mirror of
https://github.com/huggingface/trl.git
synced 2025-11-06 06:14:29 +08:00
Compare commits
5 Commits
docs/add-p
...
v0.11.2
| Author | SHA1 | Date | |
|---|---|---|---|
| 01142bb7c4 | |||
| d3fb4860e2 | |||
| 86ad7a7e85 | |||
| 3aa1996986 | |||
| e4935e13fc |
2
setup.py
2
setup.py
@ -73,7 +73,7 @@ import os
|
||||
from setuptools import find_packages, setup
|
||||
|
||||
|
||||
__version__ = "0.11.0.dev0" # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
__version__ = "0.11.2" # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots)
|
||||
|
||||
REQUIRED_PKGS = [
|
||||
"torch>=1.4.0",
|
||||
|
||||
@ -13,8 +13,14 @@
|
||||
# limitations under the License.
|
||||
import platform
|
||||
import subprocess
|
||||
import tempfile
|
||||
import unittest
|
||||
|
||||
import torch
|
||||
from datasets import Dataset
|
||||
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
|
||||
|
||||
from trl import RLOOConfig, RLOOTrainer
|
||||
|
||||
|
||||
def test():
|
||||
@ -26,6 +32,8 @@ python examples/scripts/rloo/rloo.py \
|
||||
--gradient_accumulation_steps 1 \
|
||||
--total_episodes 10 \
|
||||
--model_name_or_path EleutherAI/pythia-14m \
|
||||
--sft_model_path EleutherAI/pythia-14m \
|
||||
--reward_model_path EleutherAI/pythia-14m \
|
||||
--missing_eos_penalty 1.0 \
|
||||
--save_strategy no \
|
||||
--stop_token eos
|
||||
@ -71,3 +79,42 @@ def test_rloo_reward():
|
||||
baseline = (rlhf_reward.sum(0) - rlhf_reward) / (rloo_k - 1)
|
||||
vec_advantages = rlhf_reward - baseline
|
||||
torch.testing.assert_close(vec_advantages.flatten(), advantages)
|
||||
|
||||
|
||||
class RLOOTrainerTester(unittest.TestCase):
|
||||
def setUp(self):
|
||||
self.sft_model_id = "trl-internal-testing/dummy-GPT2-correct-vocab"
|
||||
self.reward_model_id = "trl-internal-testing/dummy-GPT2-correct-vocab"
|
||||
|
||||
self.policy_model = AutoModelForCausalLM.from_pretrained(self.sft_model_id)
|
||||
self.reward_model = AutoModelForSequenceClassification.from_pretrained(self.reward_model_id)
|
||||
self.policy_ref_model = AutoModelForCausalLM.from_pretrained(self.sft_model_id)
|
||||
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(self.sft_model_id, padding_side="left")
|
||||
self.tokenizer.chat_template = "{% for message in messages %}{% if message['role'] == 'user' %}{{ ' ' }}{% endif %}{{ message['content'] }}{% if not loop.last %}{{ ' ' }}{% endif %}{% endfor %}{{ eos_token }}"
|
||||
self.tokenizer.add_special_tokens({"pad_token": "[PAD]"})
|
||||
|
||||
def test_rloo_checkpoint(self):
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
training_args = RLOOConfig(
|
||||
output_dir=tmp_dir,
|
||||
per_device_train_batch_size=2,
|
||||
total_episodes=1,
|
||||
report_to="none",
|
||||
)
|
||||
|
||||
dummy_text = {"content": "Hello World!", "role": "user"}
|
||||
dummy_data = self.tokenizer.apply_chat_template(dummy_text)
|
||||
dummy_dataset = Dataset.from_dict({"input_ids": dummy_data})
|
||||
|
||||
trainer = RLOOTrainer(
|
||||
config=training_args,
|
||||
policy=self.policy_model,
|
||||
reward_model=self.reward_model,
|
||||
ref_policy=self.policy_ref_model,
|
||||
processing_class=self.tokenizer,
|
||||
train_dataset=dummy_dataset,
|
||||
eval_dataset=dummy_dataset,
|
||||
)
|
||||
|
||||
trainer._save_checkpoint(trainer.model, trial=None)
|
||||
|
||||
@ -16,6 +16,7 @@ import tempfile
|
||||
import unittest
|
||||
|
||||
from datasets import load_dataset
|
||||
from parameterized import parameterized
|
||||
from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer
|
||||
|
||||
from trl import (
|
||||
@ -27,12 +28,18 @@ from trl import (
|
||||
DPOTrainer,
|
||||
KTOConfig,
|
||||
KTOTrainer,
|
||||
NashMDConfig,
|
||||
NashMDTrainer,
|
||||
OnlineDPOConfig,
|
||||
OnlineDPOTrainer,
|
||||
ORPOConfig,
|
||||
ORPOTrainer,
|
||||
RewardConfig,
|
||||
RewardTrainer,
|
||||
SFTConfig,
|
||||
SFTTrainer,
|
||||
XPOConfig,
|
||||
XPOTrainer,
|
||||
)
|
||||
|
||||
|
||||
@ -219,8 +226,30 @@ class TrainerArgTester(unittest.TestCase):
|
||||
self.assertEqual(trainer.args.ref_model_init_kwargs, {"trust_remote_code": True})
|
||||
self.assertEqual(trainer.args.dataset_num_proc, 4)
|
||||
|
||||
def test_online_dpo(self):
|
||||
tokenizer = AutoTokenizer.from_pretrained("gpt2")
|
||||
@parameterized.expand([(False,), (True,)])
|
||||
def test_nash_md(self, mixtures_coef_list):
|
||||
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
training_args = NashMDConfig(
|
||||
tmp_dir,
|
||||
mixture_coef=0.5 if not mixtures_coef_list else [0.5, 0.6],
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-14m")
|
||||
ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-14m")
|
||||
reward_model = AutoModelForSequenceClassification.from_pretrained("EleutherAI/pythia-14m", num_labels=1)
|
||||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-14m")
|
||||
trainer = NashMDTrainer(
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
ref_model=ref_model,
|
||||
reward_model=reward_model,
|
||||
train_dataset=dataset,
|
||||
)
|
||||
self.assertEqual(trainer.args.mixture_coef, 0.5 if not mixtures_coef_list else [0.5, 0.6])
|
||||
|
||||
@parameterized.expand([(False,), (True,)])
|
||||
def test_online_dpo(self, beta_list):
|
||||
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
args = OnlineDPOConfig(
|
||||
@ -228,13 +257,14 @@ class TrainerArgTester(unittest.TestCase):
|
||||
max_new_tokens=42,
|
||||
temperature=0.5,
|
||||
missing_eos_penalty=0.33,
|
||||
beta=0.6,
|
||||
beta=0.6 if not beta_list else [0.6, 0.7],
|
||||
loss_type="hinge",
|
||||
dataset_num_proc=4,
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-14m")
|
||||
ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-14m")
|
||||
reward_model = AutoModelForSequenceClassification.from_pretrained("EleutherAI/pythia-14m", num_labels=1)
|
||||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-14m")
|
||||
trainer = OnlineDPOTrainer(
|
||||
args=args,
|
||||
tokenizer=tokenizer,
|
||||
@ -246,7 +276,7 @@ class TrainerArgTester(unittest.TestCase):
|
||||
self.assertEqual(trainer.args.max_new_tokens, 42)
|
||||
self.assertEqual(trainer.args.temperature, 0.5)
|
||||
self.assertEqual(trainer.args.missing_eos_penalty, 0.33)
|
||||
self.assertEqual(trainer.args.beta, 0.6)
|
||||
self.assertEqual(trainer.args.beta, 0.6 if not beta_list else [0.6, 0.7])
|
||||
self.assertEqual(trainer.args.loss_type, "hinge")
|
||||
self.assertEqual(trainer.args.dataset_num_proc, 4)
|
||||
|
||||
@ -278,6 +308,27 @@ class TrainerArgTester(unittest.TestCase):
|
||||
self.assertEqual(trainer.args.disable_dropout, False)
|
||||
self.assertEqual(trainer.args.label_pad_token_id, -99)
|
||||
|
||||
def test_reward(self):
|
||||
dataset = load_dataset("trl-internal-testing/zen", "standard_preference", split="train")
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
training_args = RewardConfig(
|
||||
tmp_dir,
|
||||
max_length=256,
|
||||
dataset_num_proc=4,
|
||||
center_rewards_coefficient=0.1,
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-14m")
|
||||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-14m")
|
||||
trainer = RewardTrainer(
|
||||
model=model,
|
||||
args=training_args,
|
||||
train_dataset=dataset,
|
||||
tokenizer=tokenizer,
|
||||
)
|
||||
self.assertEqual(trainer.args.max_length, 256)
|
||||
self.assertEqual(trainer.args.dataset_num_proc, 4)
|
||||
self.assertEqual(trainer.args.center_rewards_coefficient, 0.1)
|
||||
|
||||
def test_sft(self):
|
||||
dataset = load_dataset("trl-internal-testing/zen", "standard_language_modeling", split="train")
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
@ -308,3 +359,25 @@ class TrainerArgTester(unittest.TestCase):
|
||||
self.assertEqual(trainer.args.eval_packing, True)
|
||||
self.assertEqual(trainer.args.num_of_sequences, 32)
|
||||
self.assertEqual(trainer.args.chars_per_token, 4.2)
|
||||
|
||||
@parameterized.expand([(False,), (True,)])
|
||||
def test_xpo(self, alpha_list):
|
||||
dataset = load_dataset("trl-internal-testing/zen", "standard_prompt_only", split="train")
|
||||
with tempfile.TemporaryDirectory() as tmp_dir:
|
||||
training_args = XPOConfig(
|
||||
tmp_dir,
|
||||
alpha=0.5 if not alpha_list else [0.5, 0.6],
|
||||
)
|
||||
model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-14m")
|
||||
ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-14m")
|
||||
reward_model = AutoModelForSequenceClassification.from_pretrained("EleutherAI/pythia-14m", num_labels=1)
|
||||
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/pythia-14m")
|
||||
trainer = XPOTrainer(
|
||||
args=training_args,
|
||||
tokenizer=tokenizer,
|
||||
model=model,
|
||||
ref_model=ref_model,
|
||||
reward_model=reward_model,
|
||||
train_dataset=dataset,
|
||||
)
|
||||
self.assertEqual(trainer.args.alpha, 0.5 if not alpha_list else [0.5, 0.6])
|
||||
|
||||
@ -14,7 +14,7 @@
|
||||
|
||||
# flake8: noqa
|
||||
|
||||
__version__ = "0.11.0.dev0"
|
||||
__version__ = "0.11.2"
|
||||
|
||||
from typing import TYPE_CHECKING
|
||||
from .import_utils import _LazyModule, is_diffusers_available, OptionalDependencyNotAvailable
|
||||
|
||||
@ -12,8 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Union
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List
|
||||
|
||||
from trl.trainer.online_dpo_config import OnlineDPOConfig
|
||||
|
||||
@ -32,4 +32,9 @@ class NashMDConfig(OnlineDPOConfig):
|
||||
epochs.
|
||||
"""
|
||||
|
||||
mixture_coef: Union[float, List[float]] = 0.5
|
||||
mixture_coef: List[float] = field(default_factory=lambda: [0.5])
|
||||
|
||||
def __post_init__(self):
|
||||
super().__post_init__()
|
||||
if hasattr(self.mixture_coef, "__len__") and len(self.mixture_coef) == 1:
|
||||
self.mixture_coef = self.mixture_coef[0]
|
||||
|
||||
@ -12,8 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Literal, Optional, Union
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List, Literal, Optional
|
||||
|
||||
from transformers import TrainingArguments
|
||||
|
||||
@ -63,7 +63,12 @@ class OnlineDPOConfig(TrainingArguments):
|
||||
max_new_tokens: int = 64
|
||||
temperature: float = 0.9
|
||||
missing_eos_penalty: Optional[float] = None
|
||||
beta: Union[float, List[float]] = 0.1
|
||||
beta: List[float] = field(default_factory=lambda: [0.1])
|
||||
loss_type: Literal["sigmoid", "ipo"] = "sigmoid"
|
||||
dataset_num_proc: Optional[int] = None
|
||||
disable_dropout: bool = True
|
||||
|
||||
def __post_init__(self):
|
||||
super().__post_init__()
|
||||
if hasattr(self.beta, "__len__") and len(self.beta) == 1:
|
||||
self.beta = self.beta[0]
|
||||
|
||||
@ -39,7 +39,7 @@ from transformers import (
|
||||
)
|
||||
from transformers.integrations import get_reporting_integration_callbacks
|
||||
from transformers.trainer import DEFAULT_CALLBACKS, DEFAULT_PROGRESS_CALLBACK
|
||||
from transformers.trainer_callback import CallbackHandler, PrinterCallback
|
||||
from transformers.trainer_callback import CallbackHandler, ExportableState, PrinterCallback
|
||||
|
||||
from ..models.utils import unwrap_model_for_generation
|
||||
from ..trainer.utils import (
|
||||
@ -149,10 +149,6 @@ class RLOOTrainer(Trainer):
|
||||
#########
|
||||
### trainer specifics
|
||||
#########
|
||||
self.state = OnlineTrainerState(
|
||||
is_local_process_zero=self.is_local_process_zero(),
|
||||
is_world_process_zero=self.is_world_process_zero(),
|
||||
)
|
||||
default_callbacks = DEFAULT_CALLBACKS + get_reporting_integration_callbacks(self.args.report_to)
|
||||
self.callbacks = default_callbacks if callbacks is None else default_callbacks + callbacks
|
||||
self.callback_handler = CallbackHandler(
|
||||
@ -160,6 +156,14 @@ class RLOOTrainer(Trainer):
|
||||
)
|
||||
self.add_callback(PrinterCallback if self.args.disable_tqdm else DEFAULT_PROGRESS_CALLBACK)
|
||||
self.control = TrainerControl()
|
||||
self.state = OnlineTrainerState(
|
||||
is_local_process_zero=self.is_local_process_zero(),
|
||||
is_world_process_zero=self.is_world_process_zero(),
|
||||
stateful_callbacks=[
|
||||
cb for cb in self.callback_handler.callbacks + [self.control] if isinstance(cb, ExportableState)
|
||||
],
|
||||
)
|
||||
|
||||
self.current_flos = 0
|
||||
self.hp_search_backend = None
|
||||
self.is_deepspeed_enabled = getattr(self.accelerator.state, "deepspeed_plugin", None) is not None
|
||||
|
||||
@ -12,8 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Union
|
||||
from dataclasses import dataclass, field
|
||||
from typing import List
|
||||
|
||||
from trl.trainer.online_dpo_config import OnlineDPOConfig
|
||||
|
||||
@ -30,4 +30,9 @@ class XPOConfig(OnlineDPOConfig):
|
||||
Weight of the XPO loss term. If a list of floats is provided then the alpha is selected for each new epoch and the last alpha is used for the rest of the epochs.
|
||||
"""
|
||||
|
||||
alpha: Union[float, List[float]] = 1e-5
|
||||
alpha: List[float] = field(default_factory=lambda: [1e-5])
|
||||
|
||||
def __post_init__(self):
|
||||
super().__post_init__()
|
||||
if hasattr(self.alpha, "__len__") and len(self.alpha) == 1:
|
||||
self.alpha = self.alpha[0]
|
||||
|
||||
Reference in New Issue
Block a user