Files
transformers/docs/source/en/model_doc/deberta-v2.md
Yuanyuan Chen f64354e89a Format empty lines and white space in markdown files. (#41100)
* Remove additional white space and empty lines from markdown files

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

* Add empty lines around code

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>

---------

Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-09-23 16:20:01 -07:00

173 lines
5.2 KiB
Markdown

<!--Copyright 2020 The HuggingFace Team. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with
the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
specific language governing permissions and limitations under the License.
⚠️ Note that this file is in Markdown but contain specific syntax for our doc-builder (similar to MDX) that may not be
rendered properly in your Markdown viewer.
-->
*This model was released on 2020-06-05 and added to Hugging Face Transformers on 2021-02-19.*
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<img alt="PyTorch" src="https://img.shields.io/badge/PyTorch-DE3412?style=flat&logo=pytorch&logoColor=white" >
</div>
</div>
# DeBERTa-v2
[DeBERTa-v2](https://huggingface.co/papers/2006.03654) improves on the original [DeBERTa](./deberta) architecture by using a SentencePiece-based tokenizer and a new vocabulary size of 128K. It also adds an additional convolutional layer within the first transformer layer to better learn local dependencies of input tokens. Finally, the position projection and content projection matrices are shared in the attention layer to reduce the number of parameters.
You can find all the original [DeBERTa-v2] checkpoints under the [Microsoft](https://huggingface.co/microsoft?search_models=deberta-v2) organization.
> [!TIP]
> This model was contributed by [Pengcheng He](https://huggingface.co/DeBERTa).
>
> Click on the DeBERTa-v2 models in the right sidebar for more examples of how to apply DeBERTa-v2 to different language tasks.
The example below demonstrates how to classify text with [`Pipeline`] or the [`AutoModel`] class.
<hfoptions id="usage">
<hfoption id="Pipeline">
```py
import torch
from transformers import pipeline
pipeline = pipeline(
task="text-classification",
model="microsoft/deberta-v2-xlarge-mnli",
device=0,
dtype=torch.float16
)
result = pipeline("DeBERTa-v2 is great at understanding context!")
print(result)
```
</hfoption>
<hfoption id="AutoModel">
```py
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained(
"microsoft/deberta-v2-xlarge-mnli"
)
model = AutoModelForSequenceClassification.from_pretrained(
"microsoft/deberta-v2-xlarge-mnli",
dtype=torch.float16,
device_map="auto"
)
inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to(model.device)
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax().item()
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
```
</hfoption>
<hfoption id="transformers CLI">
```bash
echo -e "DeBERTa-v2 is great at understanding context!" | transformers run --task fill-mask --model microsoft/deberta-v2-xlarge-mnli --device 0
```
</hfoption>
</hfoptions>
Quantization reduces the memory burden of large models by representing the weights in a lower precision. Refer to the [Quantization](../quantization/overview) overview for more available quantization backends.
The example below uses [bitsandbytes quantization](../quantization/bitsandbytes) to only quantize the weights to 4-bit.
```py
from transformers import AutoModelForSequenceClassification, AutoTokenizer, BitsAndBytesConfig
model_id = "microsoft/deberta-v2-xlarge-mnli"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype="float16",
bnb_4bit_use_double_quant=True,
)
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForSequenceClassification.from_pretrained(
model_id,
quantization_config=quantization_config,
dtype="float16"
)
inputs = tokenizer("DeBERTa-v2 is great at understanding context!", return_tensors="pt").to(model.device)
outputs = model(**inputs)
logits = outputs.logits
predicted_class_id = logits.argmax().item()
predicted_label = model.config.id2label[predicted_class_id]
print(f"Predicted label: {predicted_label}")
```
## DebertaV2Config
[[autodoc]] DebertaV2Config
## DebertaV2Tokenizer
[[autodoc]] DebertaV2Tokenizer
- build_inputs_with_special_tokens
- get_special_tokens_mask
- create_token_type_ids_from_sequences
- save_vocabulary
## DebertaV2TokenizerFast
[[autodoc]] DebertaV2TokenizerFast
- build_inputs_with_special_tokens
- create_token_type_ids_from_sequences
## DebertaV2Model
[[autodoc]] DebertaV2Model
- forward
## DebertaV2PreTrainedModel
[[autodoc]] DebertaV2PreTrainedModel
- forward
## DebertaV2ForMaskedLM
[[autodoc]] DebertaV2ForMaskedLM
- forward
## DebertaV2ForSequenceClassification
[[autodoc]] DebertaV2ForSequenceClassification
- forward
## DebertaV2ForTokenClassification
[[autodoc]] DebertaV2ForTokenClassification
- forward
## DebertaV2ForQuestionAnswering
[[autodoc]] DebertaV2ForQuestionAnswering
- forward
## DebertaV2ForMultipleChoice
[[autodoc]] DebertaV2ForMultipleChoice
- forward