mirror of
				https://github.com/huggingface/transformers.git
				synced 2025-11-04 20:14:36 +08:00 
			
		
		
		
	* current working example! * commit regex and result file * update * nit * push the conversion file * oups * roadmap and nits * attempt diffs for 3 files * persimmon * nit * add diff file that is the same as the modeling_llama.py * fix rope nits * updates * updates with converted versions * give some breathing space to the code * delete * update * update * push the actual result * update regex patterns * update regex patterns * fix some issues * fix some issues * fix some issues * updates * updates * updates * updates * updates * revert changes done to llama * updates * update gemma * updates * oups * current state * current state * update * ouiiii * nit * clear diffs * nit * fixup * update * doc 🚀 * 🔥 * for now use gemma * deal with comments * style * handle funtions * deal with assigns * todos * process inheritage * keep decorators? * 🤗 * deal with duplicates * fixup * correctly remove duplicate code * run ruff post script * ruff deals pretty well with imports, let's leave it to him * ah maybe not lol * for now remove all imports from child. * nit * conversion of llama * okay * convert starcoder2 * synch with main * update llama diff * updates * https://docs.astral.sh/ruff/rules/redefined-while-unused/ fixes the imports, bit needs later version of ruff * updates * okay actual state * non zero exit * update! * revert unrelated * remove other diff files * updates * cleanup * update * less diff! * stash * current updates * updates * No need for call * finished fining deps * update * current changes * current state * current state * new status * nit * finally * fixes * nits * order is now expected * use logger info instead of prints * fixup * up * nit * update * nits * update * correct merge * update * update * update * add warning * update caution message * update * better merging strategy * copy class statements :wink * fixups * nits * update * Apply suggestions from code review Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com> * nits * smaller header * do cleanup some stuff * even simpler header? * fixup * updates * ruff * update examples * nit * TODO * state * OUUUUUUF * current state * nits * final state * add a readme * fixup * remove diff llama * fix * nit * dummy noy funny * ruff format tests src utils --check * everless diffs * less diffs and fix test * fixes * naming nit? * update converter and add supper example * nits * updated for function signatures * update * update * add converted dummies * autoformat * single target assign fix * fixup * fix some imports * fixes * don't push them * `# noqa: F841` --------- Co-authored-by: amyeroberts <22614925+amyeroberts@users.noreply.github.com>
		
			
				
	
	
		
			45 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			45 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from math import log
 | 
						|
from typing import List, Optional, Tuple, Union
 | 
						|
 | 
						|
import torch
 | 
						|
 | 
						|
from transformers import Cache
 | 
						|
from transformers.modeling_outputs import CausalLMOutputWithPast
 | 
						|
from transformers.models.llama.modeling_llama import LlamaModel
 | 
						|
 | 
						|
 | 
						|
def _pre_process_input(input_ids):
 | 
						|
    print(log(input_ids))
 | 
						|
    return input_ids
 | 
						|
 | 
						|
 | 
						|
# example where we need some deps and some functions
 | 
						|
class DummyModel(LlamaModel):
 | 
						|
    def forward(
 | 
						|
        self,
 | 
						|
        input_ids: torch.LongTensor = None,
 | 
						|
        attention_mask: Optional[torch.Tensor] = None,
 | 
						|
        position_ids: Optional[torch.LongTensor] = None,
 | 
						|
        past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None,
 | 
						|
        inputs_embeds: Optional[torch.FloatTensor] = None,
 | 
						|
        use_cache: Optional[bool] = None,
 | 
						|
        output_attentions: Optional[bool] = None,
 | 
						|
        output_hidden_states: Optional[bool] = None,
 | 
						|
        return_dict: Optional[bool] = None,
 | 
						|
        cache_position: Optional[torch.LongTensor] = None,
 | 
						|
    ) -> Union[Tuple, CausalLMOutputWithPast]:
 | 
						|
        input_ids = _pre_process_input(input_ids)
 | 
						|
 | 
						|
        return super().forward(
 | 
						|
            None,
 | 
						|
            attention_mask,
 | 
						|
            position_ids,
 | 
						|
            past_key_values,
 | 
						|
            inputs_embeds,
 | 
						|
            use_cache,
 | 
						|
            output_attentions,
 | 
						|
            output_hidden_states,
 | 
						|
            return_dict,
 | 
						|
            cache_position,
 | 
						|
        )
 |