mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-20 17:13:56 +08:00
* Enable ruff on benchmark and scripts Signed-off-by: cyy <cyyever@outlook.com> * Cover benchmark_v2 Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> * correct * style * style --------- Signed-off-by: cyy <cyyever@outlook.com> Signed-off-by: Yuanyuan Chen <cyyever@outlook.com> Co-authored-by: Cyril Vallez <cyril.vallez@gmail.com>
167 lines
5.7 KiB
Python
167 lines
5.7 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
import os
|
|
from typing import Any
|
|
|
|
import torch
|
|
from benchmark_framework import ModelBenchmark
|
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
|
os.environ["TOKENIZERS_PARALLELISM"] = "1"
|
|
torch.set_float32_matmul_precision("high")
|
|
|
|
|
|
class LLaMABenchmark(ModelBenchmark):
|
|
"""Simplified LLaMA model benchmark implementation using the ModelBenchmark base class."""
|
|
|
|
def __init__(self, logger: logging.Logger):
|
|
super().__init__(logger)
|
|
self._default_prompt = "Why dogs are so cute?" # Custom prompt for LLaMA
|
|
|
|
def get_scenario_configs(self) -> list[dict[str, Any]]:
|
|
"""
|
|
Get LLaMA-specific scenario configurations.
|
|
|
|
Returns:
|
|
List of scenario configuration dictionaries
|
|
"""
|
|
return [
|
|
# Eager variants
|
|
{"variant": "eager", "compile_mode": None, "use_cache": True, "description": "Eager execution with cache"},
|
|
# Compiled variants
|
|
{
|
|
"variant": "compiled",
|
|
"compile_mode": "max-autotune",
|
|
"use_cache": True,
|
|
"description": "Compiled with max autotune",
|
|
},
|
|
# Kernelized variant (if available)
|
|
{
|
|
"variant": "kernelized",
|
|
"compile_mode": "max-autotune",
|
|
"use_cache": True,
|
|
"description": "Kernelized execution",
|
|
},
|
|
]
|
|
|
|
def _is_kernelization_available(self) -> bool:
|
|
"""Check if kernelization is available for LLaMA."""
|
|
try:
|
|
from kernels import Mode, kernelize # noqa: F401
|
|
|
|
return True
|
|
except ImportError:
|
|
self.logger.debug("Kernelization not available: kernels module not found")
|
|
return False
|
|
|
|
def get_default_generation_config(self) -> dict[str, Any]:
|
|
"""Get LLaMA-specific generation configuration."""
|
|
return {
|
|
"do_sample": False,
|
|
"top_p": 1.0,
|
|
"temperature": 1.0,
|
|
"repetition_penalty": 1.0,
|
|
"max_new_tokens": None, # Will be set per scenario
|
|
}
|
|
|
|
def get_model_init_kwargs(self, config) -> dict[str, Any]:
|
|
"""Get LLaMA-specific model initialization kwargs."""
|
|
return {
|
|
"torch_dtype": getattr(torch, config.torch_dtype),
|
|
"attn_implementation": config.attn_implementation,
|
|
"use_cache": True,
|
|
}
|
|
|
|
def get_default_torch_dtype(self) -> str:
|
|
"""Get default torch dtype for LLaMA."""
|
|
return "float16" # LLaMA works well with float16
|
|
|
|
def get_default_device(self) -> str:
|
|
"""Get default device for LLaMA."""
|
|
return "cuda" # LLaMA prefers CUDA
|
|
|
|
|
|
def run_llama(logger, output_dir, **kwargs):
|
|
"""
|
|
Run LLaMA benchmark with the given configuration.
|
|
|
|
Args:
|
|
logger: Logger instance
|
|
output_dir: Output directory for results
|
|
**kwargs: Additional configuration options
|
|
|
|
Returns:
|
|
Path to output file if successful
|
|
"""
|
|
from benchmark_framework import BenchmarkRunner
|
|
|
|
# Extract parameters with defaults
|
|
model_id = kwargs.get("model_id", "meta-llama/Llama-2-7b-hf")
|
|
warmup_iterations = kwargs.get("warmup_iterations", 3)
|
|
measurement_iterations = kwargs.get("measurement_iterations", 5)
|
|
num_tokens_to_generate = kwargs.get("num_tokens_to_generate", 100)
|
|
include_sdpa_variants = kwargs.get("include_sdpa_variants", True)
|
|
device = kwargs.get("device", "cuda")
|
|
torch_dtype = kwargs.get("torch_dtype", "float16")
|
|
batch_size = kwargs.get("batch_size", 1)
|
|
commit_id = kwargs.get("commit_id")
|
|
|
|
logger.info(f"Starting LLaMA benchmark for model: {model_id}")
|
|
logger.info(
|
|
f"Configuration: warmup={warmup_iterations}, measurement={measurement_iterations}, tokens={num_tokens_to_generate}"
|
|
)
|
|
|
|
try:
|
|
# Create benchmark instance
|
|
benchmark = LLaMABenchmark(logger)
|
|
|
|
# Create scenarios
|
|
scenarios = benchmark.create_scenarios(
|
|
model_id=model_id,
|
|
warmup_iterations=warmup_iterations,
|
|
measurement_iterations=measurement_iterations,
|
|
num_tokens_to_generate=num_tokens_to_generate,
|
|
include_sdpa_variants=include_sdpa_variants,
|
|
device=device,
|
|
torch_dtype=torch_dtype,
|
|
batch_size=batch_size,
|
|
)
|
|
|
|
logger.info(f"Created {len(scenarios)} benchmark scenarios")
|
|
|
|
# Create runner and execute benchmarks
|
|
runner = BenchmarkRunner(logger, output_dir)
|
|
results = runner.run_benchmark(benchmark, scenarios, commit_id=commit_id)
|
|
|
|
if not results:
|
|
logger.warning("No successful benchmark results")
|
|
return None
|
|
|
|
# Save results
|
|
model_name = model_id.split("/")[-1] # Extract model name from ID
|
|
output_file = runner.save_results(model_name, results)
|
|
|
|
logger.info(f"LLaMA benchmark completed successfully. Results saved to: {output_file}")
|
|
return output_file
|
|
|
|
except Exception as e:
|
|
logger.error(f"LLaMA benchmark failed: {e}")
|
|
import traceback
|
|
|
|
logger.debug(traceback.format_exc())
|
|
raise
|