Files
transformers/benchmark_v2/framework/benchmark_config.py
Rémi Ouazan 94df0e6560 Benchmark overhaul (#41408)
* Big refactor, still classes to move around and script to re-complexify

* Move to streamer, isolate benches, propagate num tokens

* Some refacto

* Added compile mode to name

* Re-order

* Move to dt_tokens

* Better format

* Fix and disable use_cache by default

* Fixed compile and SDPA backend default

* Refactor results format

* Added default compile mode

* Always use cache

* Fixed cache and added flex

* Plan for missing modules

* Experiments: no cg and shuffle

* Disable compile for FA

* Remove wall time, add sweep mode, get git commit

* Review compliance, start

* Apply suggestions from code review

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>

* Update benchmark_v2/framework/benchmark_runner.py

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>

* Disable workflow

* Pretty print

* Added some pretty names to have pretty logs

* Review n2 compliance (end?)

* Style and end of PR

---------

Co-authored-by: Luc Georges <McPatate@users.noreply.github.com>
2025-10-14 21:41:43 +02:00

219 lines
9.0 KiB
Python

import hashlib
import json
import logging
from typing import Any, Optional
KERNELIZATION_AVAILABLE = False
try:
from kernels import Mode, kernelize # noqa: F401
KERNELIZATION_AVAILABLE = True
except ImportError:
pass
logger = logging.getLogger(__name__)
class BenchmarkConfig:
"""Configuration for a single benchmark scenario."""
def __init__(
self,
warmup_iterations: int = 5,
measurement_iterations: int = 20,
gpu_monitoring: bool = False, # False by default because it slows down the benchmark by a lot
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
attn_implementation: str = "eager",
sdpa_backend: Optional[str] = None,
compile_mode: Optional[str] = None,
compile_options: Optional[dict[str, Any]] = None,
kernelize: bool = False,
name: Optional[str] = None,
skip_validity_check: bool = False,
) -> None:
# Benchmark parameters
self.warmup_iterations = warmup_iterations
self.measurement_iterations = measurement_iterations
self.gpu_monitoring = gpu_monitoring
# Input parameters
self.batch_size = batch_size
self.sequence_length = sequence_length
self.num_tokens_to_generate = num_tokens_to_generate
# Generation parameters
self.attn_implementation = attn_implementation
self.sdpa_backend = sdpa_backend
# Optimization parameters
self.compile_mode = compile_mode
self.compile_options = compile_options if compile_options is not None else {}
self.kernelize = kernelize
# Constant parameters
self.dtype = "torch.bfloat16"
self.device = "cuda"
self.check_validity(skip_validity_check)
self.name = name if name is not None else self.infer_name()
def check_validity(self, skip_validity_check: bool = False) -> None:
if skip_validity_check:
return
# Flash attention does not support compile mode, so we turn it off # FIXME: it would be better to support it
is_fa = self.attn_implementation == "flash_attention_2"
is_fa |= self.attn_implementation == "sdpa" and self.sdpa_backend == "flash_attention"
if is_fa:
logger.warning("Flash attention does not support compile mode. Turning off compile mode.")
self.compile_mode = None
@property
def hash(self) -> str:
return hashlib.sha256(json.dumps(self.to_dict()).encode()).hexdigest()
def infer_name(self, compact: bool = True) -> str:
"""Infer a human-readable name for the benchmark config, either compact or verbose."""
if compact:
iter_str = f"w{self.warmup_iterations}_i{self.measurement_iterations}"
gpu_monitor_str = "monitored" if self.gpu_monitoring else "unmonitored"
dimensions_str = f"b{self.batch_size}_s{self.sequence_length}_n{self.num_tokens_to_generate}"
attn_code = self.attn_implementation
attn_code += f"_{self.sdpa_backend}" if self.attn_implementation == "sdpa" else ""
compile_str = f"compiled_{self.compile_mode}" if self.compile_mode is not None else "uncompiled"
kernelize_str = "kernelized" if self.kernelize else "unkernelized"
sep = "-"
else:
iter_str = f"{self.warmup_iterations} warmup, {self.measurement_iterations} iterations"
gpu_monitor_str = ("with" if self.gpu_monitoring else "no") + " GPU monitoring"
dimensions_str = f"batch size {self.batch_size}, sequence length {self.sequence_length}, {self.num_tokens_to_generate} generated tokens"
attn_code = f"{self.attn_implementation} attention"
attn_code += f" with {self.sdpa_backend} backend" if self.attn_implementation == "sdpa" else ""
compile_str = "compiled" if self.compile_mode is not None else "not compiled"
kernelize_str = "kernelized" if self.kernelize else "not kernelized"
sep = ", "
return sep.join([iter_str, gpu_monitor_str, dimensions_str, attn_code, compile_str, kernelize_str])
def to_dict(self) -> dict[str, Any]:
return {
"name": self.name,
"warmup_iterations": self.warmup_iterations,
"measurement_iterations": self.measurement_iterations,
"gpu_monitoring": self.gpu_monitoring,
"batch_size": self.batch_size,
"sequence_length": self.sequence_length,
"num_tokens_to_generate": self.num_tokens_to_generate,
"attn_implementation": self.attn_implementation,
"sdpa_backend": self.sdpa_backend,
"compile_mode": self.compile_mode,
"compile_options": self.compile_options,
"kernelize": self.kernelize,
}
@classmethod
def from_dict(cls, data: dict[str, Any], skip_validity_check: bool = False) -> "BenchmarkConfig":
return cls(
warmup_iterations=data.get("warmup_iterations", 5),
measurement_iterations=data.get("measurement_iterations", 20),
gpu_monitoring=data.get("gpu_monitoring", False),
batch_size=data.get("batch_size", 1),
sequence_length=data.get("sequence_length", 128),
num_tokens_to_generate=data.get("num_tokens_to_generate", 128),
attn_implementation=data.get("attn_implementation", "eager"),
sdpa_backend=data.get("sdpa_backend"),
compile_mode=data.get("compile_mode"),
compile_options=data.get("compile_options"),
kernelize=data.get("kernelize", False),
name=data.get("name"),
skip_validity_check=skip_validity_check,
)
def cross_generate_configs(
attn_impl_and_sdpa_backend: list[tuple[str, Optional[str]]],
compiled_mode: list[Optional[str]],
kernelized: list[bool],
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False, # this slows down the benchmark by a lot so we disable it by default
) -> list[BenchmarkConfig]:
# Create kwargs common to all configs
kwargs = {
"warmup_iterations": warmup_iterations,
"measurement_iterations": measurement_iterations,
"batch_size": batch_size,
"sequence_length": sequence_length,
"num_tokens_to_generate": num_tokens_to_generate,
"gpu_monitoring": gpu_monitoring,
}
# Cross-generate all combinations of attn_implementation, compiled_mode, and kernelized
configs = []
for attn_implementation, sdpa_backend in list(dict.fromkeys(attn_impl_and_sdpa_backend)):
for cm in list(dict.fromkeys(compiled_mode)):
for kernelize_on in list(dict.fromkeys(kernelized)):
config = BenchmarkConfig(
attn_implementation=attn_implementation,
sdpa_backend=sdpa_backend,
compile_mode=cm,
kernelize=kernelize_on,
**kwargs,
)
configs.append(config)
return configs
def generate_all_configs(
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
) -> list[BenchmarkConfig]:
all_attn_implementations = [
("flash_attention_2", None),
("eager", None),
("sdpa", "math"),
("sdpa", "flash_attention"),
("flex_attention", None),
]
return cross_generate_configs(
attn_impl_and_sdpa_backend=all_attn_implementations,
compiled_mode=[None, "default", "reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"],
kernelized=[False, KERNELIZATION_AVAILABLE],
warmup_iterations=warmup_iterations,
measurement_iterations=measurement_iterations,
batch_size=batch_size,
sequence_length=sequence_length,
num_tokens_to_generate=num_tokens_to_generate,
gpu_monitoring=gpu_monitoring,
)
def generate_default_configs(
warmup_iterations: int = 5,
measurement_iterations: int = 20,
batch_size: int = 1,
sequence_length: int = 128,
num_tokens_to_generate: int = 128,
gpu_monitoring: bool = False,
) -> list[BenchmarkConfig]:
all_attn_implementations = [
("flash_attention_2", None),
("eager", None),
("sdpa", "math"),
("sdpa", "flash_attention"), # note: this one can fail with compile because of attn mask
]
return cross_generate_configs(
attn_impl_and_sdpa_backend=all_attn_implementations,
compiled_mode=[None, "max-autotune"],
kernelized=[False, KERNELIZATION_AVAILABLE],
warmup_iterations=warmup_iterations,
measurement_iterations=measurement_iterations,
batch_size=batch_size,
sequence_length=sequence_length,
num_tokens_to_generate=num_tokens_to_generate,
gpu_monitoring=gpu_monitoring,
)