mirror of
				https://github.com/huggingface/transformers.git
				synced 2025-10-31 09:04:37 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			548 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			548 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| #                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
 | |
| #           This file was automatically generated from examples/modular-transformers/modular_my_new_model2.py.
 | |
| #               Do NOT edit this file manually as any edits will be overwritten by the generation of
 | |
| #             the file from the modular. If any change should be done, please apply the change to the
 | |
| #                          modular_my_new_model2.py file directly. One of our CI enforces this.
 | |
| #                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
 | |
| from typing import Callable, Optional
 | |
| 
 | |
| import torch
 | |
| from torch import nn
 | |
| 
 | |
| from ...activations import ACT2FN
 | |
| from ...cache_utils import Cache, DynamicCache
 | |
| from ...masking_utils import create_causal_mask
 | |
| from ...modeling_flash_attention_utils import FlashAttentionKwargs
 | |
| from ...modeling_layers import GradientCheckpointingLayer
 | |
| from ...modeling_outputs import BaseModelOutputWithPast, SequenceClassifierOutputWithPast
 | |
| from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
 | |
| from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
 | |
| from ...processing_utils import Unpack
 | |
| from ...utils import auto_docstring, can_return_tuple, logging
 | |
| from .configuration_my_new_model2 import MyNewModel2Config
 | |
| 
 | |
| 
 | |
| logger = logging.get_logger(__name__)
 | |
| 
 | |
| 
 | |
| class MyNewModel2RMSNorm(nn.Module):
 | |
|     def __init__(self, dim: int, eps: float = 1e-6):
 | |
|         super().__init__()
 | |
|         self.eps = eps
 | |
|         self.weight = nn.Parameter(torch.zeros(dim))
 | |
| 
 | |
|     def _norm(self, x):
 | |
|         return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
 | |
| 
 | |
|     def forward(self, x):
 | |
|         output = self._norm(x.float())
 | |
|         # Llama does x.to(float16) * w whilst MyNewModel2 is (x * w).to(float16)
 | |
|         # See https://github.com/huggingface/transformers/pull/29402
 | |
|         output = output * (1.0 + self.weight.float())
 | |
|         return output.type_as(x)
 | |
| 
 | |
|     def extra_repr(self):
 | |
|         return f"{tuple(self.weight.shape)}, eps={self.eps}"
 | |
| 
 | |
| 
 | |
| class MyNewModel2MLP(nn.Module):
 | |
|     def __init__(self, config):
 | |
|         super().__init__()
 | |
|         self.config = config
 | |
|         self.hidden_size = config.hidden_size
 | |
|         self.intermediate_size = config.intermediate_size
 | |
|         self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
 | |
|         self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
 | |
|         self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
 | |
|         self.act_fn = ACT2FN[config.hidden_act]
 | |
| 
 | |
|     def forward(self, x):
 | |
|         down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
 | |
|         return down_proj
 | |
| 
 | |
| 
 | |
| class MyNewModel2RotaryEmbedding(nn.Module):
 | |
|     def __init__(self, config: MyNewModel2Config, device=None):
 | |
|         super().__init__()
 | |
|         # BC: "rope_type" was originally "type"
 | |
|         if hasattr(config, "rope_scaling") and config.rope_scaling is not None:
 | |
|             self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
 | |
|         else:
 | |
|             self.rope_type = "default"
 | |
|         self.max_seq_len_cached = config.max_position_embeddings
 | |
|         self.original_max_seq_len = config.max_position_embeddings
 | |
| 
 | |
|         self.config = config
 | |
|         self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
 | |
| 
 | |
|         inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
 | |
|         self.register_buffer("inv_freq", inv_freq, persistent=False)
 | |
|         self.original_inv_freq = self.inv_freq
 | |
| 
 | |
|     @torch.no_grad()
 | |
|     @dynamic_rope_update  # power user: used with advanced RoPE types (e.g. dynamic rope)
 | |
|     def forward(self, x, position_ids):
 | |
|         inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
 | |
|         position_ids_expanded = position_ids[:, None, :].float()
 | |
| 
 | |
|         device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
 | |
|         with torch.autocast(device_type=device_type, enabled=False):  # Force float32
 | |
|             freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
 | |
|             emb = torch.cat((freqs, freqs), dim=-1)
 | |
|             cos = emb.cos() * self.attention_scaling
 | |
|             sin = emb.sin() * self.attention_scaling
 | |
| 
 | |
|         return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
 | |
| 
 | |
| 
 | |
| def rotate_half(x):
 | |
|     """Rotates half the hidden dims of the input."""
 | |
|     x1 = x[..., : x.shape[-1] // 2]
 | |
|     x2 = x[..., x.shape[-1] // 2 :]
 | |
|     return torch.cat((-x2, x1), dim=-1)
 | |
| 
 | |
| 
 | |
| def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
 | |
|     """Applies Rotary Position Embedding to the query and key tensors.
 | |
| 
 | |
|     Args:
 | |
|         q (`torch.Tensor`): The query tensor.
 | |
|         k (`torch.Tensor`): The key tensor.
 | |
|         cos (`torch.Tensor`): The cosine part of the rotary embedding.
 | |
|         sin (`torch.Tensor`): The sine part of the rotary embedding.
 | |
|         position_ids (`torch.Tensor`, *optional*):
 | |
|             Deprecated and unused.
 | |
|         unsqueeze_dim (`int`, *optional*, defaults to 1):
 | |
|             The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
 | |
|             sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
 | |
|             that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
 | |
|             k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
 | |
|             cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
 | |
|             the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
 | |
|     Returns:
 | |
|         `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
 | |
|     """
 | |
|     cos = cos.unsqueeze(unsqueeze_dim)
 | |
|     sin = sin.unsqueeze(unsqueeze_dim)
 | |
|     q_embed = (q * cos) + (rotate_half(q) * sin)
 | |
|     k_embed = (k * cos) + (rotate_half(k) * sin)
 | |
|     return q_embed, k_embed
 | |
| 
 | |
| 
 | |
| def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
 | |
|     """
 | |
|     This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
 | |
|     num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
 | |
|     """
 | |
|     batch, num_key_value_heads, slen, head_dim = hidden_states.shape
 | |
|     if n_rep == 1:
 | |
|         return hidden_states
 | |
|     hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
 | |
|     return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
 | |
| 
 | |
| 
 | |
| def eager_attention_forward(
 | |
|     module: nn.Module,
 | |
|     query: torch.Tensor,
 | |
|     key: torch.Tensor,
 | |
|     value: torch.Tensor,
 | |
|     attention_mask: Optional[torch.Tensor],
 | |
|     scaling: float,
 | |
|     dropout: float = 0.0,
 | |
|     **kwargs,
 | |
| ):
 | |
|     key_states = repeat_kv(key, module.num_key_value_groups)
 | |
|     value_states = repeat_kv(value, module.num_key_value_groups)
 | |
| 
 | |
|     attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
 | |
|     if attention_mask is not None:
 | |
|         causal_mask = attention_mask[:, :, :, : key_states.shape[-2]]
 | |
|         attn_weights = attn_weights + causal_mask
 | |
| 
 | |
|     attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
 | |
|     attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
 | |
|     attn_output = torch.matmul(attn_weights, value_states)
 | |
|     attn_output = attn_output.transpose(1, 2).contiguous()
 | |
| 
 | |
|     return attn_output, attn_weights
 | |
| 
 | |
| 
 | |
| class MyNewModel2Attention(nn.Module):
 | |
|     """Multi-headed attention from 'Attention Is All You Need' paper"""
 | |
| 
 | |
|     def __init__(self, config: MyNewModel2Config, layer_idx: int):
 | |
|         super().__init__()
 | |
|         self.config = config
 | |
|         self.layer_idx = layer_idx
 | |
|         self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
 | |
|         self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
 | |
|         self.scaling = self.head_dim**-0.5
 | |
|         self.attention_dropout = config.attention_dropout
 | |
|         self.is_causal = True
 | |
| 
 | |
|         self.q_proj = nn.Linear(
 | |
|             config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias
 | |
|         )
 | |
|         self.k_proj = nn.Linear(
 | |
|             config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
 | |
|         )
 | |
|         self.v_proj = nn.Linear(
 | |
|             config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias
 | |
|         )
 | |
|         self.o_proj = nn.Linear(
 | |
|             config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias
 | |
|         )
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         hidden_states: torch.Tensor,
 | |
|         position_embeddings: tuple[torch.Tensor, torch.Tensor],
 | |
|         attention_mask: Optional[torch.Tensor],
 | |
|         past_key_value: Optional[Cache] = None,
 | |
|         cache_position: Optional[torch.LongTensor] = None,
 | |
|         **kwargs: Unpack[FlashAttentionKwargs],
 | |
|     ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
 | |
|         input_shape = hidden_states.shape[:-1]
 | |
|         hidden_shape = (*input_shape, -1, self.head_dim)
 | |
| 
 | |
|         query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
 | |
|         key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
 | |
|         value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
 | |
| 
 | |
|         cos, sin = position_embeddings
 | |
|         query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
 | |
| 
 | |
|         if past_key_value is not None:
 | |
|             # sin and cos are specific to RoPE models; cache_position needed for the static cache
 | |
|             cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
 | |
|             key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
 | |
| 
 | |
|         attention_interface: Callable = eager_attention_forward
 | |
|         if self.config._attn_implementation != "eager":
 | |
|             attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
 | |
| 
 | |
|         attn_output, attn_weights = attention_interface(
 | |
|             self,
 | |
|             query_states,
 | |
|             key_states,
 | |
|             value_states,
 | |
|             attention_mask,
 | |
|             dropout=0.0 if not self.training else self.attention_dropout,
 | |
|             scaling=self.scaling,
 | |
|             **kwargs,
 | |
|         )
 | |
| 
 | |
|         attn_output = attn_output.reshape(*input_shape, -1).contiguous()
 | |
|         attn_output = self.o_proj(attn_output)
 | |
|         return attn_output, attn_weights
 | |
| 
 | |
| 
 | |
| class MyNewModel2DecoderLayer(GradientCheckpointingLayer):
 | |
|     def __init__(self, config: MyNewModel2Config, layer_idx: int):
 | |
|         super().__init__()
 | |
|         self.hidden_size = config.hidden_size
 | |
| 
 | |
|         self.self_attn = MyNewModel2Attention(config=config, layer_idx=layer_idx)
 | |
| 
 | |
|         self.mlp = MyNewModel2MLP(config)
 | |
|         self.input_layernorm = MyNewModel2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 | |
|         self.post_attention_layernorm = MyNewModel2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 | |
| 
 | |
|     def forward(
 | |
|         self,
 | |
|         hidden_states: torch.Tensor,
 | |
|         attention_mask: Optional[torch.Tensor] = None,
 | |
|         position_ids: Optional[torch.LongTensor] = None,
 | |
|         past_key_value: Optional[Cache] = None,
 | |
|         output_attentions: Optional[bool] = False,
 | |
|         use_cache: Optional[bool] = False,
 | |
|         cache_position: Optional[torch.LongTensor] = None,
 | |
|         position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None,  # necessary, but kept here for BC
 | |
|         **kwargs: Unpack[FlashAttentionKwargs],
 | |
|     ) -> tuple[torch.FloatTensor, Optional[tuple[torch.FloatTensor, torch.FloatTensor]]]:
 | |
|         residual = hidden_states
 | |
|         hidden_states = self.input_layernorm(hidden_states)
 | |
| 
 | |
|         # Self Attention
 | |
|         hidden_states, self_attn_weights = self.self_attn(
 | |
|             hidden_states=hidden_states,
 | |
|             attention_mask=attention_mask,
 | |
|             position_ids=position_ids,
 | |
|             past_key_value=past_key_value,
 | |
|             output_attentions=output_attentions,
 | |
|             use_cache=use_cache,
 | |
|             cache_position=cache_position,
 | |
|             position_embeddings=position_embeddings,
 | |
|             **kwargs,
 | |
|         )
 | |
|         hidden_states = residual + hidden_states
 | |
| 
 | |
|         # Fully Connected
 | |
|         residual = hidden_states
 | |
|         hidden_states = self.post_attention_layernorm(hidden_states)
 | |
|         hidden_states = self.mlp(hidden_states)
 | |
|         hidden_states = residual + hidden_states
 | |
| 
 | |
|         outputs = (hidden_states,)
 | |
|         if output_attentions:
 | |
|             outputs += (self_attn_weights,)
 | |
| 
 | |
|         return outputs
 | |
| 
 | |
| 
 | |
| @auto_docstring
 | |
| class MyNewModel2PreTrainedModel(PreTrainedModel):
 | |
|     config_class = MyNewModel2Config
 | |
|     base_model_prefix = "model"
 | |
|     supports_gradient_checkpointing = True
 | |
|     _no_split_modules = ["MyNewModel2DecoderLayer"]
 | |
|     _skip_keys_device_placement = ["past_key_values"]
 | |
|     _supports_flash_attn_2 = True
 | |
|     _supports_sdpa = True
 | |
|     _supports_flex_attn = True
 | |
|     _supports_cache_class = True
 | |
|     _supports_quantized_cache = True
 | |
|     _supports_static_cache = True
 | |
|     _supports_attention_backend = True
 | |
| 
 | |
|     def _init_weights(self, module):
 | |
|         std = self.config.initializer_range
 | |
|         if isinstance(module, nn.Linear):
 | |
|             module.weight.data.normal_(mean=0.0, std=std)
 | |
|             if module.bias is not None:
 | |
|                 module.bias.data.zero_()
 | |
|         elif isinstance(module, nn.Embedding):
 | |
|             module.weight.data.normal_(mean=0.0, std=std)
 | |
|             if module.padding_idx is not None:
 | |
|                 module.weight.data[module.padding_idx].zero_()
 | |
|         elif isinstance(module, MyNewModel2RMSNorm):
 | |
|             module.weight.data.fill_(1.0)
 | |
| 
 | |
| 
 | |
| @auto_docstring
 | |
| class MyNewModel2Model(MyNewModel2PreTrainedModel):
 | |
|     def __init__(self, config: MyNewModel2Config):
 | |
|         super().__init__(config)
 | |
|         self.padding_idx = config.pad_token_id
 | |
|         self.vocab_size = config.vocab_size
 | |
| 
 | |
|         self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
 | |
|         self.layers = nn.ModuleList(
 | |
|             [MyNewModel2DecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
 | |
|         )
 | |
|         self.norm = MyNewModel2RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
 | |
|         self.rotary_emb = MyNewModel2RotaryEmbedding(config=config)
 | |
|         self.gradient_checkpointing = False
 | |
| 
 | |
|         # Initialize weights and apply final processing
 | |
|         self.post_init()
 | |
| 
 | |
|     def get_input_embeddings(self):
 | |
|         return self.embed_tokens
 | |
| 
 | |
|     def set_input_embeddings(self, value):
 | |
|         self.embed_tokens = value
 | |
| 
 | |
|     @can_return_tuple
 | |
|     @auto_docstring
 | |
|     def forward(
 | |
|         self,
 | |
|         input_ids: Optional[torch.LongTensor] = None,
 | |
|         attention_mask: Optional[torch.Tensor] = None,
 | |
|         position_ids: Optional[torch.LongTensor] = None,
 | |
|         past_key_values: Optional[Cache] = None,
 | |
|         inputs_embeds: Optional[torch.FloatTensor] = None,
 | |
|         use_cache: Optional[bool] = None,
 | |
|         output_attentions: Optional[bool] = None,
 | |
|         output_hidden_states: Optional[bool] = None,
 | |
|         cache_position: Optional[torch.LongTensor] = None,
 | |
|         **kwargs: Unpack[FlashAttentionKwargs],
 | |
|     ) -> BaseModelOutputWithPast:
 | |
|         output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
 | |
|         output_hidden_states = (
 | |
|             output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
 | |
|         )
 | |
|         use_cache = use_cache if use_cache is not None else self.config.use_cache
 | |
| 
 | |
|         if (input_ids is None) ^ (inputs_embeds is not None):
 | |
|             raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
 | |
| 
 | |
|         if self.gradient_checkpointing and self.training and use_cache:
 | |
|             logger.warning_once(
 | |
|                 "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
 | |
|             )
 | |
|             use_cache = False
 | |
| 
 | |
|         if inputs_embeds is None:
 | |
|             inputs_embeds = self.embed_tokens(input_ids)
 | |
| 
 | |
|         if use_cache and past_key_values is None:
 | |
|             past_key_values = DynamicCache()
 | |
| 
 | |
|         if cache_position is None:
 | |
|             past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
 | |
|             cache_position = torch.arange(
 | |
|                 past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device
 | |
|             )
 | |
| 
 | |
|         if position_ids is None:
 | |
|             position_ids = cache_position.unsqueeze(0)
 | |
| 
 | |
|         causal_mask = create_causal_mask(
 | |
|             config=self.config,
 | |
|             input_embeds=inputs_embeds,
 | |
|             attention_mask=attention_mask,
 | |
|             cache_position=cache_position,
 | |
|             past_key_values=past_key_values,
 | |
|         )
 | |
| 
 | |
|         # embed positions
 | |
|         hidden_states = inputs_embeds
 | |
| 
 | |
|         # create position embeddings to be shared across the decoder layers
 | |
|         position_embeddings = self.rotary_emb(hidden_states, position_ids)
 | |
| 
 | |
|         # normalized
 | |
|         # MyNewModel2 downcasts the below to float16, causing sqrt(3072)=55.4256 to become 55.5
 | |
|         # See https://github.com/huggingface/transformers/pull/29402
 | |
|         normalizer = torch.tensor(self.config.hidden_size**0.5, dtype=hidden_states.dtype)
 | |
|         hidden_states = hidden_states * normalizer
 | |
| 
 | |
|         # decoder layers
 | |
|         all_hidden_states = () if output_hidden_states else None
 | |
|         all_self_attns = () if output_attentions else None
 | |
| 
 | |
|         for decoder_layer in self.layers[: self.config.num_hidden_layers]:
 | |
|             if output_hidden_states:
 | |
|                 all_hidden_states += (hidden_states,)
 | |
| 
 | |
|             layer_outputs = decoder_layer(
 | |
|                 hidden_states,
 | |
|                 attention_mask=causal_mask,
 | |
|                 position_ids=position_ids,
 | |
|                 past_key_value=past_key_values,
 | |
|                 output_attentions=output_attentions,
 | |
|                 use_cache=use_cache,
 | |
|                 cache_position=cache_position,
 | |
|                 position_embeddings=position_embeddings,
 | |
|                 **kwargs,
 | |
|             )
 | |
| 
 | |
|             hidden_states = layer_outputs[0]
 | |
| 
 | |
|             if output_attentions:
 | |
|                 all_self_attns += (layer_outputs[1],)
 | |
| 
 | |
|         hidden_states = self.norm(hidden_states)
 | |
| 
 | |
|         # add hidden states from the last decoder layer
 | |
|         if output_hidden_states:
 | |
|             all_hidden_states += (hidden_states,)
 | |
| 
 | |
|         return BaseModelOutputWithPast(
 | |
|             last_hidden_state=hidden_states,
 | |
|             past_key_values=past_key_values if use_cache else None,
 | |
|             hidden_states=all_hidden_states,
 | |
|             attentions=all_self_attns,
 | |
|         )
 | |
| 
 | |
| 
 | |
| @auto_docstring(
 | |
|     custom_intro="""
 | |
|     The MyNewModel2 Model transformer with a sequence classification head on top (linear layer).
 | |
| 
 | |
|     [`MyNewModel2ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
 | |
|     (e.g. GPT-2) do.
 | |
| 
 | |
|     Since it does classification on the last token, it requires to know the position of the last token. If a
 | |
|     `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
 | |
|     no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
 | |
|     padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
 | |
|     each row of the batch).
 | |
|     """
 | |
| )
 | |
| class MyNewModel2ForSequenceClassification(MyNewModel2PreTrainedModel):
 | |
|     def __init__(self, config):
 | |
|         super().__init__(config)
 | |
|         self.num_labels = config.num_labels
 | |
|         self.model = MyNewModel2Model(config)
 | |
|         self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
 | |
| 
 | |
|         # Initialize weights and apply final processing
 | |
|         self.post_init()
 | |
| 
 | |
|     def get_input_embeddings(self):
 | |
|         return self.model.embed_tokens
 | |
| 
 | |
|     def set_input_embeddings(self, value):
 | |
|         self.model.embed_tokens = value
 | |
| 
 | |
|     @can_return_tuple
 | |
|     @auto_docstring
 | |
|     def forward(
 | |
|         self,
 | |
|         input_ids: Optional[torch.LongTensor] = None,
 | |
|         attention_mask: Optional[torch.Tensor] = None,
 | |
|         position_ids: Optional[torch.LongTensor] = None,
 | |
|         past_key_values: Optional[Cache] = None,
 | |
|         inputs_embeds: Optional[torch.FloatTensor] = None,
 | |
|         labels: Optional[torch.LongTensor] = None,
 | |
|         use_cache: Optional[bool] = None,
 | |
|         output_attentions: Optional[bool] = None,
 | |
|         output_hidden_states: Optional[bool] = None,
 | |
|     ) -> SequenceClassifierOutputWithPast:
 | |
|         r"""
 | |
|         labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
 | |
|             Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
 | |
|             config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
 | |
|             `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
 | |
|         """
 | |
| 
 | |
|         transformer_outputs: BaseModelOutputWithPast = self.model(
 | |
|             input_ids,
 | |
|             attention_mask=attention_mask,
 | |
|             position_ids=position_ids,
 | |
|             past_key_values=past_key_values,
 | |
|             inputs_embeds=inputs_embeds,
 | |
|             use_cache=use_cache,
 | |
|             output_attentions=output_attentions,
 | |
|             output_hidden_states=output_hidden_states,
 | |
|         )
 | |
|         hidden_states = transformer_outputs.last_hidden_state
 | |
|         logits = self.score(hidden_states)
 | |
| 
 | |
|         if input_ids is not None:
 | |
|             batch_size = input_ids.shape[0]
 | |
|         else:
 | |
|             batch_size = inputs_embeds.shape[0]
 | |
| 
 | |
|         if self.config.pad_token_id is None and batch_size != 1:
 | |
|             raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
 | |
|         if self.config.pad_token_id is None:
 | |
|             last_non_pad_token = -1
 | |
|         elif input_ids is not None:
 | |
|             # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id
 | |
|             non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32)
 | |
|             token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32)
 | |
|             last_non_pad_token = (token_indices * non_pad_mask).argmax(-1)
 | |
|         else:
 | |
|             last_non_pad_token = -1
 | |
|             logger.warning_once(
 | |
|                 f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
 | |
|                 "unexpected if using padding tokens in conjunction with `inputs_embeds.`"
 | |
|             )
 | |
| 
 | |
|         pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token]
 | |
| 
 | |
|         loss = None
 | |
|         if labels is not None:
 | |
|             loss = self.loss_function(logits=logits, labels=labels, pooled_logits=pooled_logits, config=self.config)
 | |
| 
 | |
|         return SequenceClassifierOutputWithPast(
 | |
|             loss=loss,
 | |
|             logits=pooled_logits,
 | |
|             past_key_values=transformer_outputs.past_key_values,
 | |
|             hidden_states=transformer_outputs.hidden_states,
 | |
|             attentions=transformer_outputs.attentions,
 | |
|         )
 |