Files
transformers/tests/models/tvp/test_image_processing_tvp.py
Yuanyuan Chen 9e99198e5e Use | for Optional and Union typing (#41646)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 14:29:54 +00:00

392 lines
16 KiB
Python

# Copyright 2023 The Intel Team Authors, The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from transformers.image_transforms import PaddingMode
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_torchvision_available, is_vision_available
from ...test_image_processing_common import ImageProcessingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import TvpImageProcessor, TvpImageProcessorFast
class TvpImageProcessingTester:
def __init__(
self,
parent,
do_resize: bool = True,
size: dict[str, int] = {"longest_edge": 40},
do_center_crop: bool = False,
crop_size: dict[str, int] | None = None,
do_rescale: bool = False,
rescale_factor: int | float = 1 / 255,
do_pad: bool = True,
pad_size: dict[str, int] = {"height": 80, "width": 80},
fill: int | None = None,
pad_mode: PaddingMode | None = None,
do_normalize: bool = True,
image_mean: float | list[float] | None = [0.48145466, 0.4578275, 0.40821073],
image_std: float | list[float] | None = [0.26862954, 0.26130258, 0.27577711],
batch_size=2,
min_resolution=40,
max_resolution=80,
num_channels=3,
num_frames=2,
):
self.do_resize = do_resize
self.size = size
self.do_center_crop = do_center_crop
self.crop_size = crop_size
self.do_rescale = do_rescale
self.rescale_factor = rescale_factor
self.do_pad = do_pad
self.pad_size = pad_size
self.fill = fill
self.pad_mode = pad_mode
self.do_normalize = do_normalize
self.image_mean = image_mean
self.image_std = image_std
self.batch_size = batch_size
self.num_channels = num_channels
self.min_resolution = min_resolution
self.max_resolution = max_resolution
self.num_frames = num_frames
def prepare_image_processor_dict(self):
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"do_rescale": self.do_rescale,
"do_center_crop": self.do_center_crop,
"do_pad": self.do_pad,
"pad_size": self.pad_size,
}
def get_expected_values(self, image_inputs, batched=False):
"""
This function computes the expected height and width when providing images to TvpImageProcessor,
assuming do_resize is set to True with a scalar size.
"""
if not batched:
return (int(self.pad_size["height"]), int(self.pad_size["width"]))
else:
expected_values = []
for image in image_inputs:
expected_height, expected_width = self.get_expected_values([image])
expected_values.append((expected_height, expected_width))
expected_height = max(expected_values, key=lambda item: item[0])[0]
expected_width = max(expected_values, key=lambda item: item[1])[1]
return expected_height, expected_width
def prepare_video_inputs(self, equal_resolution=False, numpify=False, torchify=False):
return prepare_video_inputs(
batch_size=self.batch_size,
num_frames=self.num_frames,
num_channels=self.num_channels,
min_resolution=self.min_resolution,
max_resolution=self.max_resolution,
equal_resolution=equal_resolution,
numpify=numpify,
torchify=torchify,
)
@require_torch
@require_vision
class TvpImageProcessingTest(ImageProcessingTestMixin, unittest.TestCase):
image_processing_class = TvpImageProcessor if is_vision_available() else None
fast_image_processing_class = (
TvpImageProcessorFast if is_vision_available() and is_torchvision_available() else None
)
def setUp(self):
super().setUp()
self.image_processor_tester = TvpImageProcessingTester(self)
@property
def image_processor_dict(self):
return self.image_processor_tester.prepare_image_processor_dict()
def test_image_processor_properties(self):
for image_processing_class in self.image_processor_list:
image_processing = image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(image_processing, "image_mean"))
self.assertTrue(hasattr(image_processing, "image_std"))
self.assertTrue(hasattr(image_processing, "do_normalize"))
self.assertTrue(hasattr(image_processing, "do_resize"))
self.assertTrue(hasattr(image_processing, "do_center_crop"))
self.assertTrue(hasattr(image_processing, "size"))
self.assertTrue(hasattr(image_processing, "do_rescale"))
self.assertTrue(hasattr(image_processing, "do_pad"))
self.assertTrue(hasattr(image_processing, "pad_size"))
def test_image_processor_from_dict_with_kwargs(self):
for image_processing_class in self.image_processor_list:
image_processor = image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size, {"longest_edge": 40})
image_processor = image_processing_class.from_dict(self.image_processor_dict, size={"longest_edge": 12})
self.assertEqual(image_processor.size, {"longest_edge": 12})
def test_call_pil(self):
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PIL videos
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], Image.Image)
# Test not batched input
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
# Test batched
expected_height, expected_width = self.image_processor_tester.get_expected_values(
video_inputs, batched=True
)
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
def test_call_numpy(self):
# Test numpy with both processors
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], np.ndarray)
# For fast processor, convert numpy to tensor
if image_processing_class == self.fast_image_processing_class:
# Convert numpy arrays to tensors for fast processor
tensor_video_inputs = []
for video in video_inputs:
tensor_video = [torch.from_numpy(frame) for frame in video]
tensor_video_inputs.append(tensor_video)
test_inputs = tensor_video_inputs
else:
test_inputs = video_inputs
# Test not batched input
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
encoded_videos = image_processing(test_inputs[0], return_tensors="pt").pixel_values
self.assertListEqual(
list(encoded_videos.shape),
[
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
],
)
# Test batched
expected_height, expected_width = self.image_processor_tester.get_expected_values(
video_inputs, batched=True
)
encoded_videos = image_processing(test_inputs, return_tensors="pt").pixel_values
self.assertListEqual(
list(encoded_videos.shape),
[
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
],
)
def test_call_numpy_4_channels(self):
# Test numpy with both processors
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random numpy tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, numpify=True)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], np.ndarray)
# For fast processor, convert numpy to tensor
if image_processing_class == self.fast_image_processing_class:
# Convert numpy arrays to tensors for fast processor
tensor_video_inputs = []
for video in video_inputs:
tensor_video = [torch.from_numpy(frame) for frame in video]
tensor_video_inputs.append(tensor_video)
test_inputs = tensor_video_inputs
else:
test_inputs = video_inputs
# Test not batched input
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
encoded_videos = image_processing(
test_inputs[0],
return_tensors="pt",
image_mean=(0.0, 0.0, 0.0),
image_std=(1.0, 1.0, 1.0),
input_data_format="channels_first",
).pixel_values
self.assertListEqual(
list(encoded_videos.shape),
[
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
],
)
# Test batched
expected_height, expected_width = self.image_processor_tester.get_expected_values(
video_inputs, batched=True
)
encoded_videos = image_processing(
test_inputs,
return_tensors="pt",
image_mean=(0.0, 0.0, 0.0),
image_std=(1.0, 1.0, 1.0),
input_data_format="channels_first",
).pixel_values
self.assertListEqual(
list(encoded_videos.shape),
[
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
],
)
self.image_processor_tester.num_channels = 3
def test_call_pytorch(self):
# Test PyTorch tensors with both processors
for image_processing_class in self.image_processor_list:
# Initialize image_processing
image_processing = image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
video_inputs = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True)
for video in video_inputs:
self.assertIsInstance(video, list)
self.assertIsInstance(video[0], torch.Tensor)
# Test not batched input
expected_height, expected_width = self.image_processor_tester.get_expected_values(video_inputs)
encoded_videos = image_processing(video_inputs[0], return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
# Test batched
expected_height, expected_width = self.image_processor_tester.get_expected_values(
video_inputs, batched=True
)
encoded_videos = image_processing(video_inputs, return_tensors="pt").pixel_values
self.assertEqual(
encoded_videos.shape,
(
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
),
)
@require_vision
@require_torch
@unittest.skip(
reason="FIXME: @yoni probably because of an extra 'time' dimension and since image processors don't handle it well?"
)
def test_slow_fast_equivalence(self):
super().test_slow_fast_equivalence()
@require_vision
@require_torch
@unittest.skip(
reason="FIXME: @yoni probably because of an extra 'time' dimension and since image processors don't handle it well?"
)
def test_slow_fast_equivalence_batched(self):
if not self.test_slow_image_processor or not self.test_fast_image_processor:
self.skipTest(reason="Skipping slow/fast equivalence test")
if self.image_processing_class is None or self.fast_image_processing_class is None:
self.skipTest(reason="Skipping slow/fast equivalence test as one of the image processors is not defined")
if hasattr(self.image_processor_tester, "do_center_crop") and self.image_processor_tester.do_center_crop:
self.skipTest(
reason="Skipping as do_center_crop is True and center_crop functions are not equivalent for fast and slow processors"
)
dummy_images = self.image_processor_tester.prepare_video_inputs(equal_resolution=False, torchify=True)
image_processor_slow = self.image_processing_class(**self.image_processor_dict)
image_processor_fast = self.fast_image_processing_class(**self.image_processor_dict)
encoding_slow = image_processor_slow(dummy_images, return_tensors="pt")
encoding_fast = image_processor_fast(dummy_images, return_tensors="pt")
# Higher max atol for video processing, mean_atol still 5e-3 -> 1e-2
self._assert_slow_fast_tensors_equivalence(
encoding_slow.pixel_values, encoding_fast.pixel_values, atol=10.0, mean_atol=1e-2
)