Files
transformers/utils/modular_model_detector.py
Arthur 0452f28544 [ModularChecker] QOL for the modular checker (#41361)
* update

* fancy table fancy prints

* download to cache folder, never need it everagain

* stule

* update based on review
2025-10-06 12:52:10 +02:00

913 lines
37 KiB
Python

# Copyright 2025 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# 🔴🔴🔴 THIS IS AN INTERNAL TOOL. It WILL interact with the hub and use significant local compute resources. Use at your own risk.
"""
Modular model detector: utilities for detecting code similarities between model implementations.
This module provides tools to analyze and detect similarities between different model implementations
in the transformers library. It uses both embedding-based and token-based (Jaccard) similarity metrics
to identify similar code patterns across different model definitions.
Its function is to identify which models can be _modular_-ized, meaning, which already existing classes are
present in the codebase and look very similar to the one we have.
Two scores are computed, one is a code embedding, and the other is a simple Jaccard bag-of-tokens index for overlap
of token sets. A score of 1.00 means the code is identical.
Usage:
```bash
cd transformers
# Use directly the util, it will download the index embedding from the hub. It will require some RAM/VRAM.
>>> python utils/modular_model_detector.py --modeling-file my_new_beit3_modeling_file.py
Loading checkpoint shards: 100%|███████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 33.62it/s]
encoding 21 query definitions with Qwen/Qwen3-Embedding-4B (device=cuda, batch=16, max_length=4096)
stuff.py::Beit3ImageTextMatchingOutput:
embedding:
blip_2::Blip2ImageTextMatchingModelOutput (0.9994)
chinese_clip::ChineseCLIPOutput (0.9818)
owlvit::OwlViTOutput (0.9818)
aimv2::Aimv2Output (0.9818)
blip::BlipOutput (0.9818)
jaccard:
owlv2::Owlv2Output (0.9667)
metaclip_2::MetaClip2Output (0.9667)
altclip::AltCLIPOutput (0.9667)
owlvit::OwlViTOutput (0.9667)
blip::BlipOutput (0.9667)
intersection:
blip::BlipOutput
owlvit::OwlViTOutput
stuff.py::Beit3MLP:
embedding:
efficientloftr::EfficientLoFTRMLP (0.9718)
seggpt::SegGptMlp (0.9650)
mgp_str::MgpstrMlp (0.9646)
vitpose_backbone::VitPoseBackboneMLP (0.9640)
granitemoeshared::GraniteMoeSharedMLP (0.9633)
jaccard:
chinese_clip::ChineseCLIPTextSelfOutput (0.5294)
convbert::ConvBertSelfOutput (0.5294)
bert::BertSelfOutput (0.5294)
roformer::RoFormerSelfOutput (0.5294)
layoutlmv3::LayoutLMv3SelfOutput (0.5294)
intersection:
stuff.py::Beit3FeedForwardNetwork:
embedding:
prophetnet::ProphetNetFeedForward (0.9766)
dab_detr::DabDetrDecoderLayerFFN (0.9730)
kosmos2::Kosmos2TextFFN (0.9697)
kosmos2_5::Kosmos2_5TextFFN (0.9697)
parakeet::ParakeetEncoderFeedForward (0.9678)
jaccard:
groupvit::GroupViTMLP (0.4898)
convbert::ConvBertOutput (0.4600)
chinese_clip::ChineseCLIPTextOutput (0.4565)
bert::BertOutput (0.4565)
roformer::RoFormerOutput (0.4565)
intersection:
```
# If you wish to build the index first, you can run
python utils/modular_model_detector.py --build
# You can also change the embedding model for a larger/smaller one.
"""
import argparse
import ast
import json
import logging
import os
import re
from datetime import datetime
from functools import cache
from pathlib import Path
import numpy as np
import torch
from huggingface_hub import HfApi, snapshot_download
from huggingface_hub import logging as huggingface_hub_logging
from safetensors.numpy import load_file as safetensors_load
from safetensors.numpy import save_file as safetensors_save
from tqdm import tqdm
import transformers
from transformers import AutoModel, AutoTokenizer
from transformers.utils import logging as transformers_logging
# ANSI color codes for CLI output styling
ANSI_RESET = "\033[0m"
ANSI_BOLD = "\033[1m"
ANSI_HEADER = "\033[1;36m"
ANSI_SECTION = "\033[1;35m"
ANSI_ROW = "\033[0;37m"
ANSI_HIGHLIGHT_TOP = "\033[1;32m"
ANSI_HIGHLIGHT_OLD = "\033[1;33m"
ANSI_HIGHLIGHT_CANDIDATE = "\033[1;34m"
os.environ["HF_HUB_DISABLE_PROGRESS_BARS"] = "1"
os.environ["TRANSFORMERS_VERBOSITY"] = "error"
MODELS_ROOT = Path("src/transformers/models")
EMBEDDINGS_PATH = "embeddings.safetensors"
INDEX_MAP_PATH = "code_index_map.json"
TOKENS_PATH = "code_index_tokens.json"
HUB_DATASET_DEFAULT = "hf-internal-testing/transformers_code_embeddings"
EMBEDDING_MODEL = "Qwen/Qwen3-Embedding-4B"
BATCH_SIZE = 16
MAX_LENGTH = 4096
def _normalize(string: str | None) -> str:
"""
Normalize a string by removing all non-alphanumeric characters and converting to lowercase.
Args:
string (`str` or `None`): The string to normalize.
Returns:
`str`: The normalized string, or empty string if input is None.
"""
return re.sub(r"[^a-z0-9]+", "", string.lower()) if string else ""
def _strip_source_for_tokens(code: str) -> str:
"""
Strip docstrings, comments, and import statements from source code.
Args:
code (`str`): The source code to strip.
Returns:
`str`: The stripped source code.
"""
code = re.sub(r'("""|\'\'\')(?:.|\n)*?\1', "", code)
code = re.sub(r"#.*", "", code)
return "\n".join(line for line in code.splitlines() if not re.match(r"\s*(from|import)\s+", line))
def _tokenize(code: str) -> set[str]:
"""
Extract all Python identifiers from source code.
Args:
code (`str`): The source code to tokenize.
Returns:
`set[str]`: A set of all identifiers found in the code.
"""
return set(re.findall(r"\b[a-zA-Z_][a-zA-Z0-9_]*\b", code))
def _leading_symbol_prefix(name: str) -> str:
"""
Extract the leading prefix from a symbol name (e.g., 'Llama' from 'LlamaAttention').
Args:
name (`str`): The symbol name to extract prefix from.
Returns:
`str`: The leading prefix, or empty string if no match.
"""
match = re.match(r"^([A-Z][a-z0-9]+)", name) or re.match(r"^([A-Za-z0-9]+)", name)
return match.group(1) if match else ""
def _sanitize_for_embedding(code: str, model_hint: str | None, symbol_hint: str | None) -> str:
"""
Sanitize code for embedding by replacing model-specific identifiers with generic placeholder.
Args:
code (`str`): The source code to sanitize.
model_hint (`str` or `None`): Hint about the model name (e.g., 'llama').
symbol_hint (`str` or `None`): Hint about the symbol name (e.g., 'LlamaAttention').
Returns:
`str`: The sanitized code with model-specific identifiers replaced by 'Model'.
"""
base = _strip_source_for_tokens(code)
variants = set()
if model_hint:
variants.add(model_hint)
variants.add(model_hint.replace("_", ""))
variants.add(re.sub(r"\d+", "", model_hint))
if symbol_hint:
prefix = _leading_symbol_prefix(symbol_hint)
if prefix:
variants.add(prefix)
variants.add(prefix.replace("_", ""))
variants.add(re.sub(r"\d+", "", prefix))
variants |= {variant.lower() for variant in list(variants)}
sanitized = base
for variant in sorted({x for x in variants if len(x) >= 3}, key=len, reverse=True):
sanitized = re.sub(re.escape(variant), "Model", sanitized, flags=re.IGNORECASE)
return sanitized
class CodeSimilarityAnalyzer:
"""
Analyzer for detecting code similarities between model implementations.
This class uses embedding-based and token-based similarity metrics to identify similar
code patterns across different model definitions in the transformers library.
Args:
hub_dataset (`str`): The Hub dataset repository ID containing the code embeddings index.
"""
def __init__(self, hub_dataset: str):
for name in ("huggingface_hub", "httpx", "urllib3", "transformers"):
logging.getLogger(name).setLevel(logging.ERROR)
huggingface_hub_logging.set_verbosity_error()
transformers_logging.set_verbosity_error()
torch.backends.cuda.matmul.allow_tf32 = True
torch.set_grad_enabled(False)
self.models_root = MODELS_ROOT
self.hub_dataset = hub_dataset
self.tokenizer = AutoTokenizer.from_pretrained(EMBEDDING_MODEL)
self.model = AutoModel.from_pretrained(EMBEDDING_MODEL, torch_dtype="auto", device_map="auto").eval()
self.device = self.model.device
self.index_dir: Path | None = None
# ---------- HUB IO ----------
def _resolve_index_path(self, filename: str) -> Path:
if self.index_dir is None:
return Path(filename)
return self.index_dir / filename
def ensure_local_index(self) -> None:
"""Ensure index files are available locally, preferring Hub cache snapshots."""
if self.index_dir is not None and all(
(self.index_dir / fname).exists() for fname in (EMBEDDINGS_PATH, INDEX_MAP_PATH, TOKENS_PATH)
):
return
workspace_dir = Path.cwd()
if all((workspace_dir / fname).exists() for fname in (EMBEDDINGS_PATH, INDEX_MAP_PATH, TOKENS_PATH)):
self.index_dir = workspace_dir
return
logging.info(f"downloading index from hub cache: {self.hub_dataset}")
snapshot_path = snapshot_download(repo_id=self.hub_dataset, repo_type="dataset")
snapshot_dir = Path(snapshot_path)
missing = [
fname for fname in (EMBEDDINGS_PATH, INDEX_MAP_PATH, TOKENS_PATH) if not (snapshot_dir / fname).exists()
]
if missing:
raise FileNotFoundError("Missing expected files in Hub snapshot: " + ", ".join(missing))
self.index_dir = snapshot_dir
def push_index_to_hub(self) -> None:
"""Upload index files to the Hub dataset repository."""
api = HfApi()
api.create_repo(repo_id=self.hub_dataset, repo_type="dataset", exist_ok=True)
for fname in (EMBEDDINGS_PATH, INDEX_MAP_PATH, TOKENS_PATH):
logging.info(f"pushing {fname} -> {self.hub_dataset}")
api.upload_file(
path_or_fileobj=fname,
path_in_repo=os.path.basename(fname),
repo_id=self.hub_dataset,
repo_type="dataset",
)
# ---------- parsing & encoding ----------
def _extract_definitions(
self, file_path: Path, relative_to: Path | None = None, model_hint: str | None = None
) -> tuple[dict[str, str], dict[str, str], dict[str, list[str]], dict[str, str]]:
"""
Extract class and function definitions from a Python file.
Args:
file_path (`Path`): Path to the Python file to parse.
relative_to (`Path` or `None`): Base path for computing relative identifiers.
model_hint (`str` or `None`): Model name hint for sanitization.
Returns:
`tuple[dict[str, str], dict[str, str], dict[str, list[str]], dict[str, str]]`: A tuple containing:
- definitions_raw: Mapping of identifiers to raw source code
- definitions_sanitized: Mapping of identifiers to sanitized source code
- definitions_tokens: Mapping of identifiers to sorted token lists
- definitions_kind: Mapping of identifiers to either "class" or "function"
"""
definitions_raw = {}
definitions_sanitized = {}
definitions_tokens = {}
definitions_kind = {}
source = file_path.read_text(encoding="utf-8")
lines = source.splitlines()
tree = ast.parse(source)
for node in ast.iter_child_nodes(tree):
if isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef, ast.ClassDef)):
segment = ast.get_source_segment(source, node)
if segment is None and hasattr(node, "lineno") and hasattr(node, "end_lineno"):
start = max(0, node.lineno - 1)
end = node.end_lineno
segment = "\n".join(lines[start:end])
if segment:
identifier = (
f"{file_path.relative_to(relative_to)}:{node.name}"
if relative_to
else f"{file_path.name}:{node.name}"
)
definitions_raw[identifier] = segment
sanitized = _sanitize_for_embedding(segment, model_hint, node.name)
definitions_sanitized[identifier] = sanitized
definitions_tokens[identifier] = sorted(_tokenize(sanitized))
if isinstance(node, ast.ClassDef):
definitions_kind[identifier] = "class"
else:
definitions_kind[identifier] = "function"
return definitions_raw, definitions_sanitized, definitions_tokens, definitions_kind
def _infer_model_from_relative_path(self, relative_path: Path) -> str | None:
try:
relative = relative_path.resolve().relative_to(self.models_root.resolve())
return relative.parts[0]
except Exception:
return None
def _infer_query_model_name(self, modeling_file: Path) -> str | None:
model = self._infer_model_from_relative_path(modeling_file)
if model:
return model
stem = modeling_file.stem
if stem.startswith("modeling_") and len(stem) > len("modeling_"):
return stem[len("modeling_") :]
return None
def _encode_batch(self, texts: list[str]) -> np.ndarray:
"""
Encode a batch of texts into normalized embeddings.
Args:
texts (`list[str]`): List of text strings to encode.
Returns:
`np.ndarray`: Normalized embeddings as a float32 numpy array.
"""
encoded = self.tokenizer(texts, padding=True, truncation=True, max_length=MAX_LENGTH, return_tensors="pt")
encoded = {key: value.to(self.device) for key, value in encoded.items()}
with (
torch.autocast(device_type=self.device.type, dtype=self.dtype)
if self.device.type == "cuda"
else torch.no_grad()
):
output = self.model(**encoded)
if hasattr(output, "last_hidden_state"):
embeddings = output.last_hidden_state
mask = encoded["attention_mask"].unsqueeze(-1)
embeddings = (embeddings * mask).sum(dim=1) / mask.sum(dim=1).clamp_min(1e-9)
elif hasattr(output, "pooler_output"):
embeddings = output.pooler_output
else:
embeddings = output[0].mean(dim=1)
embeddings = torch.nn.functional.normalize(embeddings.float(), p=2, dim=1)
return embeddings.cpu().numpy().astype("float32")
def encode(self, texts: list[str]) -> np.ndarray:
"""
Encode a list of texts into embeddings, processing in batches.
Args:
texts (`list[str]`): List of text strings to encode.
Returns:
`np.ndarray`: Stacked embeddings for all texts.
"""
output = []
for i in tqdm(range(0, len(texts), BATCH_SIZE), desc="encode", leave=False):
output.append(self._encode_batch(texts[i : i + BATCH_SIZE]))
if self.device.type == "cuda":
torch.cuda.empty_cache()
return np.vstack(output) if output else np.zeros((0, 0), dtype="float32")
# ---------- build & search ----------
def build_index(self) -> None:
"""Build the code similarity index from all modeling files and save to disk."""
logging.info("collecting files")
files = list(self.models_root.rglob("modeling_*.py"))
logging.info(f"parsing {len(files)} files")
identifiers = []
sanitized_sources = []
tokens_map = {}
for file_path in tqdm(files, desc="parse", leave=False):
model_hint = self._infer_model_from_relative_path(file_path)
(
_,
definitions_sanitized,
definitions_tokens,
_,
) = self._extract_definitions(file_path, self.models_root, model_hint)
for identifier in definitions_sanitized.keys():
identifiers.append(identifier)
sanitized_sources.append(definitions_sanitized[identifier])
tokens_map[identifier] = definitions_tokens[identifier]
logging.info(
f"encoding {len(sanitized_sources)} definitions with {EMBEDDING_MODEL} (device={self.device.type}, batch={BATCH_SIZE}, max_length={MAX_LENGTH})"
)
embeddings = self.encode(sanitized_sources)
safetensors_save({"embeddings": embeddings}, EMBEDDINGS_PATH)
with open(INDEX_MAP_PATH, "w", encoding="utf-8") as file:
json.dump({int(i): identifiers[i] for i in range(len(identifiers))}, file)
with open(TOKENS_PATH, "w", encoding="utf-8") as file:
json.dump(tokens_map, file)
self.index_dir = Path.cwd()
def _topk_embedding(
self,
query_embedding_row: np.ndarray,
base_embeddings: np.ndarray,
identifier_map: dict[int, str],
self_model_normalized: str,
self_name: str,
k: int,
) -> list[tuple[str, float]]:
similarities = query_embedding_row @ base_embeddings.T
indices = np.argpartition(-similarities, k + 32)[: k + 32]
indices = indices[np.argsort(-similarities[indices])]
output = []
for match_id in indices:
identifier = identifier_map[int(match_id)]
parent_relative_path, match_name = identifier.split(":", 1)
parent_model = Path(parent_relative_path).parts[0]
if match_name == self_name:
continue
if self_model_normalized and _normalize(parent_model) == self_model_normalized:
continue
output.append((identifier, float(similarities[match_id])))
if len(output) >= k:
break
return output
def _topk_jaccard(
self,
query_tokens: set[str],
identifiers: list[str],
tokens_map: dict[str, list[str]],
self_model_normalized: str,
self_name: str,
k: int,
) -> list[tuple[str, float]]:
"""
Find top-k most similar definitions using Jaccard similarity on token sets.
Args:
query_tokens (`set[str]`): Set of tokens from the query definition.
identifiers (`list[str]`): List of all definition identifiers in the index.
tokens_map (`dict[str, list[str]]`): Mapping of identifiers to their token lists.
self_model_normalized (`str`): Normalized name of the query model to exclude.
self_name (`str`): Name of the query definition to exclude.
k (`int`): Number of top results to return.
Returns:
`list[tuple[str, float]]`: List of (identifier, score) tuples.
"""
scores = []
for identifier in identifiers:
parent_relative_path, match_name = identifier.split(":", 1)
parent_model = Path(parent_relative_path).parts[0]
if match_name == self_name:
continue
if self_model_normalized and _normalize(parent_model) == self_model_normalized:
continue
tokens = set(tokens_map.get(identifier, []))
if not tokens or not query_tokens:
continue
score = len(query_tokens & tokens) / len(query_tokens | tokens)
if score > 0:
scores.append((identifier, score))
scores.sort(key=lambda x: x[1], reverse=True)
return scores[:k]
def analyze_file(
self, modeling_file: Path, top_k_per_item: int = 5, allow_hub_fallback: bool = True, use_jaccard=False
) -> dict[str, dict[str, list]]:
"""
Analyze a modeling file and find similar code definitions in the index.
Args:
modeling_file (`Path`): Path to the modeling file to analyze.
top_k_per_item (`int`, *optional*, defaults to 5): Number of top matches to return per definition.
allow_hub_fallback (`bool`, *optional*, defaults to `True`): Whether to download index from Hub if not found locally.
Returns:
`dict[str, dict[str, list]]`: Dictionary mapping definition names to their similarity results.
Each result contains 'embedding', 'jaccard', and 'intersection' keys.
"""
if allow_hub_fallback:
self.ensure_local_index()
base = safetensors_load(str(self._resolve_index_path(EMBEDDINGS_PATH)))
base_embeddings = base["embeddings"]
with open(self._resolve_index_path(INDEX_MAP_PATH), "r", encoding="utf-8") as file:
identifier_map = {int(key): value for key, value in json.load(file).items()}
identifiers = [identifier_map[i] for i in range(len(identifier_map))]
with open(self._resolve_index_path(TOKENS_PATH), "r", encoding="utf-8") as file:
tokens_map = json.load(file)
self_model = self._infer_query_model_name(modeling_file)
definitions_raw, definitions_sanitized, _, definitions_kind = self._extract_definitions(
modeling_file, None, self_model
)
query_identifiers = list(definitions_raw.keys())
query_sources_sanitized = [definitions_sanitized[key] for key in query_identifiers]
query_tokens_list = [set(_tokenize(source)) for source in query_sources_sanitized]
self_model_normalized = _normalize(self_model)
logging.info(
f"encoding {len(query_sources_sanitized)} query definitions with {EMBEDDING_MODEL} (device={self.device.type}, batch={BATCH_SIZE}, max_length={MAX_LENGTH})"
)
query_embeddings = self.encode(query_sources_sanitized)
output = {}
for i, query_identifier in enumerate(query_identifiers):
query_name = query_identifier.split(":")[-1]
embedding_top = self._topk_embedding(
query_embeddings[i], base_embeddings, identifier_map, self_model_normalized, query_name, top_k_per_item
)
embedding_set = {identifier for identifier, _ in embedding_top}
kind = definitions_kind.get(query_identifier, "function")
entry = {"kind": kind, "embedding": embedding_top}
if use_jaccard:
jaccard_top = self._topk_jaccard(
query_tokens_list[i], identifiers, tokens_map, self_model_normalized, query_name, top_k_per_item
)
jaccard_set = {identifier for identifier, _ in jaccard_top}
intersection = set(embedding_set & jaccard_set)
entry.update({"jaccard": jaccard_top, "intersection": intersection})
output[query_name] = entry
return output
_RELEASE_RE = re.compile(
r"(?:^|[\*_`\s>])(?:this|the)\s+model\s+was\s+released\s+on\s+(\d{4}-\d{2}-\d{2})\b", re.IGNORECASE
)
def build_date_data() -> dict[str, str]:
"""
Scan Markdown files in `root_dir` and build {model_id: date_released}.
- model_id is the filename without extension (e.g., "llama" for "llama.md")
- date_released is the first YYYY-MM-DD matched after "...was released on ..."
- Ignores non-*.md files and directories.
Returns:
dict[str, str]: mapping of model_id -> ISO date string (YYYY-MM-DD).
Files without a match are simply omitted.
"""
root_dir = transformers.__file__.split("src/transformers")[0]
root = Path(root_dir).joinpath("docs/source/en/model_doc")
result: dict[str, str] = {}
for md_path in root.glob("*.md"):
try:
text = md_path.read_text(encoding="utf-8", errors="ignore")
except Exception:
# Skip unreadable files quietly
logging.info(f"Failed to read md for {md_path}")
m = _RELEASE_RE.search(text)
if m:
model_id = md_path.stem # e.g., "llama" from "llama.md"
result[model_id] = m.group(1)
return result
def _format_table(headers: list[str], rows: list[tuple[str, ...] | None], row_styles: list[str] | None = None) -> str:
if not rows:
return f"{ANSI_ROW}(no matches){ANSI_RESET}"
widths = [len(header) for header in headers]
for row in rows:
if row is None:
continue
for idx, cell in enumerate(row):
widths[idx] = max(widths[idx], len(cell))
header_line = " | ".join(header.ljust(widths[idx]) for idx, header in enumerate(headers))
divider = "-+-".join("-" * widths[idx] for idx in range(len(headers)))
total_width = sum(widths) + 3 * (len(headers) - 1)
styled_rows = []
style_idx = 0
for row in rows:
if row is None:
styled_rows.append(f"{ANSI_SECTION}{'-' * total_width}{ANSI_RESET}")
continue
line = " | ".join(cell.ljust(widths[col_idx]) for col_idx, cell in enumerate(row))
style = ANSI_ROW
if row_styles and style_idx < len(row_styles) and row_styles[style_idx]:
style = row_styles[style_idx]
styled_rows.append(f"{style}{line}{ANSI_RESET}")
style_idx += 1
return "\n".join([f"{ANSI_SECTION}{header_line}{ANSI_RESET}", divider] + styled_rows)
def _parse_release_date(value: str) -> datetime | None:
"""Return a datetime parsed from YYYY-MM-DD strings, otherwise None."""
try:
return datetime.strptime(value, "%Y-%m-%d")
except (TypeError, ValueError):
return None
@cache
def _load_definition_line_map(relative_path: str) -> dict[str, int]:
"""Return {definition_name: line_number} for top-level definitions in the given file."""
file_path = MODELS_ROOT / relative_path
try:
source = file_path.read_text(encoding="utf-8")
except (FileNotFoundError, OSError):
return {} # gracefully keep going
try:
tree = ast.parse(source)
except SyntaxError:
return {}
line_map: dict[str, int] = {}
for node in ast.iter_child_nodes(tree):
if isinstance(node, (ast.FunctionDef, ast.AsyncFunctionDef, ast.ClassDef)):
line_map[node.name] = getattr(node, "lineno", None) or 1
elif isinstance(node, ast.Assign):
continue
return line_map
def _resolve_definition_location(relative_path: str, definition: str) -> tuple[str, str]:
"""Return full path and formatted line number string for the given definition."""
full_path = MODELS_ROOT / relative_path
line = _load_definition_line_map(relative_path).get(definition)
line_str = str(line) if line is not None else "?"
return str(full_path), line_str
def _colorize_heading(text: str) -> str:
return f"{ANSI_HEADER}{ANSI_BOLD}{text}{ANSI_RESET}"
def main():
"""CLI entry point for the modular model detector."""
logging.basicConfig(level=logging.INFO, format="%(message)s")
parser = argparse.ArgumentParser(prog="hf-code-sim")
parser.add_argument("--build", action="store_true")
parser.add_argument("--modeling-file", type=str, help='You can just specify "vits" if you are lazy like me.')
parser.add_argument(
"--push-new-index", action="store_true", help="After --build, push index files to a Hub dataset."
)
parser.add_argument(
"--hub-dataset", type=str, default=HUB_DATASET_DEFAULT, help="Hub dataset repo id to pull/push the index."
)
parser.add_argument("--use_jaccard", type=bool, default=False, help="Whether or not to use jaccard index")
args = parser.parse_args()
analyzer = CodeSimilarityAnalyzer(hub_dataset=args.hub_dataset)
if args.build:
analyzer.build_index()
if args.push_new_index:
analyzer.push_index_to_hub()
return
if not args.modeling_file:
raise SystemExit("Provide --modeling-file or use --build")
dates = build_date_data()
modeling_file = args.modeling_file
if os.sep not in modeling_file:
modeling_file = os.path.join("src", "transformers", "models", modeling_file, f"modeling_{modeling_file}.py")
results = analyzer.analyze_file(
Path(modeling_file), top_k_per_item=5, allow_hub_fallback=True, use_jaccard=args.use_jaccard
)
modeling_filename = Path(modeling_file).name
release_key = modeling_filename.split("modeling_")[-1][:-3]
release_date = dates.get(release_key, "unknown release date")
aggregate_scores: dict[str, float] = {}
for data in results.values():
for identifier, score in data.get("embedding", []):
try:
relative_path, _ = identifier.split(":", 1)
except ValueError:
continue
aggregate_scores[relative_path] = aggregate_scores.get(relative_path, 0.0) + score
best_candidate_path: str | None = None
if aggregate_scores:
best_candidate_path = max(aggregate_scores.items(), key=lambda item: item[1])[0]
best_model = Path(best_candidate_path).parts[0] if Path(best_candidate_path).parts else "?"
best_release = dates.get(best_model, "unknown release date")
logging.info(
f"{ANSI_HIGHLIGHT_CANDIDATE}Closest overall candidate: {MODELS_ROOT / best_candidate_path}"
f" (release: {best_release}, total score: {aggregate_scores[best_candidate_path]:.4f}){ANSI_RESET}"
)
grouped: dict[str, list[tuple[str, dict]]] = {"class": [], "function": []}
for query_name, data in results.items():
kind = data.get("kind", "function")
grouped.setdefault(kind, []).append((query_name, data))
section_titles = [("class", "Classes"), ("function", "Functions")]
legend_shown = False
for kind, title in section_titles:
entries = grouped.get(kind, [])
if not entries:
continue
metrics_present: set[str] = set()
for _, data in entries:
if data.get("embedding"):
metrics_present.add("embedding")
if args.use_jaccard:
if data.get("jaccard"):
metrics_present.add("jaccard")
if data.get("intersection"):
metrics_present.add("intersection")
include_metric_column = bool(metrics_present - {"embedding"})
headers = ["Symbol", "Path", "Score", "Release"]
if include_metric_column:
headers = ["Symbol", "Metric", "Path", "Score", "Release"]
table_rows: list[tuple[str, ...] | None] = []
row_styles: list[str] = []
has_metric_rows = False
logging.info(_colorize_heading(title))
for query_name, data in entries:
if table_rows:
table_rows.append(None)
symbol_label = query_name
if release_date:
symbol_label = f"{symbol_label}"
symbol_row = (symbol_label,) + ("",) * (len(headers) - 1)
table_rows.append(symbol_row)
row_styles.append(ANSI_BOLD)
embedding_details: list[tuple[str, str, str, float, str]] = []
embedding_style_indices: list[int] = []
for identifier, score in data.get("embedding", []):
try:
relative_path, match_name = identifier.split(":", 1)
except ValueError:
continue
model_id = Path(relative_path).parts[0] if Path(relative_path).parts else "?"
match_release = dates.get(model_id, "unknown release date")
full_path, line = _resolve_definition_location(relative_path, match_name)
display_path = f"{full_path}:{line} ({match_name})"
if include_metric_column:
row = ("", "embedding", display_path, f"{score:.4f}", match_release)
else:
row = ("", display_path, f"{score:.4f}", match_release)
table_rows.append(row)
row_styles.append(ANSI_ROW)
embedding_style_indices.append(len(row_styles) - 1)
embedding_details.append((relative_path, model_id, match_name, score, match_release))
has_metric_rows = True
if embedding_details:
highest_score = None
highest_idx = None
for idx, (_, _, _, score, _) in enumerate(embedding_details):
if highest_score is None or score > highest_score:
highest_score = score
highest_idx = idx
if highest_idx is not None:
row_styles[embedding_style_indices[highest_idx]] = ANSI_HIGHLIGHT_TOP
if highest_score is not None:
oldest_idx = None
oldest_date = None
for idx, (_, model_id, _, score, release_value) in enumerate(embedding_details):
if highest_score - score > 0.1:
continue
parsed = _parse_release_date(release_value)
if parsed is None:
continue
if oldest_date is None or parsed < oldest_date:
oldest_date = parsed
oldest_idx = idx
if (
oldest_idx is not None
and row_styles[embedding_style_indices[oldest_idx]] != ANSI_HIGHLIGHT_TOP
):
row_styles[embedding_style_indices[oldest_idx]] = ANSI_HIGHLIGHT_OLD
if best_candidate_path is not None:
for idx, (relative_path, _, _, _, _) in enumerate(embedding_details):
style_position = embedding_style_indices[idx]
if row_styles[style_position] != ANSI_ROW:
continue
if relative_path == best_candidate_path:
row_styles[style_position] = ANSI_HIGHLIGHT_CANDIDATE
if args.use_jaccard:
for identifier, score in data.get("jaccard", []):
try:
relative_path, match_name = identifier.split(":", 1)
except ValueError:
continue
model_id = Path(relative_path).parts[0] if Path(relative_path).parts else "?"
match_release = dates.get(model_id, "unknown release date")
full_path, line = _resolve_definition_location(relative_path, match_name)
display_path = f"{full_path}:{line} ({match_name})"
if include_metric_column:
row = ("", "jaccard", display_path, f"{score:.4f}", match_release)
else:
row = ("", display_path, f"{score:.4f}", match_release)
table_rows.append(row)
row_styles.append(ANSI_ROW)
has_metric_rows = True
if best_candidate_path == relative_path:
row_styles[-1] = ANSI_HIGHLIGHT_CANDIDATE
for identifier in sorted(data.get("intersection", [])):
try:
relative_path, match_name = identifier.split(":", 1)
except ValueError:
continue
model_id = Path(relative_path).parts[0] if Path(relative_path).parts else "?"
match_release = dates.get(model_id, "unknown release date")
full_path, line = _resolve_definition_location(relative_path, match_name)
display_path = f"{full_path}:{line} ({match_name})"
if include_metric_column:
row = ("", "intersection", display_path, "--", match_release)
else:
row = ("", display_path, "--", match_release)
table_rows.append(row)
row_styles.append(ANSI_ROW)
has_metric_rows = True
if best_candidate_path == relative_path:
row_styles[-1] = ANSI_HIGHLIGHT_CANDIDATE
if table_rows:
if not legend_shown and has_metric_rows:
logging.info(
"Legend: "
f"{ANSI_HIGHLIGHT_TOP}highest match{ANSI_RESET}, "
f"{ANSI_HIGHLIGHT_OLD}oldest within 0.1{ANSI_RESET}, "
f"{ANSI_HIGHLIGHT_CANDIDATE}closest overall candidate{ANSI_RESET}"
)
legend_shown = True
logging.info(_format_table(headers, table_rows, row_styles))
logging.info("")
if __name__ == "__main__":
main()