Files
transformers/docs/source/en/model_doc/deepseek_vl.md
Yuanyuan Chen f64354e89a Format empty lines and white space in markdown files. (#41100)
* Remove additional white space and empty lines from markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Add empty lines around code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-23 16:20:01 -07:00

7.0 KiB
Raw Blame History

This model was released on 2024-03-08 and added to Hugging Face Transformers on 2025-07-25.

PyTorch FlashAttention SDPA

DeepseekVL

Deepseek-VL was introduced by the DeepSeek AI team. It is a vision-language model (VLM) designed to process both text and images for generating contextually relevant responses. The model leverages LLaMA as its text encoder, while SigLip is used for encoding images.

You can find all the original Deepseek-VL checkpoints under the DeepSeek-community organization.

Tip

Click on the Deepseek-VL models in the right sidebar for more examples of how to apply Deepseek-VL to different vision and language tasks.

The example below demonstrates how to generate text based on an image with [Pipeline] or the [AutoModel] class.

import torch
from transformers import pipeline

pipe = pipeline(
    task="image-text-to-text",
    model="deepseek-community/deepseek-vl-1.3b-chat",
    device=0,
    dtype=torch.float16
)

messages = [
    {
        "role": "user",
        "content": [
            {
                "type": "image",
                "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg",
            },
            { "type": "text", "text": "Describe this image."},
        ]
    }
]

pipe(text=messages, max_new_tokens=20, return_full_text=False)
import torch
from transformers import DeepseekVLForConditionalGeneration, AutoProcessor

model = DeepseekVLForConditionalGeneration.from_pretrained(
    "deepseek-community/deepseek-vl-1.3b-chat",
    dtype=torch.float16,
    device_map="auto",
    attn_implementation="sdpa"
)

processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-1.3b-chat")

messages = [
    {
        "role":"user",
        "content":[
            {
                "type":"image",
                "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/pipeline-cat-chonk.jpeg"
            },
            {
                "type":"text",
                "text":"Describe this image."
            }
        ]
    }

]

inputs = processor.apply_chat_template(
    messages,
    add_generation_prompt=True,
    tokenize=True,
    return_dict=True,
    return_tensors="pt"
).to(model.device, dtype=model.dtype)

generated_ids = model.generate(**inputs, max_new_tokens=128)
generated_ids_trimmed = [
    out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = processor.batch_decode(
    generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)

print(output_text)

Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the Quantization overview for more available quantization backends.

The example below uses torchao to only quantize the weights to int4.

import torch
from transformers import TorchAoConfig, DeepseekVLForConditionalGeneration, AutoProcessor

quantization_config = TorchAoConfig(
    "int4_weight_only",
    group_size=128
)

model = DeepseekVLForConditionalGeneration.from_pretrained(
    "deepseek-community/deepseek-vl-1.3b-chat",
    dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config
)

Notes

  • Do inference with multiple images in a single conversation.

    import torch
    from transformers import DeepseekVLForConditionalGeneration, AutoProcessor
    
    model = DeepseekVLForConditionalGeneration.from_pretrained(
        "deepseek-community/deepseek-vl-1.3b-chat",
        dtype=torch.float16,
        device_map="auto",
        attn_implementation="sdpa"
    )
    
    processor = AutoProcessor.from_pretrained("deepseek-community/deepseek-vl-1.3b-chat")
    
    messages = [
        [
            {
                "role": "user",
                "content": [
                    {"type": "text", "text": "Whats the difference between"},
                    {"type": "image", "url": "http://images.cocodataset.org/val2017/000000039769.jpg"},
                    {"type": "text", "text": " and "},
                    {"type": "image", "url": "https://www.ilankelman.org/stopsigns/australia.jpg"}
                ]
            }
        ],
        [
            {
                "role": "user",
                "content": [
                    {"type": "image", "url": "https://huggingface.co/microsoft/kosmos-2-patch14-224/resolve/main/snowman.jpg"},
                    {"type": "text", "text": "What do you see in this image?"}
                ]
            }
        ]
    ]
    
    inputs = processor.apply_chat_template(
        messages,
        add_generation_prompt=True,
        padding=True,
        truncation=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt"
    ).to(model.device, dtype=model.dtype)
    
    generated_ids = model.generate(**inputs, max_new_tokens=128)
    generated_ids_trimmed = [
        out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
    ]
    output_text = processor.batch_decode(
        generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
    )
    
    print(output_text)
    

DeepseekVLConfig

autodoc DeepseekVLConfig

DeepseekVLProcessor

autodoc DeepseekVLProcessor

DeepseekVLImageProcessor

autodoc DeepseekVLImageProcessor

DeepseekVLImageProcessorFast

autodoc DeepseekVLImageProcessorFast

DeepseekVLModel

autodoc DeepseekVLModel - forward

DeepseekVLForConditionalGeneration

autodoc DeepseekVLForConditionalGeneration - forward