Files
transformers/tests/test_executorch.py
Jack 6121e9e46c Support input_embeds in torch exportable decoders (#39836)
* Support input_embeds in torch exportable decoders

* Hybrid cache update

* Manually change some callsites

* AI changes the rest of the call sites

* Make either input_ids/inputs_embeds mandatory

* Clean up

* Ruff check --fix

* Fix test

* pr review

* Revert config/generation_config changes

* Ruff check
2025-08-07 08:51:31 +00:00

130 lines
5.9 KiB
Python

# Copyright 2025 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import torch
from transformers import AutoModelForCausalLM, set_seed
from transformers.generation.configuration_utils import GenerationConfig
from transformers.integrations.executorch import (
TorchExportableModuleForDecoderOnlyLM,
TorchExportableModuleWithHybridCache,
TorchExportableModuleWithStaticCache,
)
from transformers.pytorch_utils import is_torch_greater_or_equal_than_2_3
from transformers.testing_utils import require_torch
@require_torch
class ExecutorchTest(unittest.TestCase):
def setUp(self):
if not is_torch_greater_or_equal_than_2_3:
self.skipTest("torch >= 2.3 is required")
set_seed(0)
self.model = AutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-random-LlamaForCausalLM")
self.model.eval()
# Create generation config with static cache for the model
self.model.generation_config = GenerationConfig(
use_cache=True,
cache_implementation="static",
cache_config={"batch_size": 1, "max_cache_len": 32, "device": "cpu"},
)
self.input_ids = torch.tensor([[1, 2, 3]], dtype=torch.long)
self.inputs_embeds = torch.randn(1, 3, self.model.config.hidden_size)
self.cache_position = torch.arange(3, dtype=torch.long)
def test_static_cache_module_forward(self):
"""Test TorchExportableModuleWithStaticCache forward with both input types"""
generation_config = GenerationConfig(
use_cache=True,
cache_implementation="static",
cache_config={"batch_size": 1, "max_cache_len": 32, "device": "cpu"},
)
# Set generation config on model
self.model.generation_config = generation_config
module = TorchExportableModuleWithStaticCache(self.model)
# Test with input_ids
eager_output_ids = self.model(input_ids=self.input_ids, use_cache=False).logits
wrapped_output_ids = module.forward(input_ids=self.input_ids, cache_position=self.cache_position)
torch.testing.assert_close(eager_output_ids, wrapped_output_ids, atol=1e-4, rtol=1e-4)
# Test with inputs_embeds
eager_output_embeds = self.model(inputs_embeds=self.inputs_embeds, use_cache=False).logits
wrapped_output_embeds = module.forward(inputs_embeds=self.inputs_embeds, cache_position=self.cache_position)
torch.testing.assert_close(eager_output_embeds, wrapped_output_embeds, atol=1e-4, rtol=1e-4)
def test_hybrid_cache_module_forward(self):
"""Test TorchExportableModuleWithHybridCache forward with both input types"""
config = self.model.config
config.sliding_window = 16
config.layer_types = ["full_attention"] * config.num_hidden_layers
generation_config = GenerationConfig(
use_cache=True,
cache_implementation="hybrid",
cache_config={"batch_size": 1, "max_cache_len": 32, "device": "cpu"},
)
# Set generation config on model
self.model.generation_config = generation_config
module = TorchExportableModuleWithHybridCache(self.model)
# Test with input_ids
eager_output_ids = self.model(input_ids=self.input_ids, use_cache=False).logits
wrapped_output_ids = module.forward(input_ids=self.input_ids, cache_position=self.cache_position)
torch.testing.assert_close(eager_output_ids, wrapped_output_ids, atol=1e-4, rtol=1e-4)
# Test with inputs_embeds
eager_output_embeds = self.model(inputs_embeds=self.inputs_embeds, use_cache=False).logits
wrapped_output_embeds = module.forward(inputs_embeds=self.inputs_embeds, cache_position=self.cache_position)
torch.testing.assert_close(eager_output_embeds, wrapped_output_embeds, atol=1e-4, rtol=1e-4)
def test_decoder_only_lm_export_validation(self):
"""Test TorchExportableModuleForDecoderOnlyLM export validation"""
module = TorchExportableModuleForDecoderOnlyLM(self.model)
# Should fail with both input_ids and inputs_embeds
with self.assertRaises(ValueError):
module.export(input_ids=self.input_ids, inputs_embeds=self.inputs_embeds)
# Should fail with neither
with self.assertRaises(ValueError):
module.export()
def test_decoder_only_lm_export(self):
"""Test TorchExportableModuleForDecoderOnlyLM export with both input types"""
module = TorchExportableModuleForDecoderOnlyLM(self.model)
# Test export with input_ids
exported_program_ids = module.export(input_ids=self.input_ids, cache_position=self.cache_position)
eager_output_ids = self.model(input_ids=self.input_ids, use_cache=False).logits
exported_output_ids = exported_program_ids.module()(
input_ids=self.input_ids, cache_position=self.cache_position
)
torch.testing.assert_close(eager_output_ids, exported_output_ids, atol=1e-4, rtol=1e-4)
# Test export with inputs_embeds
exported_program_embeds = module.export(inputs_embeds=self.inputs_embeds, cache_position=self.cache_position)
eager_output_embeds = self.model(inputs_embeds=self.inputs_embeds, use_cache=False).logits
exported_output_embeds = exported_program_embeds.module()(
inputs_embeds=self.inputs_embeds, cache_position=self.cache_position
)
torch.testing.assert_close(eager_output_embeds, exported_output_embeds, atol=1e-4, rtol=1e-4)