mirror of
				https://github.com/huggingface/transformers.git
				synced 2025-11-04 20:14:36 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			217 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			217 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
 | 
						|
#           This file was automatically generated from examples/modular-transformers/modular_duplicated_method.py.
 | 
						|
#               Do NOT edit this file manually as any edits will be overwritten by the generation of
 | 
						|
#             the file from the modular. If any change should be done, please apply the change to the
 | 
						|
#                          modular_duplicated_method.py file directly. One of our CI enforces this.
 | 
						|
#                🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
 | 
						|
 | 
						|
from ...configuration_utils import PretrainedConfig
 | 
						|
from ...modeling_rope_utils import rope_config_validation
 | 
						|
 | 
						|
 | 
						|
class DuplicatedMethodConfig(PretrainedConfig):
 | 
						|
    r"""
 | 
						|
    This is the configuration class to store the configuration of a [`DuplicatedMethodModel`]. It is used to instantiate an DuplicatedMethod
 | 
						|
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
 | 
						|
    defaults will yield a similar configuration to that of the DuplicatedMethod-7B.
 | 
						|
    e.g. [meta-duplicated_method/DuplicatedMethod-2-7b-hf](https://huggingface.co/meta-duplicated_method/DuplicatedMethod-2-7b-hf)
 | 
						|
 | 
						|
    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
 | 
						|
    documentation from [`PretrainedConfig`] for more information.
 | 
						|
 | 
						|
 | 
						|
    Args:
 | 
						|
        vocab_size (`int`, *optional*, defaults to 32000):
 | 
						|
            Vocabulary size of the DuplicatedMethod model. Defines the number of different tokens that can be represented by the
 | 
						|
            `inputs_ids` passed when calling [`DuplicatedMethodModel`]
 | 
						|
        hidden_size (`int`, *optional*, defaults to 4096):
 | 
						|
            Dimension of the hidden representations.
 | 
						|
        intermediate_size (`int`, *optional*, defaults to 11008):
 | 
						|
            Dimension of the MLP representations.
 | 
						|
        num_hidden_layers (`int`, *optional*, defaults to 32):
 | 
						|
            Number of hidden layers in the Transformer decoder.
 | 
						|
        num_attention_heads (`int`, *optional*, defaults to 32):
 | 
						|
            Number of attention heads for each attention layer in the Transformer decoder.
 | 
						|
        num_key_value_heads (`int`, *optional*):
 | 
						|
            This is the number of key_value heads that should be used to implement Grouped Query Attention. If
 | 
						|
            `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
 | 
						|
            `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When
 | 
						|
            converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
 | 
						|
            by meanpooling all the original heads within that group. For more details, check out [this
 | 
						|
            paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to
 | 
						|
            `num_attention_heads`.
 | 
						|
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
 | 
						|
            The non-linear activation function (function or string) in the decoder.
 | 
						|
        max_position_embeddings (`int`, *optional*, defaults to 2048):
 | 
						|
            The maximum sequence length that this model might ever be used with. DuplicatedMethod 1 supports up to 2048 tokens,
 | 
						|
            DuplicatedMethod 2 up to 4096, CodeLlama up to 16384.
 | 
						|
        initializer_range (`float`, *optional*, defaults to 0.02):
 | 
						|
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
 | 
						|
        rms_norm_eps (`float`, *optional*, defaults to 1e-06):
 | 
						|
            The epsilon used by the rms normalization layers.
 | 
						|
        use_cache (`bool`, *optional*, defaults to `True`):
 | 
						|
            Whether or not the model should return the last key/values attentions (not used by all models). Only
 | 
						|
            relevant if `config.is_decoder=True`.
 | 
						|
        pad_token_id (`int`, *optional*):
 | 
						|
            Padding token id.
 | 
						|
        bos_token_id (`int`, *optional*, defaults to 1):
 | 
						|
            Beginning of stream token id.
 | 
						|
        eos_token_id (`int`, *optional*, defaults to 2):
 | 
						|
            End of stream token id.
 | 
						|
        pretraining_tp (`int`, *optional*, defaults to 1):
 | 
						|
            Experimental feature. Tensor parallelism rank used during pretraining. Please refer to [this
 | 
						|
            document](https://huggingface.co/docs/transformers/main/perf_train_gpu_many#tensor-parallelism) to
 | 
						|
            understand more about it. This value is necessary to ensure exact reproducibility of the pretraining
 | 
						|
            results. Please refer to [this issue](https://github.com/pytorch/pytorch/issues/76232).
 | 
						|
        tie_word_embeddings (`bool`, *optional*, defaults to `False`):
 | 
						|
            Whether to tie weight embeddings
 | 
						|
        rope_theta (`float`, *optional*, defaults to 10000.0):
 | 
						|
            The base period of the RoPE embeddings.
 | 
						|
        rope_scaling (`Dict`, *optional*):
 | 
						|
            Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type
 | 
						|
            and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value
 | 
						|
            accordingly.
 | 
						|
            Expected contents:
 | 
						|
                `rope_type` (`str`):
 | 
						|
                    The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope',
 | 
						|
                    'duplicated_method3'], with 'default' being the original RoPE implementation.
 | 
						|
                `factor` (`float`, *optional*):
 | 
						|
                    Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In
 | 
						|
                    most scaling types, a `factor` of x will enable the model to handle sequences of length x *
 | 
						|
                    original maximum pre-trained length.
 | 
						|
                `original_max_position_embeddings` (`int`, *optional*):
 | 
						|
                    Used with 'dynamic', 'longrope' and 'duplicated_method3'. The original max position embeddings used during
 | 
						|
                    pretraining.
 | 
						|
                `attention_factor` (`float`, *optional*):
 | 
						|
                    Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention
 | 
						|
                    computation. If unspecified, it defaults to value recommended by the implementation, using the
 | 
						|
                    `factor` field to infer the suggested value.
 | 
						|
                `beta_fast` (`float`, *optional*):
 | 
						|
                    Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear
 | 
						|
                    ramp function. If unspecified, it defaults to 32.
 | 
						|
                `beta_slow` (`float`, *optional*):
 | 
						|
                    Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear
 | 
						|
                    ramp function. If unspecified, it defaults to 1.
 | 
						|
                `short_factor` (`list[float]`, *optional*):
 | 
						|
                    Only used with 'longrope'. The scaling factor to be applied to short contexts (<
 | 
						|
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
 | 
						|
                    size divided by the number of attention heads divided by 2
 | 
						|
                `long_factor` (`list[float]`, *optional*):
 | 
						|
                    Only used with 'longrope'. The scaling factor to be applied to long contexts (<
 | 
						|
                    `original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden
 | 
						|
                    size divided by the number of attention heads divided by 2
 | 
						|
                `low_freq_factor` (`float`, *optional*):
 | 
						|
                    Only used with 'duplicated_method3'. Scaling factor applied to low frequency components of the RoPE
 | 
						|
                `high_freq_factor` (`float`, *optional*):
 | 
						|
                    Only used with 'duplicated_method3'. Scaling factor applied to high frequency components of the RoPE
 | 
						|
        attention_bias (`bool`, *optional*, defaults to `False`):
 | 
						|
            Whether to use a bias in the query, key, value and output projection layers during self-attention.
 | 
						|
        attention_dropout (`float`, *optional*, defaults to 0.0):
 | 
						|
            The dropout ratio for the attention probabilities.
 | 
						|
        mlp_bias (`bool`, *optional*, defaults to `False`):
 | 
						|
            Whether to use a bias in up_proj, down_proj and gate_proj layers in the MLP layers.
 | 
						|
        head_dim (`int`, *optional*):
 | 
						|
            The attention head dimension. If None, it will default to hidden_size // num_attention_heads
 | 
						|
 | 
						|
    ```python
 | 
						|
    >>> from transformers import DuplicatedMethodModel, DuplicatedMethodConfig
 | 
						|
 | 
						|
    >>> # Initializing a DuplicatedMethod duplicated_method-7b style configuration
 | 
						|
    >>> configuration = DuplicatedMethodConfig()
 | 
						|
 | 
						|
    >>> # Initializing a model from the duplicated_method-7b style configuration
 | 
						|
    >>> model = DuplicatedMethodModel(configuration)
 | 
						|
 | 
						|
    >>> # Accessing the model configuration
 | 
						|
    >>> configuration = model.config
 | 
						|
    ```"""
 | 
						|
 | 
						|
    model_type = "duplicated_method"
 | 
						|
    keys_to_ignore_at_inference = ["past_key_values"]
 | 
						|
    # Default tensor parallel plan for base model `DuplicatedMethodModel`
 | 
						|
    base_model_tp_plan = {
 | 
						|
        "layers.*.self_attn.q_proj": "colwise",
 | 
						|
        "layers.*.self_attn.k_proj": "colwise",
 | 
						|
        "layers.*.self_attn.v_proj": "colwise",
 | 
						|
        "layers.*.self_attn.o_proj": "rowwise",
 | 
						|
        "layers.*.mlp.gate_proj": "colwise",
 | 
						|
        "layers.*.mlp.up_proj": "colwise",
 | 
						|
        "layers.*.mlp.down_proj": "rowwise",
 | 
						|
    }
 | 
						|
    base_model_pp_plan = {
 | 
						|
        "embed_tokens": (["input_ids"], ["inputs_embeds"]),
 | 
						|
        "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
 | 
						|
        "norm": (["hidden_states"], ["hidden_states"]),
 | 
						|
    }
 | 
						|
 | 
						|
    def __init__(
 | 
						|
        self,
 | 
						|
        vocab_size=32000,
 | 
						|
        hidden_size=4096,
 | 
						|
        intermediate_size=11008,
 | 
						|
        num_hidden_layers=32,
 | 
						|
        num_attention_heads=32,
 | 
						|
        num_key_value_heads=None,
 | 
						|
        hidden_act="silu",
 | 
						|
        max_position_embeddings=2048,
 | 
						|
        initializer_range=0.02,
 | 
						|
        rms_norm_eps=1e-6,
 | 
						|
        use_cache=True,
 | 
						|
        pad_token_id=None,
 | 
						|
        bos_token_id=1,
 | 
						|
        eos_token_id=2,
 | 
						|
        pretraining_tp=1,
 | 
						|
        tie_word_embeddings=False,
 | 
						|
        rope_theta=10000.0,
 | 
						|
        rope_scaling=None,
 | 
						|
        attention_bias=False,
 | 
						|
        attention_dropout=0.0,
 | 
						|
        mlp_bias=False,
 | 
						|
        head_dim=None,
 | 
						|
        **kwargs,
 | 
						|
    ):
 | 
						|
        self.vocab_size = vocab_size
 | 
						|
        self.max_position_embeddings = max_position_embeddings
 | 
						|
        self.hidden_size = hidden_size
 | 
						|
        self.intermediate_size = intermediate_size
 | 
						|
        self.num_hidden_layers = num_hidden_layers
 | 
						|
        self.num_attention_heads = num_attention_heads
 | 
						|
 | 
						|
        # for backward compatibility
 | 
						|
        if num_key_value_heads is None:
 | 
						|
            num_key_value_heads = num_attention_heads
 | 
						|
 | 
						|
        self.num_key_value_heads = num_key_value_heads
 | 
						|
        self.hidden_act = hidden_act
 | 
						|
        self.initializer_range = initializer_range
 | 
						|
        self.rms_norm_eps = rms_norm_eps
 | 
						|
        self.pretraining_tp = pretraining_tp
 | 
						|
        self.use_cache = use_cache
 | 
						|
        self.rope_theta = rope_theta
 | 
						|
        self.rope_scaling = rope_scaling
 | 
						|
        self.attention_bias = attention_bias
 | 
						|
        self.attention_dropout = attention_dropout
 | 
						|
        self.mlp_bias = mlp_bias
 | 
						|
        self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads
 | 
						|
        # Validate the correctness of rotary position embeddings parameters
 | 
						|
        # BC: if there is a 'type' field, copy it it to 'rope_type'.
 | 
						|
        if self.rope_scaling is not None and "type" in self.rope_scaling:
 | 
						|
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
 | 
						|
        rope_config_validation(self)
 | 
						|
 | 
						|
        super().__init__(
 | 
						|
            pad_token_id=pad_token_id,
 | 
						|
            bos_token_id=bos_token_id,
 | 
						|
            eos_token_id=eos_token_id,
 | 
						|
            tie_word_embeddings=tie_word_embeddings,
 | 
						|
            **kwargs,
 | 
						|
        )
 | 
						|
 | 
						|
    @property
 | 
						|
    def vocab_size(self):
 | 
						|
        return 45
 | 
						|
 | 
						|
    @vocab_size.setter
 | 
						|
    def vocab_size(self, value):
 | 
						|
        self.vocab_size = value
 |