Files
transformers/benchmark_v2/framework/hardware_metrics.py
Yuanyuan Chen 9e99198e5e Use | for Optional and Union typing (#41646)
Signed-off-by: Yuanyuan Chen <cyyever@outlook.com>
2025-10-16 14:29:54 +00:00

172 lines
6.6 KiB
Python

import json
import logging
import subprocess
import sys
import threading
import time
from dataclasses import dataclass
from enum import Enum
from logging import Logger
import gpustat
import psutil
import torch
# Data class to hold the hardware information
def get_device_name_and_memory_total() -> tuple[str, float]:
"""Returns the name and memory total of GPU 0."""
device_name = torch.cuda.get_device_properties(0).name
device_memory_total = torch.cuda.get_device_properties(0).total_memory / 1024**3
return device_name, device_memory_total
class HardwareInfo:
"""A class to hold information about the hardware."""
def __init__(self) -> None:
# Retrieve GPU stats
try:
self.gpu_name, self.gpu_memory_total_gb = get_device_name_and_memory_total()
except Exception:
self.gpu_name, self.gpu_memory_total_gb = None, None
# Retrieve python, torch and CUDA version
self.python_version = f"{sys.version.split()[0]}"
self.torch_version = torch.__version__
if hasattr(torch, "cuda") and torch.cuda.is_available():
self.cuda_version = torch.version.cuda
else:
self.cuda_version = None
# Retrieve general hardware information
self.cpu_count = psutil.cpu_count()
self.memory_total_mb = int(psutil.virtual_memory().total / (1024 * 1024))
def to_dict(self) -> dict[str, None | int | float | str]:
return {
"gpu_name": self.gpu_name,
"gpu_memory_total_gb": self.gpu_memory_total_gb,
"python_version": self.python_version,
"torch_version": self.torch_version,
}
# Functions to get information about the GPU
def get_amd_gpu_stats() -> tuple[int, float]:
"""Returns the utilization and memory used of an AMD GPU, both in percent"""
rocm_smi_output = subprocess.check_output(["rocm-smi", "--json", "--showuse", "--showmeminfo", "VRAM"])
gpu_stats = json.loads(rocm_smi_output.decode("utf-8"))
gpu_stats = [
(card_id, stats["GPU use (%)"], stats["VRAM Total Used Memory (B)"]) for card_id, stats in gpu_stats.items()
]
gpu_stats.sort(key=lambda x: x[1], reverse=True)
return int(gpu_stats[0][1]), float(gpu_stats[0][2]) / 1024**3
def get_nvidia_gpu_stats() -> tuple[int, float]:
"""Returns the utilization and memory used of an NVIDIA GPU, both in percent"""
gpu_stats = gpustat.GPUStatCollection.new_query()
gpu_stats = gpu_stats[0]
return int(gpu_stats["utilization.gpu"]), float(gpu_stats["memory.used"]) / 1024**3
class GPUStatsCollector:
"""A class to get statistics about the GPU. It serves as a wrapper that holds the GPU total memory and its name,
which is used to call the right function to get the utilization and memory used."""
def __init__(self) -> None:
self.device_name, self.device_memory_total = get_device_name_and_memory_total()
# Monkey patch the get_utilization_and_memory_used method based on the GPU type
if "amd" in self.device_name.lower():
self.get_utilization_and_memory_used = get_amd_gpu_stats
elif "nvidia" in self.device_name.lower():
self.get_utilization_and_memory_used = get_nvidia_gpu_stats
else:
raise RuntimeError(f"Unsupported GPU: {self.device_name}")
def get_measurements(self) -> tuple[int, float]:
"""Get the utilization and memory used of the GPU, both in percent"""
raise NotImplementedError("This method is meant to be monkey patched during __init__")
# Simple data classes to hold the raw GPU metrics
class GPUMonitoringStatus(Enum):
"""Status of GPU monitoring."""
SUCCESS = "success"
FAILED = "failed"
NO_GPUS_AVAILABLE = "no_gpus_available"
NO_SAMPLES_COLLECTED = "no_samples_collected"
@dataclass
class GPURawMetrics:
"""Raw values for GPU utilization and memory used."""
utilization: list[float] # in percent
memory_used: list[float] # in GB
timestamps: list[float] # in seconds
timestamp_0: float # in seconds
monitoring_status: GPUMonitoringStatus
def to_dict(self) -> dict[str, None | int | float | str]:
return {
"utilization": self.utilization,
"memory_used": self.memory_used,
"timestamps": self.timestamps,
"timestamp_0": self.timestamp_0,
"monitoring_status": self.monitoring_status.value,
}
# Main class, used to monitor the GPU utilization during benchmark execution
class GPUMonitor:
"""Monitor GPU utilization during benchmark execution."""
def __init__(self, sample_interval_sec: float = 0.1, logger: Logger | None = None):
self.sample_interval_sec = sample_interval_sec
self.logger = logger if logger is not None else logging.getLogger(__name__)
self.num_available_gpus = torch.cuda.device_count()
if self.num_available_gpus == 0:
raise RuntimeError("No GPUs detected by torch.cuda.device_count().")
self.gpu_stats_getter = GPUStatsCollector()
def start(self):
"""Start monitoring GPU metrics."""
# Clear the stop event to enable monitoring
self.stop_event = threading.Event()
self.gpu_utilization = []
self.gpu_memory_used = []
self.timestamps = []
self.thread = threading.Thread(target=self._monitor_loop)
self.thread.start()
self.logger.debug("GPU monitoring started")
def stop_and_collect(self) -> GPURawMetrics:
"""Stop monitoring and return collected metrics."""
self.stop_event.set()
self.thread.join()
if self.gpu_utilization:
timestamp_0 = self.timestamps[0]
metrics = GPURawMetrics(
utilization=self.gpu_utilization,
memory_used=self.gpu_memory_used,
timestamps=[t - timestamp_0 for t in self.timestamps],
timestamp_0=timestamp_0,
monitoring_status=GPUMonitoringStatus.SUCCESS,
)
self.logger.debug(f"GPU monitoring completed: {len(self.gpu_utilization)} samples collected")
else:
metrics = GPURawMetrics(monitoring_status=GPUMonitoringStatus.NO_SAMPLES_COLLECTED)
return metrics
def _monitor_loop(self):
"""Background monitoring loop using threading.Event for communication."""
while not self.stop_event.is_set():
utilization, memory_used = self.gpu_stats_getter.get_utilization_and_memory_used()
self.gpu_utilization.append(utilization)
self.gpu_memory_used.append(memory_used)
self.timestamps.append(time.time())
if self.stop_event.wait(timeout=self.sample_interval_sec):
break