokenizer
from trl import DataCollatorForCompletionOnlyLM, SFTConfig
def formatting_prompts_func(example):
text = f"### Instruction: {example['utterance']}\n ### Response: {example['semantic_parse']}"
# Inject eos_token as a string before tokenization, because they are not always added
# See: https://github.com/huggingface/transformers/issues/22794 and
# https://github.com/huggingface/trl/issues/1623
if tokenizer.eos_token: # usually something like "</s>" for GPT2 or "<|endoftext|>"
text += f"{tokenizer.eos_token}"
return text
if __name__ == "__main__":
# load the dataset
print("[INFO] loading the dataset...")
train_dataset = load_dataset(config.dataset_name, split="train")
print(f"output_root_dir: {config.output_root_dir}")
print(f"hub_model_id: {config.hub_model_id}")
# load the model and tokenizer
print("[INFO] loading the model and tokenizer...")
model = AutoModelForCausalLM.from_pretrained(config.model_name, device_map="auto", dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(config.tokenizer_name, add_eos_token=True)
# adding pad and eos tokens if not provided in the tokenizer
if tokenizer.pad_token is None:
# Add '[PAD]' token if it doesn't exist
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
model.resize_token_embeddings(len(tokenizer))
model.config.pad_token_id = tokenizer.pad_token_id
if tokenizer.eos_token is None or tokenizer.eos_token == tokenizer.bos_token:
# Add '[EOS]' token if it doesn't exist
tokenizer.add_special_tokens({"eos_token": "[EOS]"})
model.resize_token_embeddings(len(tokenizer))
model.config.eos_token_id = tokenizer.eos_token_id
response_template = " ### Response:"
collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=tokenizer)
args = SFTConfig(
do_train=True,
bf16=True,
max_seq_length=None,
per_device_train_batch_size=config.per_device_train_batch_size,
gradient_accumulation_steps=config.gradient_accumulation_steps,
learning_rate=config.learning_rate,
packing=False,
num_train_epochs=1.0,
report_to="none",
push_to_hub=True,
hub_model_id=config.hub_model_id,
output_dir=config.output_dir,
save_steps=1000,
save_total_limit=2,
)
trainer = LayerSkipSFTTrainer(
model,
train_dataset=train_dataset,
args=args,
formatting_func=formatting_prompts_func,
data_collator=collator,
)
trainer.train()

View File

@ -1,18 +0,0 @@
# RLHF pipeline for the creation of StackLLaMa: a Stack exchange llama-7b model.
There were three main steps to the training process:
1. Supervised fine-tuning of the base llama-7b model to create llama-7b-se:
- `torchrun --nnodes 1 --nproc_per_node 8 examples/research_projects/stack_llama/scripts/supervised_finetuning.py --model_path=<LLAMA_MODEL_PATH> --streaming --learning_rate 1e-5 --max_steps 5000 --output_dir ./llama-se`
2. Reward modeling using dialog pairs from the SE dataset using the llama-7b-se to create llama-7b-se-rm:
- `torchrun --nnodes 1 --nproc_per_node 8 examples/research_projects/stack_llama/scripts/reward_modeling.py --model_name=<LLAMA_SE_MODEL>`
3. RL fine-tuning of llama-7b-se with the llama-7b-se-rm reward model:
- `accelerate launch --multi_gpu --num_machines 1 --num_processes 8 examples/research_projects/stack_llama/scripts/rl_training.py --log_with=wandb --model_name=<LLAMA_SE_MODEL> --reward_model_name=<LLAMA_SE_RM_MODEL> --adafactor=False --tokenizer_name=<LLAMA_TOKENIZER> --save_freq=100 --output_max_length=128 --batch_size=8 --gradient_accumulation_steps=8 --batched_gen=True --ppo_epochs=4 --seed=0 --learning_rate=1.4e-5 --early_stopping=True --output_dir=llama-se-rl-finetune-128-8-8-1.4e-5_adam`
LoRA layers were using at all stages to reduce memory requirements.
At each stage the peft adapter layers were merged with the base model, using:
```shell
python examples/research_projects/stack_llama/scripts/merge_peft_adapter.py --adapter_model_name=XXX --base_model_name=YYY --output_name=ZZZ
```
Note that this script requires `peft>=0.3.0`.
For access to the base llama-7b model, please see Meta's [release](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/) and [request form](https://docs.google.com/forms/d/e/1FAIpQLSfqNECQnMkycAp2jP4Z9TFX0cGR4uf7b_fBxjY_OjhJILlKGA/viewform).

View File

@ -1,60 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
import torch
from peft import PeftConfig, PeftModel
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser
@dataclass
class ScriptArguments:
"""
The input names representing the Adapter and Base model fine-tuned with PEFT, and the output name representing the
merged model.
"""
adapter_model_name: Optional[str] = field(default=None, metadata={"help": "the adapter name"})
base_model_name: Optional[str] = field(default=None, metadata={"help": "the base model name"})
output_name: Optional[str] = field(default=None, metadata={"help": "the merged model name"})
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
assert script_args.adapter_model_name is not None, "please provide the name of the Adapter you would like to merge"
assert script_args.base_model_name is not None, "please provide the name of the Base model"
assert script_args.output_name is not None, "please provide the output name of the merged model"
peft_config = PeftConfig.from_pretrained(script_args.adapter_model_name)
if peft_config.task_type == "SEQ_CLS":
# The sequence classification task is used for the reward model in PPO
model = AutoModelForSequenceClassification.from_pretrained(
script_args.base_model_name, num_labels=1, dtype=torch.bfloat16
)
else:
model = AutoModelForCausalLM.from_pretrained(script_args.base_model_name, return_dict=True, dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name)
# Load the PEFT model
model = PeftModel.from_pretrained(model, script_args.adapter_model_name)
model.eval()
model = model.merge_and_unload()
model.save_pretrained(f"{script_args.output_name}")
tokenizer.save_pretrained(f"{script_args.output_name}")
model.push_to_hub(f"{script_args.output_name}", use_temp_dir=False)

View File

@ -1,321 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Any, Optional, Union
import evaluate
import numpy as np
import torch
import torch.nn as nn
from datasets import load_dataset
from peft import LoraConfig, TaskType, get_peft_model
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
HfArgumentParser,
PreTrainedTokenizerBase,
Trainer,
TrainerCallback,
TrainingArguments,
set_seed,
)
from transformers.utils import PaddingStrategy
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
These arguments vary depending on how many GPUs you have, what their capacity and features are, and what size model you want to train.
"""
local_rank: Optional[int] = field(default=-1, metadata={"help": "Used for multi-gpu"})
resume_from_checkpoint: Optional[bool] = field(
default=False,
metadata={"help": "If you want to resume training where it left off."},
)
deepspeed: Optional[str] = field(
default=None,
metadata={
"help": "Path to deepspeed config if using deepspeed. You may need this if the model that you want to train doesn't fit on a single GPU."
},
)
per_device_train_batch_size: Optional[int] = field(default=4)
per_device_eval_batch_size: Optional[int] = field(default=1)
gradient_accumulation_steps: Optional[int] = field(default=1)
learning_rate: Optional[float] = field(default=2e-5)
weight_decay: Optional[float] = field(default=0.001)
model_name: Optional[str] = field(
default="gpt2",
metadata={
"help": "The model that you want to train from the Hugging Face hub. E.g. gpt2, gpt2-xl, bert, etc."
},
)
tokenizer_name: Optional[str] = field(
default=None,
metadata={
"help": "The tokenizer for your model, if left empty will use the default for your model",
},
)
bf16: Optional[bool] = field(
default=True,
metadata={
"help": "This essentially cuts the training time in half if you want to sacrifice a little precision and have a supported GPU."
},
)
num_train_epochs: Optional[int] = field(
default=1,
metadata={"help": "The number of training epochs for the reward model."},
)
train_subset: Optional[int] = field(
default=100000,
metadata={"help": "The size of the subset of the training data to use"},
)
eval_subset: Optional[int] = field(
default=50000,
metadata={"help": "The size of the subset of the eval data to use"},
)
gradient_checkpointing: Optional[bool] = field(
default=False,
metadata={"help": "Enables gradient checkpointing."},
)
optim: Optional[str] = field(
default="adamw_hf",
metadata={"help": "The optimizer to use."},
)
lr_scheduler_type: Optional[str] = field(
default="linear",
metadata={"help": "The lr scheduler"},
)
max_length: Optional[int] = field(default=512)
eval_first_step: Optional[bool] = field(
default=False,
metadata={"help": "Whether to run eval after the first step"},
)
seed: Optional[int] = field(
default=0, metadata={"help": "Random seed that will be set at the beginning of training."}
)
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
set_seed(script_args.seed)
# Load the human stack-exchange-paired dataset for tuning the reward model.
train_dataset = load_dataset(
"lvwerra/stack-exchange-paired", data_dir="data/reward", split="train", verification_mode="no_checks"
)
if script_args.train_subset > 0:
train_dataset = train_dataset.select(range(script_args.train_subset))
eval_dataset = load_dataset(
"lvwerra/stack-exchange-paired", data_dir="data/evaluation", split="train", verification_mode="no_checks"
)
if script_args.eval_subset > 0:
eval_dataset = eval_dataset.select(range(script_args.eval_subset))
# Define the training args. Needs to be done before the model is loaded if you are using deepspeed.
model_name_split = script_args.model_name.split("/")[-1]
output_name = (
f"{model_name_split}_peft_stack-exchange-paired_rmts__{script_args.train_subset}_{script_args.learning_rate}"
)
training_args = TrainingArguments(
output_dir=output_name,
learning_rate=script_args.learning_rate,
per_device_train_batch_size=script_args.per_device_train_batch_size,
per_device_eval_batch_size=script_args.per_device_eval_batch_size,
num_train_epochs=script_args.num_train_epochs,
weight_decay=script_args.weight_decay,
eval_strategy="steps",
eval_steps=500,
save_strategy="steps",
save_steps=500,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
gradient_checkpointing=script_args.gradient_checkpointing,
deepspeed=script_args.deepspeed,
local_rank=script_args.local_rank,
remove_unused_columns=False,
label_names=[],
bf16=script_args.bf16,
logging_strategy="steps",
optim=script_args.optim,
lr_scheduler_type=script_args.lr_scheduler_type,
seed=script_args.seed,
)
# Load the value-head model and tokenizer.
tokenizer_name = script_args.tokenizer_name if script_args.tokenizer_name is not None else script_args.model_name
tokenizer = AutoTokenizer.from_pretrained(tokenizer_name, use_auth_token=True)
tokenizer.pad_token = tokenizer.eos_token
peft_config = LoraConfig(
task_type=TaskType.SEQ_CLS,
inference_mode=False,
r=8,
lora_alpha=32,
lora_dropout=0.1,
)
model = AutoModelForSequenceClassification.from_pretrained(script_args.model_name, num_labels=1, dtype=torch.bfloat16)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
# Need to do this for gpt2, because it doesn't have an official pad token.
tokenizer.pad_token = tokenizer.eos_token
model.config.pad_token_id = tokenizer.eos_token_id
model.config.use_cache = not script_args.gradient_checkpointing
num_proc = 24 # Can adjust to be higher if you have more processors.
original_columns = train_dataset.column_names
# Turn the dataset into pairs of post + summaries, where text_j is the preferred question + answer and text_k is the other.
# Then tokenize the dataset.
def preprocess_function(examples):
new_examples = {
"input_ids_j": [],
"attention_mask_j": [],
"input_ids_k": [],
"attention_mask_k": [],
}
for question, response_j, response_k in zip(examples["question"], examples["response_j"], examples["response_k"]):
tokenized_j = tokenizer("Question: " + question + "\n\nAnswer: " + response_j, truncation=True)
tokenized_k = tokenizer("Question: " + question + "\n\nAnswer: " + response_k, truncation=True)
new_examples["input_ids_j"].append(tokenized_j["input_ids"])
new_examples["attention_mask_j"].append(tokenized_j["attention_mask"])
new_examples["input_ids_k"].append(tokenized_k["input_ids"])
new_examples["attention_mask_k"].append(tokenized_k["attention_mask"])
return new_examples
# preprocess the dataset and filter out QAs that are longer than script_args.max_length
train_dataset = train_dataset.map(
preprocess_function,
batched=True,
num_proc=num_proc,
remove_columns=original_columns,
)
train_dataset = train_dataset.filter(
lambda x: len(x["input_ids_j"]) <= script_args.max_length and len(x["input_ids_k"]) <= script_args.max_length,
num_proc=num_proc,
)
eval_dataset = eval_dataset.map(
preprocess_function,
batched=True,
num_proc=num_proc,
remove_columns=original_columns,
)
eval_dataset = eval_dataset.filter(
lambda x: len(x["input_ids_j"]) <= script_args.max_length and len(x["input_ids_k"]) <= script_args.max_length,
num_proc=num_proc,
)
# We need to define a special data collator that batches the data in our j vs k format.
@dataclass
class RewardDataCollatorWithPadding:
tokenizer: PreTrainedTokenizerBase
padding: Union[bool, str, PaddingStrategy] = True
pad_to_multiple_of: Optional[int] = None
return_tensors: str = "pt"
def __call__(self, features: list[dict[str, Any]]) -> dict[str, Any]:
features_j = []
features_k = []
for feature in features:
features_j.append(
{
"input_ids": feature["input_ids_j"],
"attention_mask": feature["attention_mask_j"],
}
)
features_k.append(
{
"input_ids": feature["input_ids_k"],
"attention_mask": feature["attention_mask_k"],
}
)
batch_j = self.tokenizer.pad(
features_j,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch_k = self.tokenizer.pad(
features_k,
padding=self.padding,
pad_to_multiple_of=self.pad_to_multiple_of,
return_tensors=self.return_tensors,
)
batch = {
"input_ids_j": batch_j["input_ids"],
"attention_mask_j": batch_j["attention_mask"],
"input_ids_k": batch_k["input_ids"],
"attention_mask_k": batch_k["attention_mask"],
"return_loss": True,
}
return batch
# Define the metric that we'll use for validation.
accuracy = evaluate.load("accuracy")
def compute_metrics(eval_pred):
predictions, _ = eval_pred
# Here, predictions is rewards_j and rewards_k.
# We want to see how much of the time rewards_j > rewards_k.
predictions = np.argmax(predictions, axis=0)
labels = np.zeros(predictions.shape)
return accuracy.compute(predictions=predictions, references=labels)
class RewardTrainer(Trainer):
# Define how to compute the reward loss. We use the InstructGPT pairwise logloss: https://huggingface.co/papers/2203.02155
def compute_loss(self, model, inputs, return_outputs=False):
rewards_j = model(input_ids=inputs["input_ids_j"], attention_mask=inputs["attention_mask_j"])[0]
rewards_k = model(input_ids=inputs["input_ids_k"], attention_mask=inputs["attention_mask_k"])[0]
loss = -nn.functional.logsigmoid(rewards_j - rewards_k).mean()
if return_outputs:
return loss, {"rewards_j": rewards_j, "rewards_k": rewards_k}
return loss
# Train the model, woohoo.
trainer = RewardTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
data_collator=RewardDataCollatorWithPadding(tokenizer=tokenizer),
)
if script_args.eval_first_step:
class EvaluateFirstStepCallback(TrainerCallback):
def on_step_end(self, args, state, control, **kwargs):
if state.global_step == 1:
control.should_evaluate = True
trainer.add_callback(EvaluateFirstStepCallback())
trainer.train(script_args.resume_from_checkpoint)
print("Saving last checkpoint of the model")
model.save_pretrained(output_name + "_peft_last_checkpoint")

View File

@ -1,270 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
import torch
from accelerate import Accelerator
from datasets import load_dataset
from peft import LoraConfig
from tqdm import tqdm
from transformers import Adafactor, AutoTokenizer, HfArgumentParser, pipeline, set_seed
from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer
from trl.core import LengthSampler
tqdm.pandas()
@dataclass
class ScriptArguments:
"""
The name of the Casual LM model we wish to fine-tune with PPO
"""
# NOTE: gpt2 models use Conv1D instead of Linear layers which are not yet supported in 8 bit mode
# models like gpt-neo* models are more suitable.
model_name: Optional[str] = field(default="", metadata={"help": "the model name"})
tokenizer_name: Optional[str] = field(default="", metadata={"help": "the tokenizer name"})
reward_model_name: Optional[str] = field(default="", metadata={"help": "the reward model name"})
log_with: Optional[str] = field(default=None, metadata={"help": "use 'wandb' to log with wandb"})
learning_rate: Optional[float] = field(default=1.41e-5, metadata={"help": "the learning rate"})
output_max_length: Optional[int] = field(default=128, metadata={"help": "maximum length for generation"})
mini_batch_size: Optional[int] = field(default=1, metadata={"help": "the PPO minibatch size"})
batch_size: Optional[int] = field(default=32, metadata={"help": "the batch size"})
ppo_epochs: Optional[int] = field(default=4, metadata={"help": "the number of ppo epochs"})
gradient_accumulation_steps: Optional[int] = field(
default=4, metadata={"help": "the number of gradient accumulation steps"}
)
adafactor: Optional[bool] = field(default=False, metadata={"help": "whether to use the adafactor optimizer"})
early_stopping: Optional[bool] = field(default=False, metadata={"help": "whether to early stop"})
target_kl: Optional[float] = field(default=0.1, metadata={"help": "kl target for early stopping"})
reward_baseline: Optional[float] = field(
default=0.0,
metadata={"help": "a baseline value that is subtracted from the reward"},
)
batched_gen: Optional[bool] = field(default=False, metadata={"help": "whether to use the batched text gen"})
save_freq: Optional[int] = field(default=None, metadata={"help": "n steps to save the model"})
output_dir: Optional[str] = field(default="runs/", metadata={"help": "n steps to save the model"})
seed: Optional[int] = field(default=0, metadata={"help": "the seed"})
steps: Optional[int] = field(default=20000, metadata={"help": "number of epochs"})
init_kl_coef: Optional[float] = field(
default=0.2,
metadata={"help": "Initial KL penalty coefficient (used for adaptive and linear control)"},
)
adap_kl_ctrl: Optional[bool] = field(default=True, metadata={"help": "Use adaptive KL control, otherwise linear"})
load_in_8bit: Optional[bool] = field(default=True, metadata={"help": "whether to load the model in 8bit"})
parser = HfArgumentParser(ScriptArguments)
script_args: ScriptArguments = parser.parse_args_into_dataclasses()[0]
reward_model_name = script_args.reward_model_name
dataset_name = "lvwerra/stack-exchange-paired"
config = PPOConfig(
steps=script_args.steps,
model_name=script_args.model_name,
learning_rate=script_args.learning_rate,
log_with=script_args.log_with,
batch_size=script_args.batch_size,
mini_batch_size=script_args.mini_batch_size,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
optimize_device_cache=True,
early_stopping=script_args.early_stopping,
target_kl=script_args.target_kl,
ppo_epochs=script_args.ppo_epochs,
seed=script_args.seed,
init_kl_coef=script_args.init_kl_coef,
adap_kl_ctrl=script_args.adap_kl_ctrl,
)
train_dataset = load_dataset(
"lvwerra/stack-exchange-paired", data_dir="data/rl", split="train", verification_mode="no_checks"
)
train_dataset = train_dataset.select(range(100000))
original_columns = train_dataset.column_names
# We then define the arguments to pass to the sentiment analysis pipeline.
# We set `return_all_scores` to True to get the sentiment score for each token.
sent_kwargs = {
"return_all_scores": True,
"function_to_apply": "none",
"batch_size": 16,
"truncation": True,
}
tokenizer = AutoTokenizer.from_pretrained(script_args.tokenizer_name)
# GPT-2 tokenizer has a pad token, but it is not eos_token by default. We need to set it to eos_token.
# only for this model.
if getattr(tokenizer, "pad_token", None) is None:
tokenizer.pad_token = tokenizer.eos_token
# Below is an example function to build the dataset. In our case, we use the IMDB dataset
# from the `datasets` library. One should customize this function to train the model on
# its own dataset.
def build_dataset(
tokenizer,
dataset_name="lvwerra/stack-exchange-paired",
):
"""
Build dataset for training. This builds the dataset from `load_dataset`, one should
customize this function to train the model on its own dataset.
Args:
tokenizer (`transformers.PreTrainedTokenizer`):
The tokenizer used for the model.
dataset_name (`str`):
The name of the dataset to be loaded.
Returns:
dataloader (`torch.utils.data.DataLoader`):
The dataloader for the dataset.
"""
num_proc = 24
def preprocess_function(examples):
new_examples = {
"query": [],
"input_ids": [],
}
for question in examples["question"]:
query = "Question: " + question + "\n\nAnswer: "
tokenized_question = tokenizer(query, truncation=True)
new_examples["query"].append(query)
new_examples["input_ids"].append(tokenized_question["input_ids"])
return new_examples
ds = train_dataset.map(
preprocess_function,
batched=True,
num_proc=num_proc,
remove_columns=original_columns,
)
ds = ds.filter(lambda x: len(x["input_ids"]) < 512, batched=False, num_proc=num_proc)
ds.set_format(type="torch")
return ds
# We retrieve the dataloader by calling the `build_dataset` function.
dataset = build_dataset(tokenizer)
def collator(data):
return {key: [d[key] for d in data] for key in data[0]}
# set seed before initializing value head for deterministic eval
set_seed(config.seed)
# Now let's build the model, the reference model, and the tokenizer.
current_device = Accelerator().local_process_index
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
model = AutoModelForCausalLMWithValueHead.from_pretrained(
config.model_name,
load_in_8bit=script_args.load_in_8bit,
device_map={"": current_device},
peft_config=lora_config,
)
optimizer = None
if script_args.adafactor:
optimizer = Adafactor(
filter(lambda p: p.requires_grad, model.parameters()),
scale_parameter=False,
relative_step=False,
warmup_init=False,
lr=config.learning_rate,
)
# We then build the PPOTrainer, passing the model, the reference model, the tokenizer
ppo_trainer = PPOTrainer(
config,
model,
ref_model=None,
tokenizer=tokenizer,
dataset=dataset,
data_collator=collator,
optimizer=optimizer,
)
# We then build the sentiment analysis pipeline using our reward model, passing the
# model name and the sentiment analysis pipeline arguments. Let's also make sure to
# set the device to the same device as the PPOTrainer.
device = ppo_trainer.accelerator.device
if ppo_trainer.accelerator.num_processes == 1:
device = 0 if torch.cuda.is_available() else "cpu" # to avoid a ` pipeline` bug
sentiment_pipe = pipeline(
"sentiment-analysis",
model=reward_model_name,
device_map={"": current_device},
model_kwargs={"load_in_8bit": script_args.load_in_8bit},
tokenizer=tokenizer,
return_token_type_ids=False,
)
if sentiment_pipe.model.config.pad_token_id is None:
sentiment_pipe.model.config.pad_token_id = sentiment_pipe.model.config.eos_token_id
# We then define the arguments to pass to the `generate` function. These arguments
# are passed to the `generate` function of the PPOTrainer, which is a wrapper around
# the `generate` function of the trained model.
generation_kwargs = {
# "min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.pad_token_id,
"eos_token_id": 100_000,
}
output_min_length = 32
output_max_length = script_args.output_max_length
output_length_sampler = LengthSampler(output_min_length, output_max_length)
for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)):
if epoch >= config.total_ppo_epochs:
break
question_tensors = batch["input_ids"]
response_tensors = ppo_trainer.generate(
question_tensors,
return_prompt=False,
length_sampler=output_length_sampler,
**generation_kwargs,
)
batch["response"] = tokenizer.batch_decode(response_tensors, skip_special_tokens=True)
# Compute reward score (using the sentiment analysis pipeline)
texts = [q + r for q, r in zip(batch["query"], batch["response"])]
pipe_outputs = sentiment_pipe(texts, **sent_kwargs)
rewards = [torch.tensor(output[0]["score"] - script_args.reward_baseline) for output in pipe_outputs]
# Run PPO step
stats = ppo_trainer.step(question_tensors, response_tensors, rewards)
ppo_trainer.log_stats(stats, batch, rewards)
if script_args.save_freq and epoch and epoch % script_args.save_freq == 0:
ppo_trainer.save_pretrained(script_args.output_dir + f"step_{epoch}")

View File

@ -1,222 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate import Accelerator
from datasets import load_dataset
from peft import LoraConfig
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, logging, set_seed
from trl import SFTTrainer
from trl.trainer import ConstantLengthDataset
"""
Fine-Tune Llama-7b on SE paired dataset
"""
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="")
parser.add_argument("--dataset_name", type=str, default="lvwerra/stack-exchange-paired")
parser.add_argument("--subset", type=str, default="data/finetune")
parser.add_argument("--split", type=str, default="train")
parser.add_argument("--size_valid_set", type=int, default=4000)
parser.add_argument("--streaming", action="store_true")
parser.add_argument("--shuffle_buffer", type=int, default=5000)
parser.add_argument("--seq_length", type=int, default=1024)
parser.add_argument("--max_steps", type=int, default=10000)
parser.add_argument("--batch_size", type=int, default=4)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--eos_token_id", type=int, default=49152)
parser.add_argument("--learning_rate", type=float, default=1e-4)
parser.add_argument("--lr_scheduler_type", type=str, default="cosine")
parser.add_argument("--num_warmup_steps", type=int, default=100)
parser.add_argument("--weight_decay", type=float, default=0.05)
parser.add_argument("--local_rank", type=int, default=0)
parser.add_argument("--fp16", action="store_true", default=False)
parser.add_argument("--bf16", action="store_true", default=False)
parser.add_argument("--gradient_checkpointing", action="store_true", default=False)
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--num_workers", type=int, default=None)
parser.add_argument("--output_dir", type=str, default="./checkpoints")
parser.add_argument("--log_freq", default=1, type=int)
parser.add_argument("--eval_freq", default=1000, type=int)
parser.add_argument("--save_freq", default=1000, type=int)
return parser.parse_args()
def chars_token_ratio(dataset, tokenizer, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
text = prepare_sample_text(example)
total_characters += len(text)
if tokenizer.is_fast:
total_tokens += len(tokenizer(text).tokens())
else:
total_tokens += len(tokenizer.tokenize(text))
return total_characters / total_tokens
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def prepare_sample_text(example):
"""Prepare the text from a sample of the dataset."""
text = f"Question: {example['question']}\n\nAnswer: {example['response_j']}"
return text
def create_datasets(tokenizer, args):
dataset = load_dataset(
args.dataset_name,
data_dir=args.subset,
split=args.split,
use_auth_token=True,
num_proc=args.num_workers if not args.streaming else None,
streaming=args.streaming,
)
if args.streaming:
print("Loading the dataset in streaming mode")
valid_data = dataset.take(args.size_valid_set)
train_data = dataset.skip(args.size_valid_set)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=args.seed)
else:
dataset = dataset.train_test_split(test_size=0.005, seed=args.seed)
train_data = dataset["train"]
valid_data = dataset["test"]
print(f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}")
chars_per_token = chars_token_ratio(train_data, tokenizer)
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
formatting_func=prepare_sample_text,
infinite=True,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
valid_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
formatting_func=prepare_sample_text,
infinite=False,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
return train_dataset, valid_dataset
def run_training(args, train_data, val_data):
print("Loading the model")
lora_config = LoraConfig(
r=16,
lora_alpha=32,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
)
train_data.start_iteration = 0
print("Starting main loop")
training_args = TrainingArguments(
output_dir=args.output_dir,
dataloader_drop_last=True,
eval_strategy="steps",
max_steps=args.max_steps,
eval_steps=args.eval_freq,
save_steps=args.save_freq,
logging_steps=args.log_freq,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
learning_rate=args.learning_rate,
lr_scheduler_type=args.lr_scheduler_type,
warmup_steps=args.num_warmup_steps,
gradient_accumulation_steps=args.gradient_accumulation_steps,
gradient_checkpointing=args.gradient_checkpointing,
fp16=args.fp16,
bf16=args.bf16,
weight_decay=args.weight_decay,
run_name="llama-7b-finetuned",
report_to="wandb",
ddp_find_unused_parameters=False,
)
model = AutoModelForCausalLM.from_pretrained(
args.model_path, load_in_8bit=True, device_map={"": Accelerator().process_index}
)
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_data,
eval_dataset=val_data,
peft_config=lora_config,
packing=True,
)
print_trainable_parameters(trainer.model)
print("Training...")
trainer.train()
print("Saving last checkpoint of the model")
trainer.model.save_pretrained(os.path.join(args.output_dir, "final_checkpoint/"))
def main(args):
tokenizer = AutoTokenizer.from_pretrained(args.model_path)
train_dataset, eval_dataset = create_datasets(tokenizer, args)
run_training(args, train_dataset, eval_dataset)
if __name__ == "__main__":
args = get_args()
assert args.model_path != "", "Please provide the llama model path"
set_seed(args.seed)
os.makedirs(args.output_dir, exist_ok=True)
logging.set_verbosity_error()
main(args)

View File

@ -1,78 +0,0 @@
# DPO pipeline for the creation of StackLlaMa 2: a Stack exchange llama-v2-7b model
## Prerequisites
Install all the dependencies in the `requirements.txt`:
```shell
pip install -U -r requirements.txt
```
Since we will use `accelerate` for training, make sure to run:
```shell
accelerate config
```
## Training
There were two main steps to the DPO training process:
1. Supervised fine-tuning of the base llama-v2-7b model to create llama-v2-7b-se:
```shell
accelerate launch examples/research_projects/stack_llama_2/scripts/sft_llama2.py \
--output_dir="./sft" \
--max_steps=500 \
--save_steps=10 \
--per_device_train_batch_size=4 \
--per_device_eval_batch_size=1 \
--gradient_accumulation_steps=2 \
--gradient_checkpointing=False \
--group_by_length=False \
--learning_rate=1e-4 \
--lr_scheduler_type="cosine" \
--warmup_steps=100 \
--weight_decay=0.05 \
--optim="paged_adamw_32bit" \
--bf16=True \
--remove_unused_columns=False \
--run_name="sft_llama2" \
--report_to="wandb"
```
2. Run the DPO trainer using the model saved by the previous step:
```shell
accelerate launch examples/research_projects/stack_llama_2/scripts/dpo_llama2.py \
--model_name_or_path="sft/final_checkpoint" \
--output_dir="dpo"
```
## Merging the adaptors
To merge the adaptors into the base model we can use the `merge_peft_adapter.py` helper script that comes with TRL:
```shell
python examples/research_projects/stack_llama/scripts/merge_peft_adapter.py --base_model_name="meta-llama/Llama-2-7b-hf" --adapter_model_name="dpo/final_checkpoint/" --output_name="stack-llama-2"
```
which will also push the model to your HuggingFace hub account.
## Running the model
We can load the DPO-trained LoRA adaptors which were saved by the DPO training step and load them via:
```python
from peft import AutoPeftModelForCausalLM
model = AutoPeftModelForCausalLM.from_pretrained(
"dpo/final_checkpoint",
low_cpu_mem_usage=True,
dtype=torch.float16,
load_in_4bit=True,
)
model.generate(...)
```

View File

@ -1,252 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# 0. imports
import os
from dataclasses import dataclass, field
from typing import Optional
import torch
from accelerate import Accelerator
from datasets import Dataset, load_dataset
from peft import LoraConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, set_seed
from trl import DPOConfig, DPOTrainer
# Define and parse arguments.
@dataclass
class ScriptArguments:
"""
The arguments for the DPO training script.
"""
# data parameters
beta: Optional[float] = field(default=0.1, metadata={"help": "the beta parameter for DPO loss"})
# training parameters
model_name_or_path: Optional[str] = field(
default="../sft/results/final_checkpoint",
metadata={"help": "the location of the SFT model name or path"},
)
learning_rate: Optional[float] = field(default=5e-4, metadata={"help": "optimizer learning rate"})
lr_scheduler_type: Optional[str] = field(default="cosine", metadata={"help": "the lr scheduler type"})
warmup_steps: Optional[int] = field(default=100, metadata={"help": "the number of warmup steps"})
weight_decay: Optional[float] = field(default=0.05, metadata={"help": "the weight decay"})
optimizer_type: Optional[str] = field(default="paged_adamw_32bit", metadata={"help": "the optimizer type"})
per_device_train_batch_size: Optional[int] = field(default=4, metadata={"help": "train batch size per device"})
per_device_eval_batch_size: Optional[int] = field(default=1, metadata={"help": "eval batch size per device"})
gradient_accumulation_steps: Optional[int] = field(
default=4, metadata={"help": "the number of gradient accumulation steps"}
)
gradient_checkpointing: Optional[bool] = field(
default=True, metadata={"help": "whether to use gradient checkpointing"}
)
gradient_checkpointing_use_reentrant: Optional[bool] = field(
default=False, metadata={"help": "whether to use reentrant for gradient checkpointing"}
)
lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"})
lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"})
lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})
max_prompt_length: Optional[int] = field(default=512, metadata={"help": "the maximum prompt length"})
max_length: Optional[int] = field(default=1024, metadata={"help": "the maximum sequence length"})
max_steps: Optional[int] = field(default=1000, metadata={"help": "max number of training steps"})
logging_steps: Optional[int] = field(default=10, metadata={"help": "the logging frequency"})
save_steps: Optional[int] = field(default=100, metadata={"help": "the saving frequency"})
eval_steps: Optional[int] = field(default=100, metadata={"help": "the evaluation frequency"})
output_dir: Optional[str] = field(default="./results", metadata={"help": "the output directory"})
log_freq: Optional[int] = field(default=1, metadata={"help": "the logging frequency"})
load_in_4bit: Optional[bool] = field(default=True, metadata={"help": "whether to load the model in 4bit"})
model_dtype: Optional[str] = field(
default="float16", metadata={"help": "model_dtype[float16, bfloat16, float] for loading."}
)
# instrumentation
report_to: Optional[str] = field(
default="wandb",
metadata={
"help": 'The list of integrations to report the results and logs to. Supported platforms are `"azure_ml"`,'
'`"comet_ml"`, `"mlflow"`, `"neptune"`, `"tensorboard"`,`"clearml"` and `"wandb"`. '
'Use `"all"` to report to all integrations installed, `"none"` for no integrations.'
},
)
# debug argument for distributed training
ignore_bias_buffers: Optional[bool] = field(
default=False,
metadata={
"help": "fix for DDP issues with LM bias/mask buffers - invalid scalar type,`inplace operation. See"
"https://github.com/huggingface/transformers/issues/22482#issuecomment-1595790992"
},
)
seed: Optional[int] = field(
default=0, metadata={"help": "Random seed that will be set at the beginning of training."}
)
def get_stack_exchange_paired(
data_dir: str = "data/rl",
cache_dir: Optional[str] = None,
num_proc=24,
) -> Dataset:
"""Load the stack-exchange-paired dataset from Hugging Face and convert it to the necessary format.
The dataset is converted to a dictionary with the following structure:
{
'prompt': list[str],
'chosen': list[str],
'rejected': list[str],
}
Prompts are structured as follows:
"Question: " + <prompt> + "\n\nAnswer: "
"""
dataset = load_dataset(
"lvwerra/stack-exchange-paired",
split="train",
cache_dir=cache_dir,
data_dir=data_dir,
verification_mode="no_checks",
)
original_columns = dataset.column_names
def return_prompt_and_responses(samples) -> dict[str, str]:
return {
"prompt": ["Question: " + question + "\n\nAnswer: " for question in samples["question"]],
"chosen": samples["response_j"],
"rejected": samples["response_k"],
}
return dataset.map(
return_prompt_and_responses,
batched=True,
num_proc=num_proc,
remove_columns=original_columns,
)
if __name__ == "__main__":
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
set_seed(script_args.seed)
# 1. load a pretrained model
dtype = torch.float
if script_args.model_dtype == "float16":
dtype = torch.float16
elif script_args.model_dtype == "bfloat16":
dtype = torch.bfloat16
model = AutoModelForCausalLM.from_pretrained(
script_args.model_name_or_path,
low_cpu_mem_usage=True,
dtype=dtype,
load_in_4bit=script_args.load_in_4bit,
device_map={"": Accelerator().local_process_index},
)
model.config.use_cache = False
if script_args.ignore_bias_buffers:
# torch distributed hack
model._ddp_params_and_buffers_to_ignore = [
name for name, buffer in model.named_buffers() if buffer.dtype == torch.bool
]
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")
tokenizer.pad_token = tokenizer.eos_token
# 2. Load the Stack-exchange paired dataset
train_dataset = get_stack_exchange_paired(data_dir="data/rl")
train_dataset = train_dataset.filter(
lambda x: len(x["prompt"]) + len(x["chosen"]) <= script_args.max_length
and len(x["prompt"]) + len(x["rejected"]) <= script_args.max_length,
num_proc=script_args.num_proc,
)
# 3. Load evaluation dataset
eval_dataset = get_stack_exchange_paired(data_dir="data/evaluation")
eval_dataset = eval_dataset.filter(
lambda x: len(x["prompt"]) + len(x["chosen"]) <= script_args.max_length
and len(x["prompt"]) + len(x["rejected"]) <= script_args.max_length,
num_proc=script_args.num_proc,
)
# 4. initialize training arguments:
training_args = DPOConfig(
per_device_train_batch_size=script_args.per_device_train_batch_size,
per_device_eval_batch_size=script_args.per_device_eval_batch_size,
max_steps=script_args.max_steps,
logging_steps=script_args.logging_steps,
save_steps=script_args.save_steps,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
gradient_checkpointing=script_args.gradient_checkpointing,
learning_rate=script_args.learning_rate,
eval_strategy="steps",
eval_steps=script_args.eval_steps,
output_dir=script_args.output_dir,
report_to=script_args.report_to,
lr_scheduler_type=script_args.lr_scheduler_type,
warmup_steps=script_args.warmup_steps,
optim=script_args.optimizer_type,
bf16=True,
remove_unused_columns=False,
run_name="dpo_llama2",
gradient_checkpointing_kwargs=dict(use_reentrant=script_args.gradient_checkpointing_use_reentrant),
seed=script_args.seed,
)
peft_config = LoraConfig(
r=script_args.lora_r,
lora_alpha=script_args.lora_alpha,
lora_dropout=script_args.lora_dropout,
target_modules=[
"q_proj",
"v_proj",
"k_proj",
"out_proj",
"fc_in",
"fc_out",
"wte",
],
bias="none",
task_type="CAUSAL_LM",
)
# 5. initialize the DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model=None,
args=training_args,
beta=script_args.beta,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=tokenizer,
peft_config=peft_config,
max_prompt_length=script_args.max_prompt_length,
max_length=script_args.max_length,
)
# 6. train
dpo_trainer.train()
dpo_trainer.save_model(script_args.output_dir)
# 7. save
output_dir = os.path.join(script_args.output_dir, "final_checkpoint")
dpo_trainer.model.save_pretrained(output_dir)

View File

@ -1,7 +0,0 @@
transformers
trl
peft
accelerate
datasets
bitsandbytes
wandb

View File

@ -1,212 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Fine-Tune Llama2-7b on SE paired dataset
import os
from dataclasses import dataclass, field
from typing import Optional
import torch
from accelerate import Accelerator
from datasets import load_dataset
from peft import AutoPeftModelForCausalLM, LoraConfig
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
HfArgumentParser,
is_torch_npu_available,
is_torch_xpu_available,
set_seed,
)
from trl import SFTConfig, SFTTrainer
from trl.trainer import ConstantLengthDataset
@dataclass
class ScriptArguments:
model_name: Optional[str] = field(default="meta-llama/Llama-2-7b-hf", metadata={"help": "the model name"})
dataset_name: Optional[str] = field(default="lvwerra/stack-exchange-paired", metadata={"help": "the dataset name"})
subset: Optional[str] = field(default="data/finetune", metadata={"help": "the subset to use"})
split: Optional[str] = field(default="train", metadata={"help": "the split to use"})
size_valid_set: Optional[int] = field(default=4000, metadata={"help": "the size of the validation set"})
streaming: Optional[bool] = field(default=True, metadata={"help": "whether to stream the dataset"})
shuffle_buffer: Optional[int] = field(default=5000, metadata={"help": "the shuffle buffer size"})
seq_length: Optional[int] = field(default=1024, metadata={"help": "the sequence length"})
num_workers: Optional[int] = field(default=4, metadata={"help": "the number of workers"})
use_bnb: Optional[bool] = field(default=True, metadata={"help": "whether to use BitsAndBytes"})
# LoraConfig
lora_alpha: Optional[float] = field(default=16, metadata={"help": "the lora alpha parameter"})
lora_dropout: Optional[float] = field(default=0.05, metadata={"help": "the lora dropout parameter"})
lora_r: Optional[int] = field(default=8, metadata={"help": "the lora r parameter"})
parser = HfArgumentParser((ScriptArguments, SFTConfig))
script_args, training_args = parser.parse_args_into_dataclasses()
peft_config = LoraConfig(
r=script_args.lora_r,
lora_alpha=script_args.lora_alpha,
lora_dropout=script_args.lora_dropout,
target_modules=["q_proj", "v_proj"],
bias="none",
task_type="CAUSAL_LM",
)
if training_args.group_by_length and training_args.packing:
raise ValueError("Cannot use both packing and group by length")
# `gradient_checkpointing` was True by default until `1f3314`, but it's actually not used.
# `gradient_checkpointing=True` will cause `Variable._execution_engine.run_backward`.
if training_args.gradient_checkpointing:
raise ValueError("gradient_checkpointing not supported")
set_seed(training_args.seed)
def chars_token_ratio(dataset, tokenizer, nb_examples=400):
"""
Estimate the average number of characters per token in the dataset.
"""
total_characters, total_tokens = 0, 0
for _, example in tqdm(zip(range(nb_examples), iter(dataset)), total=nb_examples):
text = prepare_sample_text(example)
total_characters += len(text)
if tokenizer.is_fast:
total_tokens += len(tokenizer(text).tokens())
else:
total_tokens += len(tokenizer.tokenize(text))
return total_characters / total_tokens
def print_trainable_parameters(model):
"""
Prints the number of trainable parameters in the model.
"""
trainable_params = 0
all_param = 0
for _, param in model.named_parameters():
all_param += param.numel()
if param.requires_grad:
trainable_params += param.numel()
print(
f"trainable params: {trainable_params} || all params: {all_param} || trainable%: {100 * trainable_params / all_param}"
)
def prepare_sample_text(example):
"""Prepare the text from a sample of the dataset."""
text = f"Question: {example['question']}\n\nAnswer: {example['response_j']}"
return text
def create_datasets(tokenizer, args, seed=None):
dataset = load_dataset(
args.dataset_name,
data_dir=args.subset,
split=args.split,
use_auth_token=True,
num_proc=args.num_workers if not args.streaming else None,
streaming=args.streaming,
)
if args.streaming:
print("Loading the dataset in streaming mode")
valid_data = dataset.take(args.size_valid_set)
train_data = dataset.skip(args.size_valid_set)
train_data = train_data.shuffle(buffer_size=args.shuffle_buffer, seed=seed)
else:
dataset = dataset.train_test_split(test_size=0.005, seed=seed)
train_data = dataset["train"]
valid_data = dataset["test"]
print(f"Size of the train set: {len(train_data)}. Size of the validation set: {len(valid_data)}")
chars_per_token = chars_token_ratio(train_data, tokenizer)
print(f"The character to token ratio of the dataset is: {chars_per_token:.2f}")
train_dataset = ConstantLengthDataset(
tokenizer,
train_data,
formatting_func=prepare_sample_text,
infinite=True,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
valid_dataset = ConstantLengthDataset(
tokenizer,
valid_data,
formatting_func=prepare_sample_text,
infinite=False,
seq_length=args.seq_length,
chars_per_token=chars_per_token,
)
return train_dataset, valid_dataset
bnb_config = None
if script_args.use_bnb:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
base_model = AutoModelForCausalLM.from_pretrained(
script_args.model_name,
quantization_config=bnb_config,
device_map={"": Accelerator().local_process_index},
trust_remote_code=True,
use_auth_token=True,
)
base_model.config.use_cache = False
tokenizer = AutoTokenizer.from_pretrained(script_args.model_name, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "right" # Fix weird overflow issue with fp16 training
train_dataset, eval_dataset = create_datasets(tokenizer, script_args, seed=training_args.seed)
trainer = SFTTrainer(
model=base_model,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
peft_config=peft_config,
max_length=None,
formatting_func=prepare_sample_text,
processing_class=tokenizer,
args=training_args,
)
trainer.train()
trainer.save_model(training_args.output_dir)
output_dir = os.path.join(training_args.output_dir, "final_checkpoint")
trainer.model.save_pretrained(output_dir)
# Free memory for merging weights
del base_model
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
model = AutoPeftModelForCausalLM.from_pretrained(output_dir, device_map="auto", dtype=torch.bfloat16)
model = model.merge_and_unload()
output_merged_dir = os.path.join(training_args.output_dir, "final_merged_checkpoint")
model.save_pretrained(output_merged_dir, safe_serialization=True)

View File

@ -1,7 +0,0 @@
# De-detoxifying language models
To run this code, do the following:
```shell
ACCELERATE_LOG_LEVEL=info accelerate launch --config_file {CONFIG} examples/research_projects/toxicity/scripts/gpt-j-6b-toxicity.py --log_with wandb
```

View File

@ -1,146 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import csv
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForCausalLM, AutoTokenizer, is_torch_npu_available, is_torch_xpu_available
toxicity = evaluate.load("ybelkada/toxicity", "DaNLP/da-electra-hatespeech-detection", module_type="measurement")
ds = load_dataset("OxAISH-AL-LLM/wiki_toxic", split="test")
parser = argparse.ArgumentParser(description="Evaluate de-toxified models")
parser.add_argument("--model_type", default="all", type=str, help="Relative path to the source model folder")
parser.add_argument("--output_file", default="toxicity.csv", type=str, help="Relative path to the source model folder")
parser.add_argument("--batch_size", default=64, type=int, help="Batch size")
parser.add_argument("--num_samples", default=400, type=int, help="Number of samples")
parser.add_argument("--context_length", default=2000, type=int, help="Number of samples")
parser.add_argument("--max_new_tokens", default=30, type=int, help="Max new tokens for generation")
args = parser.parse_args()
if args.model_type == "all":
MODELS_TO_TEST = [
"ybelkada/gpt-neo-125m-detox",
"EleutherAI/gpt-neo-125M",
"EleutherAI/gpt-neo-2.7B",
"ybelkada/gpt-neo-2.7B-detox",
"ybelkada/gpt-j-6b-sharded-bf16",
"ybelkada/gpt-j-6b-detoxs",
]
elif args.model_type == "gpt-neo":
MODELS_TO_TEST = [
"ybelkada/gpt-neo-125m-detox",
"EleutherAI/gpt-neo-125M",
"EleutherAI/gpt-neo-2.7B",
"ybelkada/gpt-neo-2.7B-detox",
]
elif args.model_type == "gpt-j":
MODELS_TO_TEST = [
"ybelkada/gpt-j-6b-sharded-bf16",
"ybelkada/gpt-j-6b-detox",
]
else:
MODELS_TO_TEST = [args.model_type]
NUM_SAMPLES = args.num_samples
BATCH_SIZE = args.batch_size
output_file = args.output_file
max_new_tokens = args.max_new_tokens
context_length = args.context_length
if is_torch_xpu_available():
device = torch.xpu.current_device()
elif is_torch_npu_available():
device = torch.npu.current_device()
else:
device = torch.cuda.current_device() if torch.cuda.is_available() else "cpu"
# consider only toxic prompts
ds = ds.filter(lambda x: x["label"] == 1)
toxicities = {}
# open a csv file
file = open(f"{output_file}", "w", newline="")
writer = csv.writer(file)
# add first rows
writer.writerow(["model_id", "mean_toxicity", "std_toxicity"])
for model_id in tqdm(MODELS_TO_TEST):
model = AutoModelForCausalLM.from_pretrained(model_id, device_map={"": device}, dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
tokenizer.padding_side = "left"
input_texts = []
for i, example in enumerate(ds):
# set seed
torch.manual_seed(42)
input_text = example["comment_text"]
input_texts.append(input_text[:2000])
if i > NUM_SAMPLES:
break
if (i + 1) % BATCH_SIZE == 0:
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device)
inputs.input_ids = inputs.input_ids[:context_length]
inputs.attention_mask = inputs.attention_mask[:context_length]
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=max_new_tokens, use_cache=True)
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
generated_texts = [
generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)
]
toxicity_score = toxicity.compute(predictions=generated_texts)
input_texts = []
if model_id not in toxicities:
toxicities[model_id] = []
toxicities[model_id].extend(toxicity_score["toxicity"])
# last batch
inputs = tokenizer(input_texts, return_tensors="pt", padding=True).to(device)
outputs = model.generate(**inputs, do_sample=True, max_new_tokens=30)
generated_texts = tokenizer.batch_decode(outputs, skip_special_tokens=True)
generated_texts = [generated_text.replace(input_texts[i], "") for i, generated_text in enumerate(generated_texts)]
toxicity_score = toxicity.compute(predictions=generated_texts)
toxicities[model_id].extend(toxicity_score["toxicity"])
# compute mean & std using np
mean = np.mean(toxicities[model_id])
std = np.std(toxicities[model_id])
# save to file
writer.writerow([model_id, mean, std])
# print
print(f"Model: {model_id} - Mean: {mean} - Std: {std}")
model = None
if is_torch_xpu_available():
torch.xpu.empty_cache()
elif is_torch_npu_available():
torch.npu.empty_cache()
else:
torch.cuda.empty_cache()
# close file
file.close()

View File

@ -1,245 +0,0 @@
# Copyright 2020-2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torch.optim import Adam
from tqdm import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
HfArgumentParser,
RobertaForSequenceClassification,
RobertaTokenizer,
set_seed,
)
from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer, create_reference_model
from trl.core import LengthSampler
tqdm.pandas()
########################################################################
# This is a fully working simple example to use trl with accelerate.
#
# This example fine-tunes a GPTJ model to generate less toxic contents
# by using allenai/real-toxicity-prompts dataset. We use PPO
# (proximal policy optimization) to optimize the model.
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - multi GPUS (using DeepSpeed ZeRO-Offload stages 1 & 2)
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, first initialize the accelerate
# configuration with `accelerate config`
#
########################################################################
# We first define the configuration of the experiment, defining the model, the dataset,
# the training parameters, and the PPO parameters.
# Check the default arguments in the `PPOConfig` class for more details.
# If you want to log with tensorboard, add the kwarg
# `project_kwargs={"logging_dir": PATH_TO_LOGS}` to the PPOConfig.
@dataclass
class ScriptArguments:
"""
The name of the Casual LM model we wish to fine-tune with PPO
"""
# NOTE: gpt2 models use Conv1D instead of Linear layers which are not yet supported in 8 bit mode
# models like gpt-neo* models are more suitable.
model_name: Optional[str] = field(default="ybelkada/gpt-j-6b-sharded-bf16", metadata={"help": "the model name"})
log_with: Optional[str] = field(default=None, metadata={"help": "use 'wandb' to log with wandb"})
learning_rate: Optional[float] = field(default=(1.47e-5) * 2, metadata={"help": "the learning rate"})
mini_batch_size: Optional[int] = field(default=4, metadata={"help": "the PPO minibatch size"})
batch_size: Optional[int] = field(default=16, metadata={"help": "the batch size"})
gradient_accumulation_steps: Optional[int] = field(
default=1, metadata={"help": "the number of gradient accumulation steps"}
)
model_save_path: Optional[str] = field(
default="./gpt-j-6B-detoxified-long-context-26-shl-1e4-final",
metadata={"help": "the path to save the model"},
)
parser = HfArgumentParser(ScriptArguments)
script_args = parser.parse_args_into_dataclasses()[0]
config = PPOConfig(
model_name=script_args.model_name,
learning_rate=script_args.learning_rate,
log_with=script_args.log_with,
ppo_epochs=100,
mini_batch_size=script_args.mini_batch_size,
batch_size=script_args.batch_size,
gradient_accumulation_steps=script_args.gradient_accumulation_steps,
)
# Below is an example function to build the dataset. In our case, we use the IMDB dataset
# from the `datasets` library. One should customize this function to train the model on
# its own dataset.
def build_dataset(
config, dataset_name="allenai/real-toxicity-prompts", input_min_text_length=5, input_max_text_length=10
):
"""
Build dataset for training. This builds the dataset from `load_dataset`, one should
customize this function to train the model on its own dataset.
Args:
config (`PPOConfig`):
The configuration of the PPO training.
dataset_name (`str`):
The name of the dataset to be loaded.
input_min_text_length (`int`, defaults to 5):
The minimum length of the input text.
input_max_text_length (`int`, defaults to 10):
The maximum length of the input text.
Returns:
dataloader (`torch.utils.data.DataLoader`):
The dataloader for the dataset.
"""
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
tokenizer.pad_token = tokenizer.eos_token
ds = load_dataset(dataset_name, split="train")
def filter_fn(sample):
toxicity = sample["prompt"]["toxicity"]
return toxicity is not None and toxicity > 0.3
ds = ds.filter(filter_fn, batched=False)
input_size = LengthSampler(input_min_text_length, input_max_text_length)
def tokenize(sample):
prompt = sample["prompt"]["text"]
continuation = sample["continuation"]["text"]
sample["input_ids"] = tokenizer.encode(prompt + continuation)[: input_size()]
sample["query"] = tokenizer.decode(sample["input_ids"])
return sample
ds = ds.map(tokenize, batched=False)
ds.set_format(type="torch")
ds = ds.train_test_split(test_size=0.2, shuffle=False)["train"]
return ds
# We retrieve the dataloader by calling the `build_dataset` function.
min_input_length = 30
max_input_length = 40
dataset = build_dataset(config, input_min_text_length=min_input_length, input_max_text_length=max_input_length)
def collator(data):
return {key: [d[key] for d in data] for key in data[0]}
# set seed before initializing value head for deterministic eval
set_seed(config.seed)
# Now let's build the model, the reference model, and the tokenizer. We first load the model
# in bfloat16 to save memory using `transformers`.
model = AutoModelForCausalLM.from_pretrained(config.model_name, dtype=torch.bfloat16)
# And then we pass the loaded model to `AutoModelForCausalLMWithValueHead`.
model = AutoModelForCausalLMWithValueHead.from_pretrained(model)
# We create a reference model by sharing 20 layers
ref_model = create_reference_model(model, num_shared_layers=20)
# We make sure to use `Adam` optimizer on the model parameters that require gradients.
optimizer = Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=config.learning_rate)
# GPT-2 / GPT-J tokenizer has a pad token, but it is not eos_token by default. We need to set it to eos_token.
# only for this model.
tokenizer = AutoTokenizer.from_pretrained(config.model_name)
tokenizer.pad_token = tokenizer.eos_token
# We then build the PPOTrainer, passing the model, the reference model, the tokenizer
ppo_trainer = PPOTrainer(
config,
model,
ref_model=ref_model,
tokenizer=tokenizer,
dataset=dataset,
data_collator=collator,
optimizer=optimizer,
)
# We then build the reward pipeline, we will use the toxicity model to compute the reward.
# We first load the toxicity model and tokenizer.
toxicity_model_id = "facebook/roberta-hate-speech-dynabench-r4-target"
toxicity_tokenizer = RobertaTokenizer.from_pretrained(toxicity_model_id)
# We load the toxicity model in fp16 to save memory.
toxicity_model = RobertaForSequenceClassification.from_pretrained(toxicity_model_id, dtype=torch.float16).to(
ppo_trainer.accelerator.device
)
# We then define the arguments to pass to the `generate` function. These arguments
# are passed to the `generate` function of the PPOTrainer, which is a wrapper around
# the `generate` function of the trained model.
generation_kwargs = {
"min_length": -1,
"top_k": 0.0,
"top_p": 1.0,
"do_sample": True,
"pad_token_id": tokenizer.eos_token_id,
}
output_min_length = 20
output_max_length = 30
output_length_sampler = LengthSampler(output_min_length, output_max_length)
model_save_path = script_args.model_save_path
for epoch, batch in tqdm(enumerate(ppo_trainer.dataloader)):
query_tensors = batch["input_ids"]
# Get response from the policy model
response_tensors = []
for query in query_tensors:
gen_len = output_length_sampler()
generation_kwargs["max_new_tokens"] = gen_len
response = ppo_trainer.generate(query, **generation_kwargs)
response_tensors.append(response.squeeze()[-gen_len:])
batch["response"] = [tokenizer.decode(r.squeeze()) for r in response_tensors]
# Compute sentiment score
texts = batch["response"]
toxicity_inputs = toxicity_tokenizer(texts, padding=True, truncation=True, return_tensors="pt").to(
ppo_trainer.accelerator.device
)
logits = toxicity_model(**toxicity_inputs).logits.float()
toxicity_labels = (logits[:, 0]).tolist()
rewards = [torch.tensor(output) for output in toxicity_labels]
# Run PPO step
stats = ppo_trainer.step(query_tensors, response_tensors, rewards)
ppo_trainer.log_stats(stats, batch, rewards)
# Save model every 100 epochs
if epoch % 100 == 0:
if ppo_trainer.accelerator.is_main_process:
ppo_trainer.save_pretrained(model_save_path)

View File

@ -23,9 +23,8 @@ def cleanup_gpu():
"""
Automatically cleanup GPU memory after each test.
This fixture helps prevent CUDA out of memory errors when running tests in parallel
with pytest-xdist by ensuring models and tensors are properly garbage collected
and GPU memory caches are cleared between tests.
This fixture helps prevent CUDA out of memory errors when running tests in parallel with pytest-xdist by ensuring
models and tensors are properly garbage collected and GPU memory caches are cleared between tests.
"""
yield
# Cleanup after test

View File

@ -118,6 +118,7 @@ class TestGRPOTrainerSlow(TrlTestCase):
max_completion_length=self.max_length,
report_to="none",
logging_strategy="no",
loss_type="bnpo", # liger-kernel does not support "dapo" default; see https://github.com/linkedin/Liger-Kernel/issues/620
)
model = AutoModelForCausalLM.from_pretrained(model_name)

View File

@ -412,12 +412,12 @@ class TestSFTTrainerSlow(TrlTestCase):
eval_dataset=self.eval_dataset,
)
# Register cleanup now that we have the trainer
self.addCleanup(cleanup_liger_patches, trainer)
trainer.train()
release_memory(trainer.model, trainer)
# Ensure cleanup of liger patches after the test
try:
trainer.train()
release_memory(trainer.model, trainer)
finally:
cleanup_liger_patches(trainer)
@parameterized.expand(list(itertools.product(MODELS_TO_TEST, PACKING_OPTIONS)))
@require_torch_accelerator

View File

@ -396,6 +396,29 @@ class TestApplyChatTemplate(TrlTestCase):
assert isinstance(result["label"], bool)
assert result["label"] == example["label"]
def test_apply_chat_template_with_chat_template_kwargs(self):
tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-Qwen3ForCausalLM")
example = {
"prompt": [{"role": "user", "content": "What color is the sky?"}],
# with this tokenizer, when you pass enable_thinking=False, it will add "<think>\n\n</think>\n\n"
"chat_template_kwargs": {"enable_thinking": False},
}
result = apply_chat_template(example, tokenizer)
# docstyle-ignore
expected = textwrap.dedent("""\
<|im_start|>user
What color is the sky?<|im_end|>
<|im_start|>assistant
<think>
</think>
""")
assert result["prompt"] == expected
def test_apply_chat_template_with_tools(self):
tokenizer = AutoProcessor.from_pretrained("trl-internal-testing/tiny-LlamaForCausalLM-3.2")

View File

@ -14,6 +14,7 @@
from typing import Callable
import pytest
from datasets import Dataset, load_dataset
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
@ -23,6 +24,7 @@ from trl.models.utils import ChatMlSpecialTokens, clone_chat_template, setup_cha
from .testing_utils import TrlTestCase
@pytest.mark.filterwarnings("ignore::FutureWarning")
class TestDatasetFormatting(TrlTestCase):
def setup_method(self):
self.llama_tokenizer = AutoTokenizer.from_pretrained("trl-internal-testing/tiny-MistralForCausalLM-0.1")

View File

@ -33,12 +33,18 @@ from transformers import (
from transformers.testing_utils import (
get_device_properties,
require_liger_kernel,
require_torch_gpu_if_bnb_not_multi_backend_enabled,
)
from trl import DPOConfig, DPOTrainer, FDivergenceType
from .testing_utils import TrlTestCase, require_bitsandbytes, require_no_wandb, require_peft, require_vision
from .testing_utils import (
TrlTestCase,
require_bitsandbytes,
require_no_wandb,
require_peft,
require_torch_gpu_if_bnb_not_multi_backend_enabled,
require_vision,
)
if is_vision_available():

View File

@ -1471,47 +1471,6 @@ class TestGRPOTrainer(TrlTestCase):
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@require_vision
def test_training_vlm_and_prompt_truncation(self):
# If not handled properly, prompt truncation may truncate image token
dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion[0]["content"])) for completion in completions]
training_args = GRPOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
max_prompt_length=18,
report_to="none",
)
trainer = GRPOTrainer(
model="trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
# Because of the way the tiny models are initialized, the gradient does not flow properly through the
# vision parts of the model, so we skip them. Ideally, we should fix the init of these models.
params_to_skip = ("model.visual.",)
for n, param in previous_trainable_params.items():
if n.startswith(params_to_skip):
continue
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@parameterized.expand(
[
("trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",),

View File

@ -61,7 +61,7 @@ class TestJudges(TrlTestCase):
@require_llm_blender
@pytest.mark.skipif(
sys.version_info == (3, 13, 8), reason="Python 3.13.8 has a bug in inspect.BlockFinder (cpython GH-139783)"
sys.version_info[:3] == (3, 13, 8), reason="Python 3.13.8 has a bug in inspect.BlockFinder (cpython GH-139783)"
)
def test_pair_rm_judge(self):
judge = self.load_pair_rm_judge()
@ -73,7 +73,7 @@ class TestJudges(TrlTestCase):
@require_llm_blender
@pytest.mark.skipif(
sys.version_info == (3, 13, 8), reason="Python 3.13.8 has a bug in inspect.BlockFinder (cpython GH-139783)"
sys.version_info[:3] == (3, 13, 8), reason="Python 3.13.8 has a bug in inspect.BlockFinder (cpython GH-139783)"
)
def test_pair_rm_judge_return_scores(self):
judge = self.load_pair_rm_judge()

View File

@ -16,12 +16,11 @@ import os
import torch
from transformers import AutoModelForCausalLM
from transformers.testing_utils import require_torch_gpu_if_bnb_not_multi_backend_enabled
from transformers.utils import is_peft_available
from trl import AutoModelForCausalLMWithValueHead
from .testing_utils import TrlTestCase, require_peft
from .testing_utils import TrlTestCase, require_peft, require_torch_gpu_if_bnb_not_multi_backend_enabled
if is_peft_available():

View File

@ -1212,47 +1212,6 @@ class TestRLOOTrainer(TrlTestCase):
elif "base_layer" not in n: # We expect the peft params to be different (except for the base layer)
assert not torch.allclose(param, new_param), f"Parameter {n} has not changed."
@require_vision
def test_training_vlm_and_prompt_truncation(self):
# If not handled properly, prompt truncation may truncate image token
dataset = load_dataset("trl-internal-testing/zen-image", "conversational_prompt_only", split="train")
def reward_func(completions, **kwargs):
"""Reward function that rewards longer completions."""
return [float(len(completion[0]["content"])) for completion in completions]
training_args = RLOOConfig(
output_dir=self.tmp_dir,
learning_rate=0.1, # increase the learning rate to speed up the test
per_device_train_batch_size=3, # reduce the batch size to reduce memory usage
num_generations=3, # reduce the number of generations to reduce memory usage
max_completion_length=8, # reduce the completion length to reduce memory usage
max_prompt_length=18,
report_to="none",
)
trainer = RLOOTrainer(
model="trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",
reward_funcs=reward_func,
args=training_args,
train_dataset=dataset,
)
previous_trainable_params = {n: param.clone() for n, param in trainer.model.named_parameters()}
trainer.train()
assert trainer.state.log_history[-1]["train_loss"] is not None
# Check that the params have changed
# Because of the way the tiny models are initialized, the gradient does not flow properly through the
# vision parts of the model, so we skip them. Ideally, we should fix the init of these models.
params_to_skip = ("model.visual.",)
for n, param in previous_trainable_params.items():
if n.startswith(params_to_skip):
continue
new_param = trainer.model.get_parameter(n)
assert not torch.equal(param, new_param), f"Parameter {n} has not changed."
@parameterized.expand(
[
("trl-internal-testing/tiny-Qwen2_5_VLForConditionalGeneration",),

View File

@ -42,7 +42,6 @@ from trl.trainer.utils import (
shuffle_sequence_dict,
split_pixel_values_by_grid,
split_tensor_dict,
truncate_with_protected_tokens,
unsplit_pixel_values_by_grid,
)
@ -1009,84 +1008,6 @@ class TestSplitPixelValuesByGrid(TrlTestCase):
assert torch.equal(result["image_grid_thw"][1], torch.tensor([[1, 2, 2], [1, 2, 1]]))
class TestTruncateWithProtectedTokens(TrlTestCase):
def test_basic_example(self):
"""Test the basic example from the problem description."""
prompt_ids = [1, 2, 3, 4, 5]
protected_tokens = [2, 3]
target_length = 3
new_ids = truncate_with_protected_tokens(prompt_ids, target_length, protected_tokens)
expected_ids = [2, 3, 5]
assert new_ids == expected_ids
def test_no_truncation_needed(self):
"""Test when target length equals current length."""
prompt_ids = [1, 2, 3]
protected_tokens = [2]
target_length = 3
new_ids = truncate_with_protected_tokens(prompt_ids, target_length, protected_tokens)
assert new_ids == prompt_ids
def test_no_protected_tokens(self):
"""Test truncation with no protected tokens (normal right truncation)."""
prompt_ids = [1, 2, 3, 4, 5]
protected_tokens = []
target_length = 3
new_ids = truncate_with_protected_tokens(prompt_ids, target_length, protected_tokens)
expected_ids = [3, 4, 5] # Last 3 tokens
assert new_ids == expected_ids
def test_all_tokens_protected(self):
"""Test when all remaining tokens are protected."""
prompt_ids = [1, 2, 3, 4, 5]
protected_tokens = [3, 4, 5]
target_length = 3
new_ids = truncate_with_protected_tokens(prompt_ids, target_length, protected_tokens)
expected_ids = [3, 4, 5]
assert new_ids == expected_ids
def test_too_many_protected_tokens(self):
"""Test error when too many protected tokens for target length."""
prompt_ids = [1, 2, 3, 4, 5]
protected_tokens = [1, 2, 3, 4]
target_length = 3
with pytest.raises(ValueError):
truncate_with_protected_tokens(prompt_ids, target_length, protected_tokens)
def test_single_batch_single_token(self):
"""Test edge case with single batch and single token."""
prompt_ids = [5]
protected_tokens = [5]
target_length = 1
new_ids = truncate_with_protected_tokens(prompt_ids, target_length, protected_tokens)
assert new_ids == prompt_ids
def test_order_preservation(self):
"""Test that relative order is preserved."""
prompt_ids = [10, 2, 20, 3, 30, 40]
protected_tokens = [2, 3]
target_length = 4
new_ids = truncate_with_protected_tokens(prompt_ids, target_length, protected_tokens)
# Should keep protected tokens 2, 3 and last 2 non-protected tokens 30, 40
# Order should be: 2, 3, 30, 40 (maintaining original relative positions)
expected_ids = [2, 3, 30, 40]
assert new_ids == expected_ids
class TestUnsplitPixelValuesByGrid(TrlTestCase):
def test_unsplit_correctly(self):
pixel_values = [torch.randn(4, 5), torch.randn(2, 5)]

View File

@ -47,6 +47,21 @@ require_3_accelerators = pytest.mark.skipif(
)
def is_bitsandbytes_multi_backend_available() -> bool:
if is_bitsandbytes_available():
import bitsandbytes as bnb
return "multi_backend" in getattr(bnb, "features", set())
return False
# Function ported from transformers.testing_utils before transformers#41283
require_torch_gpu_if_bnb_not_multi_backend_enabled = pytest.mark.skipif(
not is_bitsandbytes_multi_backend_available() and not torch_device == "cuda",
reason="test requires bitsandbytes multi-backend enabled or 'cuda' torch device",
)
class RandomBinaryJudge(BaseBinaryJudge):
"""
Random binary judge, for testing purposes.

View File

@ -12,12 +12,26 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import warnings
from importlib.metadata import PackageNotFoundError, version
from typing import TYPE_CHECKING
from .import_utils import _LazyModule
if sys.version_info[:2] == (3, 9):
warnings.warn(
(
"Support for Python 3.9 will be dropped in the next release "
"(after its end-of-life on October 31, 2025). "
"Please upgrade to Python 3.10 or newer."
),
category=FutureWarning,
stacklevel=2,
)
try:
__version__ = version("trl")
except PackageNotFoundError:

View File

@ -143,7 +143,13 @@ def apply_chat_template(
# Apply the chat template to the whole conversation
if "messages" in example:
messages = tokenizer.apply_chat_template(example["messages"], tools=tools, tokenize=False, **template_kwargs)
messages = tokenizer.apply_chat_template(
example["messages"],
tools=tools,
tokenize=False,
**example.get("chat_template_kwargs", {}),
**template_kwargs,
)
# Apply the chat template to the prompt, adding the generation prompt
if "prompt" in example:
@ -162,6 +168,7 @@ def apply_chat_template(
continue_final_message=continue_final_message,
tokenize=False,
add_generation_prompt=add_generation_prompt,
**example.get("chat_template_kwargs", {}),
**template_kwargs,
)
@ -169,7 +176,11 @@ def apply_chat_template(
if "prompt" in example: # explicit prompt and prompt-completion case
if "chosen" in example:
prompt_chosen = tokenizer.apply_chat_template(
example["prompt"] + example["chosen"], tools=tools, tokenize=False, **template_kwargs
example["prompt"] + example["chosen"],
tools=tools,
tokenize=False,
**example.get("chat_template_kwargs", {}),
**template_kwargs,
)
# DeepSeek-R1 inserts a <tool_call> token when using `add_generation_prompt`, which can cause discrepancies
# between the prompt alone and the combined prompt+completion. To ensure consistency, we extract the
@ -179,24 +190,42 @@ def apply_chat_template(
chosen = prompt_chosen[len(prompt) :]
if "rejected" in example and "prompt" in example: # explicit prompt
prompt_rejected = tokenizer.apply_chat_template(
example["prompt"] + example["rejected"], tools=tools, tokenize=False, **template_kwargs
example["prompt"] + example["rejected"],
tools=tools,
tokenize=False,
**example.get("chat_template_kwargs", {}),
**template_kwargs,
)
# Handle DeepSeek-R1 <tool_call> token, see the above comment for details
prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_rejected)))
rejected = prompt_rejected[len(prompt) :]
if "completion" in example:
prompt_completion = tokenizer.apply_chat_template(
example["prompt"] + example["completion"], tools=tools, tokenize=False, **template_kwargs
example["prompt"] + example["completion"],
tools=tools,
tokenize=False,
**example.get("chat_template_kwargs", {}),
**template_kwargs,
)
# Handle DeepSeek-R1 <tool_call> token, see the above comment for details
prompt = "".join(x for x, _ in takewhile(lambda x: x[0] == x[1], zip(prompt, prompt_completion)))
completion = prompt_completion[len(prompt) :]
else: # implicit prompt case
if "chosen" in example:
chosen = tokenizer.apply_chat_template(example["chosen"], tools=tools, tokenize=False, **template_kwargs)
chosen = tokenizer.apply_chat_template(
example["chosen"],
tools=tools,
tokenize=False,
**example.get("chat_template_kwargs", {}),
**template_kwargs,
)
if "rejected" in example:
rejected = tokenizer.apply_chat_template(
example["rejected"], tools=tools, tokenize=False, **template_kwargs
example["rejected"],
tools=tools,
tokenize=False,
**example.get("chat_template_kwargs", {}),
**template_kwargs,
)
# Extract the completion by removing the prompt part from the prompt-completion string
@ -239,8 +268,10 @@ def maybe_apply_chat_template(
- Unpaired preference dataset: `"prompt"`, `"completion"`, and `"label"`.
For keys `"messages"`, `"prompt"`, `"chosen"`, `"rejected"`, and `"completion"`, the values are lists of
messages, where each message is a dictionary with keys `"role"` and `"content"`.
tokenizer (`PreTrainedTokenizerBase`):
messages, where each message is a dictionary with keys `"role"` and `"content"`. Additionally, the example
may contain a `"chat_template_kwargs"` key, which is a dictionary of additional keyword arguments to pass
to the chat template renderer.
tokenizer ([`~transformers.PreTrainedTokenizerBase`]):
Tokenizer to apply the chat template with.
tools (`list[Union[dict, Callable]]`, *optional*):
A list of tools (callable functions) that will be accessible to the model. If the template does not support
@ -297,7 +328,7 @@ def unpair_preference_dataset(
Unpair a preference dataset.
Args:
dataset (`Dataset` or `DatasetDict`):
dataset ([`~datasets.Dataset`] or [`~datasets.DatasetDict`]):
Preference dataset to unpair. The dataset must have columns `"chosen"`, `"rejected"` and optionally
`"prompt"`.
num_proc (`int`, *optional*):
@ -306,7 +337,7 @@ def unpair_preference_dataset(
Meaningful description to be displayed alongside with the progress bar while mapping examples.
Returns:
`Dataset`: The unpaired preference dataset.
[`~datasets.Dataset`]: The unpaired preference dataset.
Example:
@ -340,7 +371,7 @@ def maybe_unpair_preference_dataset(
Unpair a preference dataset if it is paired.
Args:
dataset (`Dataset` or `DatasetDict`):
dataset ([`~datasets.Dataset`] or [`~datasets.DatasetDict`]):
Preference dataset to unpair. The dataset must have columns `"chosen"`, `"rejected"` and optionally
`"prompt"`.
num_proc (`int`, *optional*):
@ -349,7 +380,8 @@ def maybe_unpair_preference_dataset(
Meaningful description to be displayed alongside with the progress bar while mapping examples.
Returns:
`Dataset` or `DatasetDict`: The unpaired preference dataset if it was paired, otherwise the original dataset.
[`~datasets.Dataset`] or [`~datasets.DatasetDict`]: The unpaired preference dataset if it was paired, otherwise
the original dataset.
Example:
@ -442,7 +474,7 @@ def maybe_extract_prompt(example: dict[str, list]) -> dict[str, list]:
'rejected': [{'role': 'assistant', 'content': 'It is green.'}]}
```
Or, with the `map` method of `datasets.Dataset`:
Or, with the `map` method of [`~datasets.Dataset`]:
```python
>>> from trl import extract_prompt
@ -633,7 +665,7 @@ def pack_dataset(
Pack sequences in a dataset into chunks of size `seq_length`.
Args:
dataset (`Dataset` or `DatasetDict`):
dataset ([`~datasets.Dataset`] or [`~datasets.DatasetDict`]):
Dataset to pack
seq_length (`int`):
Target sequence length to pack to.
@ -648,8 +680,8 @@ def pack_dataset(
Additional keyword arguments to pass to the dataset's map method when packing examples.
Returns:
`Dataset` or `DatasetDict`: The dataset with packed sequences. The number of examples may decrease as sequences
are combined.
[`~datasets.Dataset`] or [`~datasets.DatasetDict`]: The dataset with packed sequences. The number of examples
may decrease as sequences are combined.
Example:
```python
@ -689,7 +721,7 @@ def truncate_dataset(
Truncate sequences in a dataset to a specified `max_length`.
Args:
dataset (`Dataset` or `DatasetDict`):
dataset ([`~datasets.Dataset`] or [`~datasets.DatasetDict`]):
Dataset to truncate.
max_length (`int`):
Maximum sequence length to truncate to.
@ -697,7 +729,7 @@ def truncate_dataset(
Additional keyword arguments to pass to the dataset's map method when truncating examples.
Returns:
`Dataset` or `DatasetDict`: The dataset with truncated sequences.
[`~datasets.Dataset`] or [`~datasets.DatasetDict`]: The dataset with truncated sequences.
Example:
```python

View File

@ -13,6 +13,7 @@
# limitations under the License.
import logging
import warnings
from typing import Callable, Literal, Optional
import datasets
@ -41,7 +42,20 @@ def conversations_formatting_function(
r"""
return a callable function that takes in a "messages" dataset and returns a formatted dataset, based on the
tokenizer apply chat template to the dataset along with the schema of the list of functions in the tools list.
<Deprecated version="0.24.0">
`conversations_formatting_function` is deprecated and will be removed in version 0.27. Please use
`tokenizer.apply_chat_template()` directly instead.
</Deprecated>
"""
warnings.warn(
"`conversations_formatting_function` is deprecated and will be removed in TRL 0.27. "
"Please use `tokenizer.apply_chat_template()` directly instead.",
FutureWarning,
stacklevel=2,
)
def format_dataset(examples):
if isinstance(examples[messages_field][0], list):
@ -61,7 +75,20 @@ def instructions_formatting_function(tokenizer: AutoTokenizer):
r"""
return a callable function that takes in an "instructions" dataset and returns a formatted dataset, based on the
tokenizer apply chat template to the dataset
<Deprecated version="0.24.0">
`instructions_formatting_function` is deprecated and will be removed in version 0.27. Please use
`tokenizer.apply_chat_template()` directly instead.
</Deprecated>
"""
warnings.warn(
"`instructions_formatting_function` is deprecated and will be removed in TRL 0.27. "
"Please use `tokenizer.apply_chat_template()` directly instead.",
FutureWarning,
stacklevel=2,
)
def format_dataset(examples):
if isinstance(examples["prompt"], list):
@ -99,7 +126,21 @@ def get_formatting_func_from_dataset(
Returns:
Callable: Formatting function if the dataset format is supported else None
<Deprecated version="0.24.0">
`get_formatting_func_from_dataset` is deprecated and will be removed in version 0.27. Please use
`tokenizer.apply_chat_template()` directly instead.
</Deprecated>
"""
warnings.warn(
"`get_formatting_func_from_dataset` is deprecated and will be removed in TRL 0.27. "
"Please use `tokenizer.apply_chat_template()` directly instead.",
FutureWarning,
stacklevel=2,
)
if isinstance(dataset, Dataset):
if "messages" in dataset.features:
if dataset.features["messages"] == FORMAT_MAPPING["chatml"]:

View File

@ -182,6 +182,7 @@ class VLLMClient:
top_k: int = -1,
min_p: float = 0.0,
max_tokens: int = 16,
truncate_prompt_tokens: Optional[int] = None,
guided_decoding_regex: Optional[str] = None,
generation_kwargs: Optional[dict] = None,
) -> list[list[int]]:
@ -207,6 +208,10 @@ class VLLMClient:
Minimum probability for sampling.
max_tokens (`int`, *optional*, defaults to `16`):
Maximum number of tokens to generate for each prompt.
truncate_prompt_tokens (`int`, *optional*):
If set to `-1`, will use the truncation size supported by the model. If set to an integer k, will use
only the last k tokens from the prompt (i.e., left truncation). If set to `None`, truncation is
disabled.
guided_decoding_regex (`str`, *optional*):
Regular expression to guide the decoding process.
generation_kwargs (`dict`, *optional*):
@ -246,6 +251,7 @@ class VLLMClient:
"top_k": top_k,
"min_p": min_p,
"max_tokens": max_tokens,
"truncate_prompt_tokens": truncate_prompt_tokens,
"guided_decoding_regex": guided_decoding_regex,
"generation_kwargs": generation_kwargs or {},
},

View File

@ -264,7 +264,7 @@ def merge_models(config: MergeConfig, out_path: str):
Merge two models using mergekit
Args:
config (`MergeConfig`): The merge configuration.
config ([`MergeConfig`]): The merge configuration.
out_path (`str`): The output path for the merged model.
"""
if not is_mergekit_available():

View File

@ -57,14 +57,17 @@ LAYER_PATTERNS = [
class PreTrainedModelWrapper(nn.Module):
r"""
A wrapper class around a (`transformers.PreTrainedModel`) to be compatible with the (`~transformers.PreTrained`)
class in order to keep some attributes and methods of the (`~transformers.PreTrainedModel`) class.
"""
Wrapper for a [`~transformers.PreTrainedModel`] implemented as a standard PyTorch [`torch.nn.Module`].
This class provides a compatibility layer that preserves the key attributes and methods of the original
[`~transformers.PreTrainedModel`], while exposing a uniform interface consistent with PyTorch modules. It enables
seamless integration of pretrained Transformer models into custom training, evaluation, or inference workflows.
Attributes:
pretrained_model (`transformers.PreTrainedModel`):
pretrained_model ([`~transformers.PreTrainedModel`]):
The model to be wrapped.
parent_class (`transformers.PreTrainedModel`):
parent_class ([`~transformers.PreTrainedModel`]):
The parent class of the model to be wrapped.
supported_args (`list`):
The list of arguments that are supported by the wrapper class.
@ -111,19 +114,20 @@ class PreTrainedModelWrapper(nn.Module):
def from_pretrained(cls, pretrained_model_name_or_path, *model_args, **kwargs):
r"""
Instantiates a new model from a pretrained model from `transformers`. The pretrained model is loaded using the
`from_pretrained` method of the `transformers.PreTrainedModel` class. The arguments that are specific to the
`transformers.PreTrainedModel` class are passed along this method and filtered out from the `kwargs` argument.
`from_pretrained` method of the [`~transformers.PreTrainedModel`] class. The arguments that are specific to the
[`~transformers.PreTrainedModel`] class are passed along this method and filtered out from the `kwargs`
argument.
Args:
pretrained_model_name_or_path (`str` or `transformers.PreTrainedModel`):
pretrained_model_name_or_path (`str` or [`~transformers.PreTrainedModel`]):
The path to the pretrained model or its name.
*model_args (`list`, *optional*)):
*model_args (`list`, *optional*):
Additional positional arguments passed along to the underlying model's `from_pretrained` method.
**kwargs (`dict`, *optional*):
Additional keyword arguments passed along to the underlying model's `from_pretrained` method. We also
pre-process the kwargs to extract the arguments that are specific to the `transformers.PreTrainedModel`
class and the arguments that are specific to trl models. The kwargs also support
`prepare_model_for_kbit_training` arguments from `peft` library.
pre-process the kwargs to extract the arguments that are specific to the
[`~transformers.PreTrainedModel`] class and the arguments that are specific to trl models. The kwargs
also support `prepare_model_for_kbit_training` arguments from `peft` library.
"""
if kwargs is not None:
peft_config = kwargs.pop("peft_config", None)
@ -507,8 +511,8 @@ class PreTrainedModelWrapper(nn.Module):
def push_to_hub(self, *args, **kwargs):
r"""
Push the pretrained model to the hub. This method is a wrapper around
`transformers.PreTrainedModel.push_to_hub`. Please refer to the documentation of
`transformers.PreTrainedModel.push_to_hub` for more information.
[`~transformers.PreTrainedModel.push_to_hub`]. Please refer to the documentation of
[`~transformers.PreTrainedModel.push_to_hub`] for more information.
Args:
*args (`list`, *optional*):
@ -521,8 +525,8 @@ class PreTrainedModelWrapper(nn.Module):
def save_pretrained(self, *args, **kwargs):
r"""
Save the pretrained model to a directory. This method is a wrapper around
`transformers.PreTrainedModel.save_pretrained`. Please refer to the documentation of
`transformers.PreTrainedModel.save_pretrained` for more information.
[`~transformers.PreTrainedModel.save_pretrained`]. Please refer to the documentation of
[`~transformers.PreTrainedModel.save_pretrained`] for more information.
Args:
*args (`list`, *optional*):
@ -596,14 +600,14 @@ def create_reference_model(
Creates a static reference copy of a model. Note that model will be in `.eval()` mode.
Args:
model (`PreTrainedModelWrapper`): The model to be copied.
model ([`PreTrainedModelWrapper`]): The model to be copied.
num_shared_layers (`int`, *optional*):
The number of initial layers that are shared between both models and kept frozen.
pattern (`str`, *optional*): The shared layers are selected with a string pattern
(e.g. "transformer.h.{layer}" for GPT2) and if a custom pattern is necessary it can be passed here.
Returns:
`PreTrainedModelWrapper`
[`PreTrainedModelWrapper`]
"""
if is_deepspeed_zero3_enabled():
raise ValueError(
@ -665,13 +669,13 @@ def create_reference_model(
class GeometricMixtureWrapper(GenerationMixin):
r"""
"""
Geometric Mixture generation wrapper that samples from the logits of two model's geometric mixture.
Args:
model (`PreTrainedModel`): The model to be wrapped.
ref_model (`PreTrainedModel`): The reference model.
generation_config (`GenerationConfig`): The generation config.
model ([`~transformers.PreTrainedModel`]): The model to be wrapped.
ref_model ([`~transformers.PreTrainedModel`]): The reference model.
generation_config ([`~transformers.GenerationConfig`]): The generation config.
mixture_coef (`float`, *optional* - default: 0.5): The mixture coefficient.
"""

View File

@ -60,26 +60,27 @@ class ValueHead(nn.Module):
class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper):
r"""
"""
An autoregressive model with a value head in addition to the language model head. This class inherits from
`~trl.PreTrainedModelWrapper` and wraps a `transformers.PreTrainedModel` class. The wrapper class supports classic
[`PreTrainedModelWrapper`] and wraps a [`~transformers.PreTrainedModel`] class. The wrapper class supports classic
functions such as `from_pretrained`, `push_to_hub` and `generate`. To call a method of the wrapped model, simply
manipulate the `pretrained_model` attribute of this class.
Class attributes:
- **transformers_parent_class** (`transformers.PreTrainedModel`) -- The parent class of the wrapped model. This
- **transformers_parent_class** ([`~transformers.PreTrainedModel`]) -- The parent class of the wrapped model.
This
should be set to `transformers.AutoModelForCausalLM` for this class.
- **supported_args** (`tuple`) -- A tuple of strings that are used to identify the arguments that are supported
by the `ValueHead` class. Currently, the supported args are:
by the [`ValueHead`] class. Currently, the supported args are:
- **summary_dropout_prob** (`float`, `optional`, defaults to `None`) -- The dropout probability for the
`ValueHead` class.
[`ValueHead`] class.
- **v_head_initializer_range** (`float`, `optional`, defaults to `0.2`) -- The initializer range for the
`ValueHead` if a specific initialization strategy is selected.
[`ValueHead`] if a specific initialization strategy is selected.
- **v_head_init_strategy** (`str`, `optional`, defaults to `None`) -- The initialization strategy for the
`ValueHead`. Currently, the supported strategies are:
- **`None`** -- Initializes the weights of the `ValueHead` with a random distribution. This is the
[`ValueHead`]. Currently, the supported strategies are:
- **`None`** -- Initializes the weights of the [`ValueHead`] with a random distribution. This is the
default strategy.
- **"normal"** -- Initializes the weights of the `ValueHead` with a normal distribution.
- **"normal"** -- Initializes the weights of the [`ValueHead`] with a normal distribution.
"""
transformers_parent_class = AutoModelForCausalLM
@ -90,15 +91,15 @@ class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper):
)
def __init__(self, pretrained_model, **kwargs):
r"""
"""
Initializes the model.
Args:
pretrained_model (`transformers.PreTrainedModel`):
pretrained_model ([`~transformers.PreTrainedModel`]):
The model to wrap. It should be a causal language model such as GPT2. or any model mapped inside the
`AutoModelForCausalLM` class.
kwargs (`dict`, `optional`):
Additional keyword arguments, that are passed to the `ValueHead` class.
Additional keyword arguments, that are passed to the [`ValueHead`] class.
"""
super().__init__(pretrained_model, **kwargs)
v_head_kwargs, _, _ = self._split_kwargs(kwargs)
@ -114,8 +115,8 @@ class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper):
Args:
**kwargs (`dict`, `optional`):
Additional keyword arguments, that are passed to the `ValueHead` class. These arguments can contain the
`v_head_init_strategy` argument as well as the `v_head_initializer_range` argument.
Additional keyword arguments, that are passed to the [`ValueHead`] class. These arguments can contain
the `v_head_init_strategy` argument as well as the `v_head_initializer_range` argument.
"""
initializer_range = kwargs.pop("v_head_initializer_range", 0.2)
# random init by default
@ -263,18 +264,18 @@ class AutoModelForCausalLMWithValueHead(PreTrainedModelWrapper):
class AutoModelForSeq2SeqLMWithValueHead(PreTrainedModelWrapper):
r"""
"""
A seq2seq model with a value head in addition to the language model head. This class inherits from
`~trl.PreTrainedModelWrapper` and wraps a `transformers.PreTrainedModel` class. The wrapper class supports classic
[`PreTrainedModelWrapper`] and wraps a [`~transformers.PreTrainedModel`] class. The wrapper class supports classic
functions such as `from_pretrained` and `push_to_hub` and also provides some additional functionalities such as
`generate`.
Args:
pretrained_model (`transformers.PreTrainedModel`):
pretrained_model ([`~transformers.PreTrainedModel`]):
The model to wrap. It should be a causal language model such as GPT2. or any model mapped inside the
`AutoModelForSeq2SeqLM` class.
[`~transformers.AutoModelForSeq2SeqLM`] class.
kwargs:
Additional keyword arguments passed along to the `ValueHead` class.
Additional keyword arguments passed along to the [`ValueHead`] class.
"""
transformers_parent_class = AutoModelForSeq2SeqLM

View File

@ -102,21 +102,21 @@ def setup_chat_format(
`tokenizer.chat_template` to `None`.
Args:
model (`~transformers.PreTrainedModel`): The model to be modified.
tokenizer (`~transformers.PreTrainedTokenizer`): The tokenizer to be modified.
model ([`~transformers.PreTrainedModel`]): The model to be modified.
tokenizer ([`~transformers.PreTrainedTokenizer`]): The tokenizer to be modified.
format (`Optional[Literal["chatml"]]`): The format to be set. Defaults to "chatml".
resize_to_multiple_of (`int` or `None`): Number to resize the embedding layer to. Defaults to None.
Returns:
model (`~transformers.PreTrainedModel`):
model ([`~transformers.PreTrainedModel`]):
The modified model.
tokenizer (`~transformers.PreTrainedTokenizer`):
tokenizer ([`~transformers.PreTrainedTokenizer`]):
The modified tokenizer.
"""
warnings.warn(
"The `setup_chat_format` function is deprecated and will be removed in version 0.26.0. Please use "
"`clone_chat_template` instead.",
DeprecationWarning,
FutureWarning,
)
# check if model already had a chat template
if tokenizer.chat_template is not None:
@ -178,9 +178,9 @@ def clone_chat_template(
the embedding dimensions.
Args:
model (`PreTrainedModel`):
model ([`~transformers.PreTrainedModel`]):
Model to update.
tokenizer (`PreTrainedTokenizer`):
tokenizer ([`~transformers.PreTrainedTokenizer`]):
Tokenizer to update.
source_tokenizer_path (`str`):
Path or identifier of the pretrained tokenizer to clone from.
@ -189,9 +189,9 @@ def clone_chat_template(
new vocabulary size to the nearest multiple of this value.
Returns:
model (`PreTrainedModel`):
model ([`~transformers.PreTrainedModel`]):
Updated model with resized token embeddings and EOS token configured.
tokenizer (`~transformers.PreTrainedTokenizer`):
tokenizer ([`~transformers.PreTrainedTokenizer`]):
Updated tokenizer with the chat template and special tokens applied.
added_tokens (`list[int]`):
List of tokens that were added to the tokenizer from the source tokenizer.
@ -316,7 +316,7 @@ def unwrap_model_for_generation(
Args:
model (`Union[DistributedDataParallel, DeepSpeedEngine]`):
Model to be unwrapped.
accelerator (`~accelerate.Accelerator`):
accelerator ([`~accelerate.Accelerator`]):
Accelerator instance managing the model.
gather_deepspeed3_params (`bool`, *optional*, defaults to `True`):
Whether to gather weights for DeepSpeed ZeRO Stage 3 models. If `False`, skips parameter gathering, which

View File

@ -60,7 +60,8 @@ class DatasetConfig:
Configuration for a dataset.
This class matches the signature of [`~datasets.load_dataset`] and the arguments are used directly in the
`datasets.load_dataset` function. You can refer to the `datasets.load_dataset` documentation for more details.
[`~datasets.load_dataset`] function. You can refer to the [`~datasets.load_dataset`] documentation for more
details.
Parameters:
path (`str`):
@ -422,11 +423,11 @@ def get_dataset(mixture_config: DatasetMixtureConfig) -> DatasetDict:
Load a mixture of datasets based on the configuration.
Args:
mixture_config (`DatasetMixtureConfig`):
mixture_config ([`DatasetMixtureConfig`]):
Script arguments containing dataset configuration.
Returns:
`DatasetDict`:
[`~datasets.DatasetDict`]:
Combined dataset(s) from the mixture configuration, with optional train/test split if `test_split_size` is
set.

View File

@ -495,6 +495,7 @@ def main(script_args: ScriptArguments):
top_k: int = -1
min_p: float = 0.0
max_tokens: int = 16
truncate_prompt_tokens: Optional[int] = None
guided_decoding_regex: Optional[str] = None
generation_kwargs: dict = field(default_factory=dict)
@ -525,6 +526,9 @@ def main(script_args: ScriptArguments):
- `min_p` (`float`, *optional*, defaults to `0.0`): Minimum probability threshold for sampling.
- `max_tokens` (`int`, *optional*, defaults to `16`): Maximum number of tokens to generate for each
completion.
- `truncate_prompt_tokens` (`int`, *optional*): If set to `-1`, will use the truncation size supported
by the model. If set to an integer k, will use only the last k tokens from the prompt (i.e., left
truncation). If set to `None`, truncation is disabled.
- `guided_decoding_regex` (`str`, *optional*): A regex pattern for guided decoding. If provided, the
model will only generate tokens that match this regex pattern.
- `generation_kwargs` (`dict`, *optional*): Additional generation parameters to pass to the vLLM
@ -575,6 +579,7 @@ def main(script_args: ScriptArguments):
"top_k": request.top_k,
"min_p": request.min_p,
"max_tokens": request.max_tokens,
"truncate_prompt_tokens": request.truncate_prompt_tokens,
"guided_decoding": guided_decoding,
"logprobs": 0,
}

View File

@ -283,25 +283,25 @@ class BCOTrainer(BaseTrainer):
Initialize BCOTrainer from [BCO](https://huggingface.co/papers/2404.04656) paper.
Args:
model (`transformers.PreTrainedModel`):
The model to train, preferably an `AutoModelForSequenceClassification`.
ref_model (`PreTrainedModelWrapper`):
model ([`~transformers.PreTrainedModel`]):
The model to train, preferably an [`~transformers.AutoModelForSequenceClassification`].
ref_model ([`PreTrainedModelWrapper`]):
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation
and loss. If no reference model is provided, the trainer will create a reference model with the same
architecture as the model to be optimized.
args (`BCOConfig`):
args ([`BCOConfig`]):
The arguments to use for training.
train_dataset (`datasets.Dataset`):
train_dataset ([`~datasets.Dataset`]):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
eval_dataset ([`~datasets.Dataset`]):
The dataset to use for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
reuse the fine-tuned model.
data_collator (`transformers.DataCollator`, *optional*):
data_collator ([`~transformers.DataCollator`], *optional*):
The data collator to use for training. If None is specified, the default data collator
(`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the
([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the
sequences in the batch, given a dataset of paired sequences.
model_init (`Callable[[], transformers.PreTrainedModel]`):
The model initializer to use for training. If None is specified, the default model initializer will be

View File

@ -251,14 +251,14 @@ class WinRateCallback(TrainerCallback):
```
Args:
judge (`BasePairwiseJudge`):
judge ([`BasePairwiseJudge`]):
The judge to use for comparing completions.
trainer (`Trainer`):
Trainer to which the callback will be attached. The trainer's evaluation dataset must include a `"prompt"`
column containing the prompts for generating completions. If the `Trainer` has a reference model (via the
`ref_model` attribute), it will use this reference model for generating the reference completions;
otherwise, it defaults to using the initial model.
generation_config (`GenerationConfig`, *optional*):
generation_config ([`~transformers.GenerationConfig`], *optional*):
The generation config to use for generating completions.
num_prompts (`int`, *optional*):
The number of prompts to generate completions for. If not provided, defaults to the number of examples in
@ -439,7 +439,7 @@ class LogCompletionsCallback(TrainerCallback):
trainer (`Trainer`):
Trainer to which the callback will be attached. The trainer's evaluation dataset must include a `"prompt"`
column containing the prompts for generating completions.
generation_config (`GenerationConfig`, *optional*):
generation_config ([`~transformers.GenerationConfig`], *optional*):
The generation config to use for generating completions.
num_prompts (`int`, *optional*):
The number of prompts to generate completions for. If not provided, defaults to the number of examples in
@ -569,7 +569,7 @@ class WeaveCallback(TrainerCallback):
Dictionary mapping scorer names to scorer functions. If `None`, operates in tracing mode (predictions
only). If provided, operates in evaluation mode (predictions + scores + summary). Scorer functions should
have signature: `scorer(prompt: str, completion: str) -> Union[float, int]`
generation_config (`GenerationConfig`, *optional*):
generation_config ([`~transformers.GenerationConfig`], *optional*):
Generation config to use for generating completions.
num_prompts (`int` or `None`, *optional*):
Number of prompts to generate completions for. If not provided, defaults to the number of examples in the

View File

@ -77,17 +77,17 @@ class CPOTrainer(BaseTrainer):
Initialize CPOTrainer.
Args:
model (`transformers.PreTrainedModel`):
The model to train, preferably an `AutoModelForSequenceClassification`.
args (`CPOConfig`):
model ([`~transformers.PreTrainedModel`]):
The model to train, preferably an [`~transformers.AutoModelForSequenceClassification`].
args ([`CPOConfig`]):
The CPO config arguments to use for training.
data_collator (`transformers.DataCollator`):
data_collator ([`~transformers.DataCollator`]):
The data collator to use for training. If None is specified, the default data collator
(`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the
([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the
sequences in the batch, given a dataset of paired sequences.
train_dataset (`datasets.Dataset`):
train_dataset ([`~datasets.Dataset`]):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
eval_dataset ([`~datasets.Dataset`]):
The dataset to use for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs

View File

@ -197,13 +197,13 @@ class DPOTrainer(BaseTrainer):
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in
`args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
ref_model (`PreTrainedModelWrapper`):
ref_model ([`PreTrainedModelWrapper`]):
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation
and loss. If no reference model is provided, the trainer will create a reference model with the same
architecture as the model to be optimized.
args ([`DPOConfig`], *optional*):
Configuration for this trainer. If `None`, a default configuration is used.
data_collator (`DataCollator`, *optional*):
data_collator ([`~transformers.DataCollator`], *optional*):
Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`.
Will default to [`DataCollatorForPreference`].
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
@ -689,7 +689,7 @@ class DPOTrainer(BaseTrainer):
Args:
features (`dict[str, str]`):
Row of the dataset, should contain the keys `"prompt"`, `"chosen"`, and `"rejected"`.
processing_class (`PreTrainedTokenizerBase`):
processing_class ([`~transformers.PreTrainedTokenizerBase`]):
Processing class used to process the data.
max_prompt_length (`int` or `None`):
Maximum length of the prompt sequence. If `None`, the prompt sequence is not truncated.

View File

@ -92,10 +92,10 @@ class GRPOConfig(TrainingArguments):
cache_implementation (`str`, *optional*):
Implementation of the cache method for faster generation when `use_vllm` is set to `False`.
generation_kwargs (`dict[str, Any]`, *optional*):
Additional keyword arguments to pass to `GenerationConfig` (if using transformers) or `SamplingParams` (if
using vLLM) when sampling completions. This can be used to further customize the generation behavior, such
as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict with the other generation
parameters (like `min_p`, `top_p`, etc.), they will override them.
Additional keyword arguments to pass to [`~transformers.GenerationConfig`] (if using transformers) or
`SamplingParams` (if using vLLM) when sampling completions. This can be used to further customize the
generation behavior, such as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict
with the other generation parameters (like `min_p`, `top_p`, etc.), they will override them.
> Parameters that control generation acceleration powered by vLLM

View File

@ -14,7 +14,6 @@
import inspect
import os
import re
import textwrap
from collections import defaultdict, deque
from contextlib import nullcontext
@ -71,7 +70,6 @@ from .utils import (
shuffle_sequence_dict,
split_pixel_values_by_grid,
split_tensor_dict,
truncate_with_protected_tokens,
unsplit_pixel_values_by_grid,
)
@ -176,7 +174,7 @@ class GRPOTrainer(BaseTrainer):
processing class is loaded from the model's name with [`~transformers.AutoProcessor.from_pretrained`]. A
padding token, `tokenizer.pad_token`, must be set. If the processing class has not set a padding token,
`tokenizer.eos_token` will be used as the default.
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*):
reward_processing_classes ([`~transformers.PreTrainedTokenizerBase`] or `list[PreTrainedTokenizerBase]`, *optional*):
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:
- A single processing class: Used when `reward_funcs` contains only one reward function.
@ -275,7 +273,7 @@ class GRPOTrainer(BaseTrainer):
# Processing class
if processing_class is None:
processing_class = AutoProcessor.from_pretrained(model.config._name_or_path)
processing_class = AutoProcessor.from_pretrained(model.config._name_or_path, truncation_side="left")
# Handle pad token for processors or tokenizers
if isinstance(processing_class, ProcessorMixin):
@ -291,10 +289,6 @@ class GRPOTrainer(BaseTrainer):
self.pad_token = tokenizer.pad_token
self.pad_token_id = tokenizer.pad_token_id
self.eos_token_id = tokenizer.eos_token_id
self.image_token = getattr(processing_class, "image_token", None)
self.image_token_id = getattr(processing_class, "image_token_id", None)
self.vision_start_token_id = getattr(model.config, "vision_start_token_id", None)
self.vision_end_token_id = getattr(model.config, "vision_end_token_id", None)
# Reward functions
if not isinstance(reward_funcs, list):
@ -1092,58 +1086,12 @@ class GRPOTrainer(BaseTrainer):
maybe_apply_chat_template({"prompt": prompt}, self.processing_class)["prompt"] for prompt in prompts
]
prompt_inputs = self.processing_class(
text=prompts_text,
return_tensors="pt",
padding=True,
padding_side="left",
add_special_tokens=False,
**kwargs,
)
prompt_inputs = super()._prepare_inputs(prompt_inputs)
forward_kwargs = {k: v for k, v in prompt_inputs.items() if k not in ["input_ids", "attention_mask"]}
if self.max_prompt_length is not None:
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]
prompt_ids = [p[m].tolist() for p, m in zip(prompt_ids, prompt_mask.bool())]
# If max_prompt_length is set, we trim the prompt to keep only the last `max_prompt_length` tokens.
# Then we decode those tokens back into text. We set `skip_special_tokens=False` because some special
# tokens are needed for generation.
protected = [self.image_token_id, self.vision_start_token_id, self.vision_end_token_id]
protected = [token for token in protected if token is not None]
prompt_ids = [truncate_with_protected_tokens(ids, self.max_prompt_length, protected) for ids in prompt_ids]
prompts_text = self.processing_class.batch_decode(
prompt_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
# The chat template sometimes inserts a single image token into the prompt text. However, when this text is
# later tokenized, the single image token string is expanded into multiple image token IDs, depending on the
# image size. Since we're detokenizing here, we may see repeated image tokens in the decoded text. We
# collapse them back into a single token string to match the original chat template in case it originally
# applies it. Otherwise, it assumes that the chat template uses only vision_start_token_id to indicate images
# (e.g. Gemma 3) and removes all image_token instances and vision_end_token_id as well, leaving only
# the vision_start_token_id (e.g. <start_of_image>).
if self.image_token is not None:
escaped_img_token = re.escape(self.image_token)
# Search for the image token in the chat template
if re.search(escaped_img_token, self.processing_class.chat_template):
prompts_text = [
re.sub(rf"({escaped_img_token})+", self.image_token, text) for text in prompts_text
]
else:
# If the chat template doesn't use the image token, we remove all instances of it + vision_end_token_id
if self.vision_end_token_id is not None:
escaped_eoi_token = re.escape(
self.processing_class.tokenizer.decode([self.vision_end_token_id])
)
prompts_text = [
re.sub(rf"({escaped_img_token})+{escaped_eoi_token}", "", text) for text in prompts_text
]
else:
# If vision_end_token_id is None, just remove the image tokens
prompts_text = [re.sub(rf"({escaped_img_token})+", "", text) for text in prompts_text]
if images is not None:
prompt_inputs = self.processing_class(text=prompts_text, padding=True, return_tensors="pt", **kwargs)
prompt_inputs = super()._prepare_inputs(prompt_inputs)
forward_kwargs = {k: v for k, v in prompt_inputs.items() if k not in ["input_ids", "attention_mask"]}
else:
forward_kwargs = {}
# Generate completions using either vLLM or regular generation
if self.use_vllm:
@ -1185,6 +1133,7 @@ class GRPOTrainer(BaseTrainer):
top_k=-1 if self.top_k is None else self.top_k,
min_p=0.0 if self.min_p is None else self.min_p,
max_tokens=self.max_completion_length,
truncate_prompt_tokens=self.max_prompt_length,
guided_decoding_regex=self.guided_decoding_regex,
generation_kwargs=self.args.generation_kwargs,
)
@ -1223,6 +1172,7 @@ class GRPOTrainer(BaseTrainer):
"top_k": -1 if self.top_k is None else self.top_k,
"min_p": 0.0 if self.min_p is None else self.min_p,
"max_tokens": self.max_completion_length,
"truncate_prompt_tokens": self.max_prompt_length,
"guided_decoding": guided_decoding,
"logprobs": 0, # only return the logprob of the generated token
}
@ -1319,7 +1269,17 @@ class GRPOTrainer(BaseTrainer):
else:
# Regular generation path
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]
generate_inputs = self.processing_class(
text=prompts_text,
return_tensors="pt",
padding=True,
padding_side="left",
max_length=self.max_prompt_length,
truncation=True,
add_special_tokens=False,
**kwargs,
)
generate_inputs = super()._prepare_inputs(generate_inputs)
with (
profiling_context(self, "transformers.generate"),
@ -1330,15 +1290,11 @@ class GRPOTrainer(BaseTrainer):
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
):
prompt_completion_ids = unwrapped_model.generate(
input_ids=prompt_ids,
attention_mask=prompt_mask,
**forward_kwargs,
generation_config=self.generation_config,
disable_compile=True,
**generate_inputs, generation_config=self.generation_config, disable_compile=True
)
# Compute prompt length and extract completion ids
prompt_ids, prompt_mask = generate_inputs["input_ids"], generate_inputs["attention_mask"]
prompt_length = prompt_ids.size(1)
prompt_ids = prompt_completion_ids[:, :prompt_length]
completion_ids = prompt_completion_ids[:, prompt_length:]
# Mask everything after the first EOS token

View File

@ -279,25 +279,25 @@ class KTOTrainer(BaseTrainer):
Initialize KTOTrainer.
Args:
model (`transformers.PreTrainedModel`):
The model to train, preferably an `AutoModelForSequenceClassification`.
ref_model (`PreTrainedModelWrapper`):
model ([`~transformers.PreTrainedModel`]):
The model to train, preferably an [`~transformers.AutoModelForSequenceClassification`].
ref_model ([`PreTrainedModelWrapper`]):
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation
and loss. If no reference model is provided, the trainer will create a reference model with the same
architecture as the model to be optimized.
args (`KTOConfig`):
args ([`KTOConfig`]):
The arguments to use for training.
train_dataset (`datasets.Dataset`):
train_dataset ([`~datasets.Dataset`]):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
eval_dataset ([`~datasets.Dataset`]):
The dataset to use for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
reuse the fine-tuned model.
data_collator (`transformers.DataCollator`, *optional*):
data_collator ([`~transformers.DataCollator`], *optional*):
The data collator to use for training. If None is specified, the default data collator
(`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the
([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the
sequences in the batch, given a dataset of paired sequences.
model_init (`Callable[[], transformers.PreTrainedModel]`):
The model initializer to use for training. If None is specified, the default model initializer will be

View File

@ -193,7 +193,7 @@ class ModelConfig:
if self.torch_dtype and not self.dtype:
warnings.warn(
"`torch_dtype` is deprecated and will be removed in version 0.27.0, please use `dtype` instead.",
DeprecationWarning,
FutureWarning,
)
self.dtype = self.torch_dtype

View File

@ -58,25 +58,26 @@ class NashMDTrainer(OnlineDPOTrainer):
It is implemented as a subclass of [`OnlineDPOTrainer`].
Args:
model (`transformers.PreTrainedModel`):
model ([`~transformers.PreTrainedModel`]):
The model to train, preferably an `AutoModelForCausalLM`.
ref_model (`PreTrainedModelWrapper`):
ref_model ([`PreTrainedModelWrapper`]):
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation
and loss. If no reference model is provided, the trainer will create a reference model with the same
architecture as the model to be optimized.
reward_funcs (`transformers.PreTrainedModel`):
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`.
judge (`BasePairwiseJudge`):
reward_funcs ([`~transformers.PreTrainedModel`]):
The reward model to score completions with, preferably an
[`~transformers.AutoModelForSequenceClassification`].
judge ([`BasePairwiseJudge`]):
The judge to use for pairwise comparison of model completions.
args (`NashMDConfig`):
args ([`NashMDConfig`]):
The NashMD config arguments to use for training.
data_collator (`transformers.DataCollator`):
data_collator ([`~transformers.DataCollator`]):
The data collator to use for training. If None is specified, the default data collator
(`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the
([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the
sequences in the batch, given a dataset of paired sequences.
train_dataset (`datasets.Dataset`):
train_dataset ([`~datasets.Dataset`]):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
eval_dataset ([`~datasets.Dataset`]):
The dataset to use for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs

View File

@ -95,10 +95,10 @@ class OnlineDPOConfig(TrainingArguments):
cache_implementation (`str`, *optional*):
Implementation of the cache method for faster generation when `use_vllm` is set to `False`.
generation_kwargs (`dict[str, Any]`, *optional*):
Additional keyword arguments to pass to `GenerationConfig` (if using transformers) or `SamplingParams` (if
using vLLM) when sampling completions. This can be used to further customize the generation behavior, such
as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict with the other generation
parameters (like `min_p`, `top_p`, etc.), they will override them.
Additional keyword arguments to pass to [`~transformers.GenerationConfig`] (if using transformers) or
`SamplingParams` (if using vLLM) when sampling completions. This can be used to further customize the
generation behavior, such as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict
with the other generation parameters (like `min_p`, `top_p`, etc.), they will override them.
> Parameters that control generation acceleration powered by vLLM
@ -412,3 +412,10 @@ class OnlineDPOConfig(TrainingArguments):
if hasattr(self.beta, "__len__") and len(self.beta) == 1:
self.beta = self.beta[0]
if self.max_new_tokens >= self.max_length:
warnings.warn(
f"The configuration has `max_new_tokens` ({self.max_new_tokens}) >= `max_length` ({self.max_length}). "
"This will cause prompts to be truncated or completely removed in the forward pass. "
"To preserve prompts, ensure e.g. `max_length > max_new_tokens + 512`. ",
)

View File

@ -57,8 +57,13 @@ from ..data_utils import apply_chat_template, is_conversational, maybe_apply_cha
from ..extras.profiling import profiling_context
from ..extras.vllm_client import VLLMClient
from ..import_utils import is_vllm_available
from ..models import create_reference_model, prepare_peft_model
from ..models.utils import unwrap_model_for_generation
from ..models import (
create_reference_model,
prepare_deepspeed,
prepare_fsdp,
prepare_peft_model,
unwrap_model_for_generation,
)
from .base_trainer import BaseTrainer
from .judges import BasePairwiseJudge
from .online_dpo_config import OnlineDPOConfig
@ -69,7 +74,6 @@ from .utils import (
empty_cache,
ensure_master_addr_port,
pad,
prepare_deepspeed,
truncate_right,
)
@ -113,10 +117,10 @@ class OnlineDPOTrainer(BaseTrainer):
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in
`args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
ref_model (`transformers.PreTrainedModel` or `torch.nn.Module` or `None`):
ref_model ([`~transformers.PreTrainedModel`] or `torch.nn.Module` or `None`):
The reference model to use for training. If None is specified, the reference model will be created from the
model.
judge (`BasePairwiseJudge`):
judge ([`BasePairwiseJudge`]):
The judge to use for pairwise comparison of model completions.
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`, *optional*):
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward
@ -127,11 +131,11 @@ class OnlineDPOTrainer(BaseTrainer):
- A list of reward functions: Must all be of compatible types.
Note: Only one of `judge`, or `reward_funcs` should be provided.
args (`OnlineDPOConfig`):
args ([`OnlineDPOConfig`]):
The online DPO config arguments to use for training.
data_collator (`transformers.DataCollator`):
data_collator ([`~transformers.DataCollator`]):
The data collator to use for training. If None is specified, the default data collator
(`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the
([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the
sequences in the batch, given a dataset of paired sequences.
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
The dataset to use for training.
@ -141,7 +145,7 @@ class OnlineDPOTrainer(BaseTrainer):
Processing class used to process the data. If provided, will be used to automatically process the inputs
for the model, and it will be saved along the model to make it easier to rerun an interrupted training or
reuse the fine-tuned model.
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*):
reward_processing_classes ([`~transformers.PreTrainedTokenizerBase`] or `list[PreTrainedTokenizerBase]`, *optional*):
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:
- A single processing class: Used when `reward_funcs` contains only one reward function.
@ -330,7 +334,7 @@ class OnlineDPOTrainer(BaseTrainer):
logger.warning(
"The `missing_eos_penalty` parameter is deprecated when used with the deprecated `reward_model` parameter. "
"Please use `reward_funcs` instead of `reward_model` to continue using this feature.",
DeprecationWarning,
FutureWarning,
stacklevel=2,
)
else:
@ -588,24 +592,20 @@ class OnlineDPOTrainer(BaseTrainer):
generation_kwargs = {k: v for k, v in generation_kwargs.items() if v is not None}
self.generation_config = GenerationConfig(**generation_kwargs)
if self.is_deepspeed_enabled:
if self.ref_model is not None:
self.ref_model = prepare_deepspeed(
self.ref_model, args.per_device_train_batch_size, args.fp16, args.bf16
)
# Prepare reward function models for DeepSpeed
if self.reward_funcs is not None:
for i, reward_func in enumerate(self.reward_funcs):
if isinstance(reward_func, PreTrainedModel):
if self.ref_model is not None:
if self.is_deepspeed_enabled:
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
elif self.is_fsdp_enabled:
self.ref_model = prepare_fsdp(self.ref_model, self.accelerator)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
if self.reward_funcs is not None:
for i, reward_func in enumerate(self.reward_funcs):
if isinstance(reward_func, PreTrainedModel):
if self.is_deepspeed_enabled:
self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator)
else:
if self.ref_model is not None:
self.ref_model = self.ref_model.to(self.accelerator.device)
# Prepare reward function models for FSDP/regular training
if self.reward_funcs is not None:
for i, reward_func in enumerate(self.reward_funcs):
if isinstance(reward_func, PreTrainedModel):
# Set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp
else:
# set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp
self.reward_funcs[i] = self.accelerator.prepare_model(
reward_func, evaluation_mode=True, device_placement=True
)
@ -833,8 +833,10 @@ class OnlineDPOTrainer(BaseTrainer):
def _generate_vllm_colocate(self, prompts, images=None):
"""Generate completions using vLLM colocate mode"""
# Update model weights if needed
self._move_model_to_vllm()
# Update model weights if needed - only after gradient accumulation completes
if self.state.global_step != self._last_loaded_step:
self._move_model_to_vllm()
self._last_loaded_step = self.state.global_step
# Apply chat template if conversational
if is_conversational({"prompt": prompts[0]}):
@ -1234,10 +1236,12 @@ class OnlineDPOTrainer(BaseTrainer):
# Get the logprobs of the completions from the model
output = model(prompt_completion_ids, **model_kwargs)
# There is 1 offset, because the model predict the next token
# There is 1 offset, because the model predicts the next token
prompt_len = prompt_ids.size(1)
start_idx = prompt_len - 1 if prompt_len > 0 else 0
logits = output.logits[:, start_idx:-1]
# Only slice off the last logit when we have a prompt, otherwise we need all logits
end_idx = -1 if prompt_len > 0 else None
logits = output.logits[:, start_idx:end_idx]
# Take the completion tokens logprob
logprobs = torch.take_along_dim(logits.log_softmax(dim=-1), completion_ids.unsqueeze(-1), dim=2).squeeze(-1)

View File

@ -81,17 +81,17 @@ class ORPOTrainer(BaseTrainer):
Initialize ORPOTrainer.
Args:
model (`transformers.PreTrainedModel`):
The model to train, preferably an `AutoModelForSequenceClassification`.
args (`ORPOConfig`):
model ([`~transformers.PreTrainedModel`]):
The model to train, preferably an [`~transformers.AutoModelForSequenceClassification`].
args ([`ORPOConfig`]):
The ORPO config arguments to use for training.
data_collator (`transformers.DataCollator`):
data_collator ([`~transformers.DataCollator`]):
The data collator to use for training. If None is specified, the default data collator
(`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the
([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the
sequences in the batch, given a dataset of paired sequences.
train_dataset (`datasets.Dataset`):
train_dataset ([`~datasets.Dataset`]):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
eval_dataset ([`~datasets.Dataset`]):
The dataset to use for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs

View File

@ -51,17 +51,17 @@ class PRMTrainer(BaseTrainer):
Initialize PRMTrainer.
Args:
model (`transformers.PreTrainedModel`):
model ([`~transformers.PreTrainedModel`]):
The model to train, preferably an `AutoModelForTokenClassification`.
args (`PRMConfig`):
args ([`PRMConfig`]):
The arguments to use for training.
data_collator (`transformers.DataCollator`):
data_collator ([`~transformers.DataCollator`]):
The data collator to use for training. If None is specified, the default data collator
(`DataCollatorForTokenClassification`) will be used which will pad the sequences to the maximum length of
the sequences in the batch, given a dataset of paired sequences.
train_dataset (`datasets.Dataset`):
([`~transformers.DataCollatorForTokenClassification`]) will be used which will pad the sequences to the
maximum length of the sequences in the batch, given a dataset of paired sequences.
train_dataset ([`~datasets.Dataset`]):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
eval_dataset ([`~datasets.Dataset`]):
The dataset to use for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs
@ -219,7 +219,7 @@ class PRMTrainer(BaseTrainer):
Args:
features (`dict[str, str]`):
Row of the dataset, should contain the keys `"prompt"`, `"completions"`, and `"labels"`.
tokenizer (`PreTrainedTokenizerBase`):
tokenizer ([`~transformers.PreTrainedTokenizerBase`]):
Tokenizer used to process the data.
step_separator (`str`):
Separator between steps in the completion.

View File

@ -93,10 +93,10 @@ class RLOOConfig(TrainingArguments):
cache_implementation (`str`, *optional*):
Implementation of the cache method for faster generation when `use_vllm` is set to `False`.
generation_kwargs (`dict[str, Any]`, *optional*):
Additional keyword arguments to pass to `GenerationConfig` (if using transformers) or `SamplingParams` (if
using vLLM) when sampling completions. This can be used to further customize the generation behavior, such
as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict with the other generation
parameters (like `min_p`, `top_p`, etc.), they will override them.
Additional keyword arguments to pass to [`~transformers.GenerationConfig`] (if using transformers) or
`SamplingParams` (if using vLLM) when sampling completions. This can be used to further customize the
generation behavior, such as setting `suppress_tokens`, `num_beams`, etc. If it contains keys that conflict
with the other generation parameters (like `min_p`, `top_p`, etc.), they will override them.
> Parameters that control generation acceleration powered by vLLM

View File

@ -14,7 +14,6 @@
import inspect
import os
import re
import textwrap
import warnings
from collections import defaultdict, deque
@ -71,7 +70,6 @@ from .utils import (
shuffle_sequence_dict,
split_pixel_values_by_grid,
split_tensor_dict,
truncate_with_protected_tokens,
unsplit_pixel_values_by_grid,
)
@ -173,7 +171,7 @@ class RLOOTrainer(BaseTrainer):
processing class is loaded from the model's name with [`~transformers.AutoProcessor.from_pretrained`]. A
padding token, `tokenizer.pad_token`, must be set. If the processing class has not set a padding token,
`tokenizer.eos_token` will be used as the default.
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*):
reward_processing_classes ([`~transformers.PreTrainedTokenizerBase`] or `list[PreTrainedTokenizerBase]`, *optional*):
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:
- A single processing class: Used when `reward_funcs` contains only one reward function.
@ -394,7 +392,7 @@ class RLOOTrainer(BaseTrainer):
# Processing class
if processing_class is None:
processing_class = AutoProcessor.from_pretrained(model.config._name_or_path)
processing_class = AutoProcessor.from_pretrained(model.config._name_or_path, truncation_side="left")
# Handle pad token for processors or tokenizers
if isinstance(processing_class, ProcessorMixin):
@ -410,10 +408,6 @@ class RLOOTrainer(BaseTrainer):
self.pad_token = tokenizer.pad_token
self.pad_token_id = tokenizer.pad_token_id
self.eos_token_id = tokenizer.eos_token_id
self.image_token = getattr(processing_class, "image_token", None)
self.image_token_id = getattr(processing_class, "image_token_id", None)
self.vision_start_token_id = getattr(model.config, "vision_start_token_id", None)
self.vision_end_token_id = getattr(model.config, "vision_end_token_id", None)
# Reward functions
if not isinstance(reward_funcs, list):
@ -1088,58 +1082,12 @@ class RLOOTrainer(BaseTrainer):
maybe_apply_chat_template({"prompt": prompt}, self.processing_class)["prompt"] for prompt in prompts
]
prompt_inputs = self.processing_class(
text=prompts_text,
return_tensors="pt",
padding=True,
padding_side="left",
add_special_tokens=False,
**kwargs,
)
prompt_inputs = super()._prepare_inputs(prompt_inputs)
forward_kwargs = {k: v for k, v in prompt_inputs.items() if k not in ["input_ids", "attention_mask"]}
if self.max_prompt_length is not None:
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]
prompt_ids = [p[m].tolist() for p, m in zip(prompt_ids, prompt_mask.bool())]
# If max_prompt_length is set, we trim the prompt to keep only the last `max_prompt_length` tokens.
# Then we decode those tokens back into text. We set `skip_special_tokens=False` because some special
# tokens are needed for generation.
protected = [self.image_token_id, self.vision_start_token_id, self.vision_end_token_id]
protected = [token for token in protected if token is not None]
prompt_ids = [truncate_with_protected_tokens(ids, self.max_prompt_length, protected) for ids in prompt_ids]
prompts_text = self.processing_class.batch_decode(
prompt_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
# The chat template sometimes inserts a single image token into the prompt text. However, when this text is
# later tokenized, the single image token string is expanded into multiple image token IDs, depending on the
# image size. Since we're detokenizing here, we may see repeated image tokens in the decoded text. We
# collapse them back into a single token string to match the original chat template in case it originally
# applies it. Otherwise, it assumes that the chat template uses only vision_start_token_id to indicate images
# (e.g. Gemma 3) and removes all image_token instances and vision_end_token_id as well, leaving only
# the vision_start_token_id (e.g. <start_of_image>).
if self.image_token is not None:
escaped_img_token = re.escape(self.image_token)
# Search for the image token in the chat template
if re.search(escaped_img_token, self.processing_class.chat_template):
prompts_text = [
re.sub(rf"({escaped_img_token})+", self.image_token, text) for text in prompts_text
]
else:
# If the chat template doesn't use the image token, we remove all instances of it + vision_end_token_id
if self.vision_end_token_id is not None:
escaped_eoi_token = re.escape(
self.processing_class.tokenizer.decode([self.vision_end_token_id])
)
prompts_text = [
re.sub(rf"({escaped_img_token})+{escaped_eoi_token}", "", text) for text in prompts_text
]
else:
# If vision_end_token_id is None, just remove the image tokens
prompts_text = [re.sub(rf"({escaped_img_token})+", "", text) for text in prompts_text]
if images is not None:
prompt_inputs = self.processing_class(text=prompts_text, padding=True, return_tensors="pt", **kwargs)
prompt_inputs = super()._prepare_inputs(prompt_inputs)
forward_kwargs = {k: v for k, v in prompt_inputs.items() if k not in ["input_ids", "attention_mask"]}
else:
forward_kwargs = {}
# Generate completions using either vLLM or regular generation
if self.use_vllm:
@ -1181,6 +1129,7 @@ class RLOOTrainer(BaseTrainer):
top_k=-1 if self.top_k is None else self.top_k,
min_p=0.0 if self.min_p is None else self.min_p,
max_tokens=self.max_completion_length,
truncate_prompt_tokens=self.max_prompt_length,
guided_decoding_regex=self.guided_decoding_regex,
generation_kwargs=self.args.generation_kwargs,
)
@ -1218,6 +1167,7 @@ class RLOOTrainer(BaseTrainer):
"top_k": -1 if self.top_k is None else self.top_k,
"min_p": 0.0 if self.min_p is None else self.min_p,
"max_tokens": self.max_completion_length,
"truncate_prompt_tokens": self.max_prompt_length,
"guided_decoding": guided_decoding,
}
if self.args.generation_kwargs is not None:
@ -1305,7 +1255,17 @@ class RLOOTrainer(BaseTrainer):
else:
# Regular generation path
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]
generate_inputs = self.processing_class(
text=prompts_text,
return_tensors="pt",
padding=True,
padding_side="left",
max_length=self.max_prompt_length,
truncation=True,
add_special_tokens=False,
**kwargs,
)
generate_inputs = super()._prepare_inputs(generate_inputs)
with (
profiling_context(self, "transformers.generate"),
@ -1316,15 +1276,11 @@ class RLOOTrainer(BaseTrainer):
FSDP.summon_full_params(self.model_wrapped, recurse=False) if self.is_fsdp_enabled else nullcontext(),
):
prompt_completion_ids = unwrapped_model.generate(
input_ids=prompt_ids,
attention_mask=prompt_mask,
**forward_kwargs,
generation_config=self.generation_config,
disable_compile=True,
**generate_inputs, generation_config=self.generation_config, disable_compile=True
)
# Compute prompt length and extract completion ids
prompt_ids, prompt_mask = generate_inputs["input_ids"], generate_inputs["attention_mask"]
prompt_length = prompt_ids.size(1)
prompt_ids = prompt_completion_ids[:, :prompt_length]
completion_ids = prompt_completion_ids[:, prompt_length:]
# Mask everything after the first EOS token

View File

@ -273,9 +273,9 @@ class DataCollatorForVisionLanguageModeling(DataCollatorMixin):
Additional keys may be present depending on the processor, such as `"image_grid_thw"`.
Args:
processor (`ProcessorMixin`):
The processor used to tokenize text and process images. It must be a subclass of `ProcessorMixin` and
include a `tokenizer` with a defined `pad_token_id`.
processor ([`~transformers.ProcessorMixin`]):
The processor used to tokenize text and process images. It must be a subclass of
[`~transformers.ProcessorMixin`] and include a `tokenizer` with a defined `pad_token_id`.
max_length (`int` or `None`, optional, defaults to `None`):
Maximum sequence length for input tokens. If `None`, no truncation is applied.
completion_only_loss (`bool`, *optional*, defaults to `False`):
@ -346,36 +346,79 @@ class DataCollatorForVisionLanguageModeling(DataCollatorMixin):
else:
raise KeyError(f"Unexpected input keys in examples: {list(examples[0].keys())}.")
def _collate_language_modeling(self, examples: list[dict[str, Any]]) -> dict[str, Any]:
images = [example["images"] for example in examples]
# Transformers requires at least one image in the batch, otherwise it throws an error
if all(img_list == [] for img_list in images):
images = None
def _has_structured_content(self, messages: list[dict]) -> tuple[bool, bool]:
"""
Check if messages contain structured content with images or videos.
if "messages" in examples[0]: # conversational case
for example in examples:
prepare_multimodal_messages(example["messages"], len(example["images"]))
messages = [example["messages"] for example in examples]
texts = self.processor.apply_chat_template(messages)
elif self.dataset_text_field in examples[0]: # standard case
Returns:
tuple[bool, bool]: (has_image_content, has_video_content)
"""
has_image_content = False
has_video_content = False
if messages and isinstance(messages, list):
for msg in messages:
if isinstance(msg.get("content"), list):
for item in msg["content"]:
if isinstance(item, dict):
if item.get("type") == "image":
has_image_content = True
elif item.get("type") == "video":
has_video_content = True
if has_image_content and has_video_content:
break
return has_image_content, has_video_content
def _collate_language_modeling(self, examples: list[dict[str, Any]]) -> dict[str, Any]:
# Extract images and videos from examples
images = [example.get("images", []) for example in examples]
videos = [example.get("videos", []) for example in examples]
images = None if all(img == [] for img in images) else images
videos = None if all(vid == [] for vid in videos) else videos
# Apply chat template for conversational data
if "messages" in examples[0]:
messages_list = [example["messages"] for example in examples]
# Check if messages use structured content format ({"type": "image"} or {"type": "video"})
has_image_content, has_video_content = self._has_structured_content(messages_list[0])
# For structured content, pass images/videos to apply_chat_template for extraction
template_kwargs = {}
if has_image_content and images:
template_kwargs["images"] = images
if has_video_content and videos:
template_kwargs["videos"] = videos
texts = self.processor.apply_chat_template(messages_list, **template_kwargs)
elif self.dataset_text_field in examples[0]:
texts = [example[self.dataset_text_field] for example in examples]
has_image_content = has_video_content = False
else:
raise KeyError(
"The input examples must contain either 'messages' for conversational data or 'text' for standard "
"data."
"The input examples must contain either 'messages' for conversational data or 'text' for standard data."
)
output = self.processor(
images=images,
text=texts,
padding=True,
padding_side="right",
pad_to_multiple_of=self.pad_to_multiple_of,
truncation=self.max_length is not None,
max_length=self.max_length,
return_tensors=self.return_tensors,
add_special_tokens=False, # to avoid adding the BOS, twice see https://huggingface.co/blog/qgallouedec/gotchas-in-tokenizer-behavior#7-chat-template-and-tokenization-dont-compose-due-to-special-tokens
)
# Build processor kwargs
processor_kwargs = {
"text": texts,
"padding": True,
"padding_side": "right",
"pad_to_multiple_of": self.pad_to_multiple_of,
"return_tensors": self.return_tensors,
"add_special_tokens": False,
}
if self.max_length is not None:
processor_kwargs["truncation"] = True
processor_kwargs["max_length"] = self.max_length
# Add images/videos to processor only if not already in structured content
if images and not has_image_content:
processor_kwargs["images"] = images
if videos and not has_video_content:
processor_kwargs["videos"] = videos
output = self.processor(**processor_kwargs)
labels = output["input_ids"].clone()
labels[output["attention_mask"] == 0] = -100
# We mask only padding tokens (-100) in the labels. Vision tokens are left unchanged because their handling in
@ -390,26 +433,47 @@ class DataCollatorForVisionLanguageModeling(DataCollatorMixin):
"Padding to a multiple of a value is not yet implemented for vision-language modeling and "
"prompt-completion data yet."
)
images = [example["images"] for example in examples]
# Transformers requires at least one image in the batch, otherwise it throws an error
if all(img_list == [] for img_list in images):
images = None
if is_conversational(examples[0]): # conversational case
for example in examples:
prepare_multimodal_messages(example["prompt"] + example["completion"], len(example["images"]))
# Extract images and videos from examples
images = [example.get("images", []) for example in examples]
videos = [example.get("videos", []) for example in examples]
images = None if all(img == [] for img in images) else images
videos = None if all(vid == [] for vid in videos) else videos
# Apply chat template for conversational data
if is_conversational(examples[0]):
# Check if messages use structured content format
first_prompt_completion = examples[0]["prompt"] + examples[0]["completion"]
has_image_content, has_video_content = self._has_structured_content(first_prompt_completion)
# For non-structured content, add image placeholders (videos require structured content)
if not (has_image_content or has_video_content):
for example in examples:
num_images = len(example.get("images", []))
if num_images > 0 and not example.get("videos"):
prepare_multimodal_messages(example["prompt"] + example["completion"], num_images=num_images)
examples = [apply_chat_template(example, self.processor) for example in examples]
else:
has_image_content = has_video_content = False
prompts = [example["prompt"] for example in examples]
completions = [example["completion"] for example in examples]
processed_prompts = self.processor(
images=images,
text=prompts,
padding=True,
padding_side="left",
return_tensors=self.return_tensors,
add_special_tokens=False, # to avoid adding the BOS, twice see https://huggingface.co/blog/qgallouedec/gotchas-in-tokenizer-behavior#7-chat-template-and-tokenization-dont-compose-due-to-special-tokens
)
# Build processor kwargs for prompts
prompt_kwargs = {
"text": prompts,
"padding": True,
"padding_side": "left",
"return_tensors": self.return_tensors,
"add_special_tokens": False,
}
# Add images/videos to processor only if not already in structured content
if images and not has_image_content:
prompt_kwargs["images"] = images
if videos and not has_video_content:
prompt_kwargs["videos"] = videos
processed_prompts = self.processor(**prompt_kwargs)
processed_completions = self.processor(
text=completions,
padding=True,
@ -738,10 +802,15 @@ class SFTTrainer(BaseTrainer):
else:
self.completion_only_loss = args.completion_only_loss
self._is_vision_dataset = "image" in dataset_sample or "images" in dataset_sample
self._is_vision_dataset = (
"image" in dataset_sample
or "images" in dataset_sample
or "video" in dataset_sample
or "videos" in dataset_sample
)
if self._is_vision_dataset and not self._is_vlm:
raise ValueError(
"The dataset appears to be vision-related (contains 'image' or 'images' keys), but the provided "
"The dataset appears to be vision-related (contains 'image', 'images', 'video', or 'videos' keys), but the provided "
"model does not seem to be a vision-language model. Please check your model and dataset."
)
@ -1073,7 +1142,7 @@ class SFTTrainer(BaseTrainer):
# dataset. So we need to override the default signature columns to include "completion_mask" as well.
if self._signature_columns is None:
if self._is_vision_dataset:
self._signature_columns = ["messages", "prompt", "completion", "images"]
self._signature_columns = ["messages", "prompt", "completion", "images", "videos"]
else:
self._signature_columns = ["input_ids", "labels", "seq_lengths", "completion_mask", "assistant_masks"]

View File

@ -226,7 +226,7 @@ class RewardDataCollatorWithPadding:
`trl.trainer.reward_trainer.DataCollatorForPreference` instead.
Args:
tokenizer (`PreTrainedTokenizerBase`):
tokenizer ([`~transformers.PreTrainedTokenizerBase`]):
The tokenizer used for encoding the data.
padding (`Union[bool, str, `PaddingStrategy`]`, `optional`, defaults to `True`):
padding_strategy to pass to the tokenizer.
@ -245,7 +245,7 @@ class RewardDataCollatorWithPadding:
warnings.warn(
"The `RewardDataCollatorWithPadding` is deprecated and will be removed in version 0.27.0. Please use "
"`trl.trainer.reward_trainer.DataCollatorForPreference` instead.",
DeprecationWarning,
FutureWarning,
)
super().__init__(*args, **kwargs)
@ -1111,7 +1111,7 @@ def generate(
The tensor containing the input queries.
pad_token_id (`int`):
The token ID representing the pad token.
generation_config (`GenerationConfig`):
generation_config ([`~transformers.GenerationConfig`]):
The configuration for the generation process.
Returns:
@ -1263,7 +1263,7 @@ def decode_and_strip_padding(inputs: torch.Tensor, tokenizer: PreTrainedTokenize
Args:
inputs (`torch.Tensor`):
The input tensor to be decoded.
tokenizer (`transformers.PreTrainedTokenizerBase`):
tokenizer ([`~transformers.PreTrainedTokenizerBase`]):
The tokenizer used to decode the input tensor.
Returns:
@ -1273,7 +1273,7 @@ def decode_and_strip_padding(inputs: torch.Tensor, tokenizer: PreTrainedTokenize
warnings.warn(
"The function `decode_and_strip_padding` is deprecated and will be removed in a version 0.25.0. If you want "
"to keep using it, please copy the code into your codebase and use it from there.",
DeprecationWarning,
FutureWarning,
)
decoded = tokenizer.batch_decode(inputs, skip_special_tokens=False)
return [d.replace(tokenizer.pad_token, "") for d in decoded]
@ -1294,7 +1294,7 @@ def generate_model_card(
comet_url: Optional[str] = None,
) -> ModelCard:
"""
Generate a `ModelCard` from a template.
Generate a [`~huggingface_hub.ModelCard`] from a template.
Args:
base_model (`str` or `None`):
@ -1323,7 +1323,7 @@ def generate_model_card(
ArXiv paper ID as `YYMM.NNNNN`.
Returns:
`ModelCard`:
[`~huggingface_hub.ModelCard`]:
A ModelCard object.
"""
card_data = ModelCardData(
@ -1377,7 +1377,7 @@ def log_table_to_comet_experiment(name: str, table: pd.DataFrame) -> None:
Args:
name (`str`):
Table name.
table (`pd.DataFrame`):
table (`pandas.DataFrame`):
The Pandas DataFrame containing the table to log.
"""
if not is_comet_available():
@ -1925,47 +1925,6 @@ def unsplit_pixel_values_by_grid(batch: dict[str, Union[torch.Tensor, list[torch
return batch
def truncate_with_protected_tokens(ids: list[int], target_length: int, protected_tokens: list[int]) -> list[int]:
"""
Truncate list to target length while preserving protected tokens.
Args:
ids (`list[int]`):
Input sequence of token IDs.
target_length (`int`):
Desired length of the output sequence.
protected_tokens (`list[int]`):
List of token IDs that should be preserved in the output.
Returns:
`list[int]`: Truncated sequence.
Raises:
`ValueError`: If `len(protected_tokens ∩ seq) > target_length`.
"""
protected_set = set(protected_tokens)
# Count protected tokens
num_protected = sum(1 for t in ids if t in protected_set)
if num_protected > target_length:
raise ValueError(
f"target_length ({target_length}) is too small for the protected tokens ({num_protected} tokens). "
f"Please increase target length to at least {num_protected} or disable truncation."
)
num_non_protected_needed = target_length - num_protected
result = []
# Iterate backward to select all protected tokens and rightmost non-protected tokens
for t in reversed(ids):
if t in protected_set:
result.append(t)
elif num_non_protected_needed > 0:
result.append(t)
num_non_protected_needed -= 1
# Reverse to restore original order
return result[::-1]
TListOrMapping = TypeVar("TListOrMapping", list, Mapping)

View File

@ -57,25 +57,26 @@ class XPOTrainer(OnlineDPOTrainer):
It is implemented as a subclass of [`OnlineDPOTrainer`].
Args:
model (`transformers.PreTrainedModel`):
model ([`~transformers.PreTrainedModel`]):
The model to train, preferably an `AutoModelForCausalLM`.
ref_model (`PreTrainedModelWrapper`):
ref_model ([`PreTrainedModelWrapper`]):
Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation
and loss. If no reference model is provided, the trainer will create a reference model with the same
architecture as the model to be optimized.
reward_funcs (`transformers.PreTrainedModel`):
The reward model to score completions with, preferably an `AutoModelForSequenceClassification`.
judge (`BasePairwiseJudge`):
reward_funcs ([`~transformers.PreTrainedModel`]):
The reward model to score completions with, preferably an
[`~transformers.AutoModelForSequenceClassification`].
judge ([`BasePairwiseJudge`]):
The judge to use for pairwise comparison of model completions.
args (`XPOConfig`):
args ([`XPOConfig`]):
The XPO config arguments to use for training.
data_collator (`transformers.DataCollator`):
data_collator ([`~transformers.DataCollator`]):
The data collator to use for training. If None is specified, the default data collator
(`DPODataCollatorWithPadding`) will be used which will pad the sequences to the maximum length of the
([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the
sequences in the batch, given a dataset of paired sequences.
train_dataset (`datasets.Dataset`):
train_dataset ([`~datasets.Dataset`]):
The dataset to use for training.
eval_dataset (`datasets.Dataset`):
eval_dataset ([`~datasets.Dataset`]):
The dataset to use for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*):
Processing class used to process the data. If provided, will be used to automatically process the inputs