Fix trl-internal-testing/tiny-DbrxForCausalLM (#4213)

This commit is contained in:
Quentin Gallouédec
2025-10-06 15:11:16 -06:00
committed by GitHub
parent 65eb45c32b
commit 8265800abf
2 changed files with 96 additions and 1 deletions

View File

@ -155,7 +155,6 @@ def init_weights_tiny_model(model):
for model_id, config_class, model_class, suffix in [
("bigscience/bloomz-560m", BloomConfig, BloomForCausalLM, None),
("CohereForAI/aya-expanse-8b", CohereConfig, CohereForCausalLM, None),
("databricks/dbrx-instruct", DbrxConfig, DbrxForCausalLM, None),
("deepseek-ai/DeepSeek-R1", DeepseekV3Config, DeepseekV3ForCausalLM, None),
# It's important to have R1-0528 as it doesn't have the same chat template
("deepseek-ai/DeepSeek-R1-0528", DeepseekV3Config, DeepseekV3ForCausalLM, "0528"),
@ -209,6 +208,17 @@ for model_id, config_class, model_class, suffix in [
init_weights_tiny_model(model)
push_to_hub(model, tokenizer, "tiny", suffix)
# Special case for databricks/dbrx-instruct as it requires specific changes in the config
model_id = "databricks/dbrx-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_id)
config = DbrxConfig.from_pretrained(model_id, n_layers=2, n_heads=16, d_model=24)
# transformers mistakenly ignores ffn_config keys when loading from pretrained. We need to set them manually after
# loading the config
config.ffn_config.ffn_hidden_size = 24
config.ffn_config.hidden_size = 24
model = DbrxForCausalLM(config).to(dtype=torch.bfloat16)
init_weights_tiny_model(model)
push_to_hub(model, tokenizer, "tiny")
# Two slightly bigger models, required for vLLM testing
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-32B-Instruct")

View File

@ -16,6 +16,8 @@ import gc
import pytest
import torch
import transformers
from packaging import version
from parameterized import parameterized
from transformers import AutoModelForCausalLM, AutoModelForSeq2SeqLM, GenerationConfig
@ -63,6 +65,12 @@ class BaseTester:
Test if the v-head is added to the model successfully
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
model = self.trl_model_class.from_pretrained(model_name)
assert hasattr(model, "v_head")
@ -71,6 +79,12 @@ class BaseTester:
Test if the v-head has the correct shape
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
model = self.trl_model_class.from_pretrained(model_name)
assert model.v_head.summary.weight.shape[0] == 1
@ -80,6 +94,12 @@ class BaseTester:
than zeros by default.
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
model = self.trl_model_class.from_pretrained(model_name)
assert not torch.allclose(model.v_head.summary.bias, torch.zeros_like(model.v_head.summary.bias))
@ -89,6 +109,12 @@ class BaseTester:
`from_pretrained`.
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
pretrained_model = self.transformers_model_class.from_pretrained(model_name)
model = self.trl_model_class.from_pretrained(pretrained_model)
assert hasattr(model, "v_head")
@ -99,6 +125,12 @@ class BaseTester:
additional modules (e.g. v_head)
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
model = self.trl_model_class.from_pretrained(model_name)
model.save_pretrained(self.tmp_dir)
@ -114,6 +146,12 @@ class BaseTester:
Test if the model can be saved and loaded from a directory and get the same weights - sharded case
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
model = self.trl_model_class.from_pretrained(model_name)
model.save_pretrained(self.tmp_dir)
@ -129,6 +167,12 @@ class BaseTester:
Test if the model can be saved and loaded using transformers and get the same weights - sharded case
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
transformers_model = self.trl_model_class.transformers_parent_class.from_pretrained(model_name)
trl_model = self.trl_model_class.from_pretrained(model_name)
@ -150,6 +194,12 @@ class BaseTester:
of the super class to check if the weights are the same.
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
transformers_model = self.trl_model_class.transformers_parent_class.from_pretrained(model_name)
trl_model = self.trl_model_class.from_pretrained(model_name)
@ -200,6 +250,12 @@ class TestCausalLMValueHeadModel(BaseTester.VHeadModelTester, TrlTestCase):
EXPECTED_OUTPUT_SIZE = 3
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
model = self.trl_model_class.from_pretrained(model_name).to(self.device)
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], device=self.device)
outputs = model(input_ids)
@ -213,6 +269,12 @@ class TestCausalLMValueHeadModel(BaseTester.VHeadModelTester, TrlTestCase):
Test if we instantiate a model by adding `summary_drop_prob` to the config it will be added to the v_head
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
pretrained_model = self.transformers_model_class.from_pretrained(model_name)
pretrained_model.config.summary_dropout_prob = 0.5
model = self.trl_model_class.from_pretrained(pretrained_model)
@ -225,6 +287,11 @@ class TestCausalLMValueHeadModel(BaseTester.VHeadModelTester, TrlTestCase):
Test if we instantiate a model by adding `summary_drop_prob` to the config it will be added to the v_head
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
v_head_kwargs = {"summary_dropout_prob": 0.5}
model = self.trl_model_class.from_pretrained(model_name, **v_head_kwargs)
@ -242,6 +309,12 @@ class TestCausalLMValueHeadModel(BaseTester.VHeadModelTester, TrlTestCase):
r"""
Test if `generate` works for every model
"""
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
pytest.xfail("DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version")
generation_config = GenerationConfig(max_new_tokens=9)
model = self.trl_model_class.from_pretrained(model_name).to(self.device)
input_ids = torch.tensor([[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]], device=self.device)
@ -256,6 +329,12 @@ class TestCausalLMValueHeadModel(BaseTester.VHeadModelTester, TrlTestCase):
run a dummy forward pass without any issue.
"""
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
trl_model = self.trl_model_class.from_pretrained(model_name, dtype=torch.bfloat16).to(self.device)
lm_head_namings = ["lm_head", "embed_out", "output_layer"]
@ -276,6 +355,12 @@ class TestCausalLMValueHeadModel(BaseTester.VHeadModelTester, TrlTestCase):
@pytest.mark.skip(reason="This test needs to be run manually due to HF token issue.")
def test_push_to_hub(self):
for model_name in self.all_model_names:
if model_name == "trl-internal-testing/tiny-DbrxForCausalLM" and version.parse(
transformers.__version__
) < version.parse("4.58.0.dev0"):
# DbrxConfig generated after 4.58.0 isn't compatible with modeling code before this version
continue
model = AutoModelForCausalLMWithValueHead.from_pretrained(model_name)
if "sharded" in model_name:
model.push_to_hub(model_name + "-ppo", use_auth_token=True, max_shard_size="1MB")