Refactor reward modelling script to work with chat models (#2026)

* Make Qwen2 works

* Make it work

* Refactor

* Add doc

* Add dataset

* Fix

* Quality
This commit is contained in:
lewtun
2024-09-06 13:12:38 +02:00
committed by GitHub
parent fc20db8873
commit 3412f513f2
7 changed files with 145 additions and 54 deletions

View File

@ -12,21 +12,40 @@
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Full training:
python examples/scripts/reward_modeling.py \
--model_name_or_path=facebook/opt-350m \
--output_dir="reward_modeling_anthropic_hh" \
--per_device_train_batch_size=16 \
--num_train_epochs=1 \
--gradient_accumulation_steps=2 \
--gradient_checkpointing=True \
--learning_rate=1.41e-5 \
--report_to="wandb" \
--remove_unused_columns=False \
--optim="adamw_torch" \
--logging_steps=10 \
--eval_strategy="steps" \
--eval_steps=500 \
--max_length=512 \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--dataset_name trl-lib/ultrafeedback_binarized \
--output_dir Qwen2-0.5B-Reward \
--per_device_train_batch_size 8 \
--num_train_epochs 1 \
--gradient_accumulation_steps 1 \
--remove_unused_columns False \
--gradient_checkpointing True \
--learning_rate 1.0e-5 \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 50 \
--max_length 2048
LoRA:
python examples/scripts/reward_modeling.py \
--model_name_or_path Qwen/Qwen2-0.5B-Instruct \
--dataset_name trl-lib/ultrafeedback_binarized \
--output_dir Qwen2-0.5B-Reward \
--per_device_train_batch_size 8 \
--num_train_epochs 1 \
--gradient_accumulation_steps 1 \
--remove_unused_columns False \
--gradient_checkpointing True \
--learning_rate 1.0e-5 \
--logging_steps 25 \
--eval_strategy steps \
--eval_steps 50 \
--max_length 2048 /
--use_peft \
--lora_r 32 \
--lora_alpha 16
"""
import warnings
@ -37,15 +56,25 @@ from datasets import load_dataset
from tqdm import tqdm
from transformers import AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser
from trl import ModelConfig, RewardConfig, RewardTrainer, get_kbit_device_map, get_peft_config, get_quantization_config
from trl import (
ModelConfig,
RewardConfig,
RewardTrainer,
get_kbit_device_map,
get_peft_config,
get_quantization_config,
setup_chat_format,
)
from trl.commands.cli_utils import RewardScriptArguments
from trl.extras.dataset_formatting import conversations_formatting_function
tqdm.pandas()
if __name__ == "__main__":
parser = HfArgumentParser((RewardConfig, ModelConfig))
config, model_config = parser.parse_args_into_dataclasses()
parser = HfArgumentParser((RewardScriptArguments, RewardConfig, ModelConfig))
args, config, model_config = parser.parse_args_into_dataclasses()
config.gradient_checkpointing_kwargs = dict(use_reentrant=False)
################
@ -68,19 +97,23 @@ if __name__ == "__main__":
model = AutoModelForSequenceClassification.from_pretrained(
model_config.model_name_or_path, num_labels=1, trust_remote_code=model_config.trust_remote_code, **model_kwargs
)
# Align padding tokens between tokenizer and model
model.config.pad_token_id = tokenizer.pad_token_id
if model_config.lora_task_type != "SEQ_CLS":
# If post-training a base model, use ChatML as the default template
if tokenizer.chat_template is None:
model, tokenizer = setup_chat_format(model, tokenizer)
if model_config.use_peft and model_config.lora_task_type != "SEQ_CLS":
warnings.warn(
"You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs"
" Make sure to pass --lora_task_type SEQ_CLS when using this script."
" Make sure to pass --lora_task_type SEQ_CLS when using this script with PEFT."
)
################
# Dataset
################
raw_datasets = load_dataset("Anthropic/hh-rlhf")
# Tokenize chosen/rejected pairs of inputs
# Adapt this section to your needs for custom datasets
#############################
# Load and preprocess dataset
#############################
raw_datasets = load_dataset(args.dataset_name)
def preprocess_function(examples):
new_examples = {
@ -92,7 +125,6 @@ if __name__ == "__main__":
for chosen, rejected in zip(examples["chosen"], examples["rejected"]):
tokenized_chosen = tokenizer(chosen)
tokenized_rejected = tokenizer(rejected)
new_examples["input_ids_chosen"].append(tokenized_chosen["input_ids"])
new_examples["attention_mask_chosen"].append(tokenized_chosen["attention_mask"])
new_examples["input_ids_rejected"].append(tokenized_rejected["input_ids"])
@ -100,27 +132,33 @@ if __name__ == "__main__":
return new_examples
# Preprocess the dataset and filter out examples that are longer than args.max_length
# Compute that only on the main process for faster data processing.
# see: https://github.com/huggingface/trl/pull/1255
with PartialState().local_main_process_first():
# Wrap inputs with chat template.
# This assumes the chosen/rejected columns are in the OpenAI messages format.
chosen_fn = conversations_formatting_function(tokenizer, "chosen")
rejected_fn = conversations_formatting_function(tokenizer, "rejected")
raw_datasets = raw_datasets.map(
lambda x: {"chosen": chosen_fn(x), "rejected": rejected_fn(x)}, num_proc=config.dataset_num_proc
)
# Tokenize inputs
raw_datasets = raw_datasets.map(
preprocess_function,
batched=True,
num_proc=config.dataset_num_proc,
)
# Filter out examples that are too long
raw_datasets = raw_datasets.filter(
lambda x: len(x["input_ids_chosen"]) <= config.max_length
and len(x["input_ids_rejected"]) <= config.max_length,
num_proc=config.dataset_num_proc,
)
train_dataset = raw_datasets["train"]
eval_dataset = raw_datasets["test"]
train_dataset = raw_datasets[args.dataset_train_split]
eval_dataset = raw_datasets[args.dataset_test_split]
################
##########
# Training
################
##########
trainer = RewardTrainer(
model=model,
tokenizer=tokenizer,
@ -130,8 +168,13 @@ if __name__ == "__main__":
peft_config=get_peft_config(model_config),
)
trainer.train()
############################
# Save model and push to Hub
############################
trainer.save_model(config.output_dir)
trainer.push_to_hub()
metrics = trainer.evaluate()
trainer.log_metrics("eval", metrics)
print(metrics)
trainer.save_metrics("eval", metrics)
trainer.save_model(config.output_dir)
trainer.push_to_hub()