Files
transformers/src/transformers/cache_utils.py
Rémi Ouazan 82cae9eb52 Add __iter__ to DynamicCache (#41569)
* Add __iter__ to DynamicCache

* Fix tests that use ddp init
2025-10-14 16:16:32 +02:00

1390 lines
62 KiB
Python

from abc import ABC, abstractmethod
from collections.abc import Iterable
from typing import Any, Optional
import torch
from .configuration_utils import PreTrainedConfig
from .utils import (
is_hqq_available,
is_quanto_greater,
is_torch_greater_or_equal,
is_torchdynamo_compiling,
logging,
)
if is_hqq_available():
from hqq.core.quantize import Quantizer as HQQQuantizer
_is_torch_greater_or_equal_than_2_7 = is_torch_greater_or_equal("2.7", accept_dev=True)
logger = logging.get_logger(__name__)
class CacheLayerMixin(ABC):
"""Base, abstract class for a single layer's cache."""
is_compileable = False
def __init__(self):
self.keys: Optional[torch.Tensor] = None
self.values: Optional[torch.Tensor] = None
self.is_initialized = False
def __repr__(self):
return f"{self.__class__.__name__}"
@abstractmethod
def lazy_initialization(self, key_states: torch.Tensor): ...
@abstractmethod
def update(
self, key_states: torch.Tensor, value_states: torch.Tensor, cache_kwargs: Optional[dict[str, Any]] = None
) -> tuple[torch.Tensor, torch.Tensor]: ...
@abstractmethod
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]: ...
@abstractmethod
def get_seq_length(self) -> int: ...
@abstractmethod
def get_max_cache_shape(self) -> int: ...
def offload(self):
"""Offload this layer's data to CPU device."""
if self.is_initialized:
self.keys = self.keys.to("cpu", non_blocking=True)
self.values = self.values.to("cpu", non_blocking=True)
def prefetch(self):
"""In case of layer offloading, this allows to move the data back to the layer's device ahead of time."""
if self.is_initialized and self.keys.device != self.device:
self.keys = self.keys.to(self.device, non_blocking=True)
self.values = self.values.to(self.device, non_blocking=True)
def reset(self) -> None:
"""Resets the cache values while preserving the objects"""
if self.is_initialized:
self.keys.zero_()
self.values.zero_()
# This attribute is set on several Layers
if hasattr(self, "cumulative_length"):
self.cumulative_length = 0
def reorder_cache(self, beam_idx: torch.LongTensor) -> None:
"""Reorders this layer's cache for beam search."""
if self.get_seq_length() > 0:
self.keys = self.keys.index_select(0, beam_idx.to(self.keys.device))
self.values = self.values.index_select(0, beam_idx.to(self.values.device))
class DynamicLayer(CacheLayerMixin):
"""
A cache layer that grows dynamically as more tokens are generated. This is the default for generative models.
It stores the key and value states as tensors of shape `[batch_size, num_heads, seq_len, head_dim]`.
"""
is_sliding = False
def lazy_initialization(self, key_states: torch.Tensor):
self.dtype, self.device = key_states.dtype, key_states.device
self.keys = torch.tensor([], dtype=self.dtype, device=self.device)
self.values = torch.tensor([], dtype=self.dtype, device=self.device)
self.is_initialized = True
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Update the key and value caches in-place, and return the necessary keys and value states.
Args:
key_states (`torch.Tensor`): The new key states to cache.
value_states (`torch.Tensor`): The new value states to cache.
cache_kwargs (`dict[str, Any]`, *optional*): Additional arguments for the cache.
Returns:
tuple[`torch.Tensor`, `torch.Tensor`]: The key and value states.
"""
# Lazy initialization
if not self.is_initialized:
self.lazy_initialization(key_states)
self.keys = torch.cat([self.keys, key_states], dim=-2)
self.values = torch.cat([self.values, value_states], dim=-2)
return self.keys, self.values
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
"""Return the length and offset of the cache, used to generate the mask"""
kv_offset = 0
query_length = cache_position.shape[0]
kv_length = self.get_seq_length() + query_length
return kv_length, kv_offset
def get_seq_length(self) -> int:
"""Returns the sequence length of the cached states."""
if not self.is_initialized or self.keys.numel() == 0:
return 0
return self.keys.shape[-2]
def get_max_cache_shape(self) -> int:
"""Returns the maximum sequence length of the cache object. DynamicLayer does not have a maximum length."""
return -1
def crop(self, max_length: int) -> None:
"""
Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be negative
to remove `max_length` tokens.
"""
if max_length < 0:
max_length = self.get_seq_length() - abs(max_length)
if self.get_seq_length() <= max_length:
return
self.keys = self.keys[..., :max_length, :]
self.values = self.values[..., :max_length, :]
def batch_repeat_interleave(self, repeats: int) -> None:
"""Repeat the cache `repeats` times in the batch dimension."""
if self.get_seq_length() > 0:
self.keys = self.keys.repeat_interleave(repeats, dim=0)
self.values = self.values.repeat_interleave(repeats, dim=0)
def batch_select_indices(self, indices: torch.Tensor) -> None:
"""Only keep the `indices` in the batch dimension of the cache."""
if self.get_seq_length() > 0:
self.keys = self.keys[indices, ...]
self.values = self.values[indices, ...]
class DynamicSlidingWindowLayer(DynamicLayer):
"""
A cache layer that grows dynamically as more tokens are generated, up until the sliding window size.
It stores the key and value states as tensors of shape `[batch_size, num_heads, min(seq_len, sliding_window), head_dim]`.
"""
is_sliding = True
def __init__(self, sliding_window: int):
super().__init__()
self.sliding_window = sliding_window
self.cumulative_length = 0
self._sliding_window_tensor = torch.tensor(self.sliding_window, dtype=torch.long)
def lazy_initialization(self, key_states: torch.Tensor) -> None:
super().lazy_initialization(key_states)
self._sliding_window_tensor = self._sliding_window_tensor.to(self.device)
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Update the key and value caches in-place, and return the necessary keys and value states.
Args:
key_states (`torch.Tensor`): The new key states to cache.
value_states (`torch.Tensor`): The new value states to cache.
cache_kwargs (`dict[str, Any]`, *optional*): Additional arguments for the cache.
Returns:
tuple[`torch.Tensor`, `torch.Tensor`]: The key and value states.
"""
# Lazy initialization
if not self.is_initialized:
self.lazy_initialization(key_states)
self.cumulative_length += key_states.shape[-2]
# Compute the full states
full_key_states = torch.cat([self.keys, key_states], dim=-2)
full_value_states = torch.cat([self.values, value_states], dim=-2)
# Only cache the last `self.sliding_window - 1` tokens (or all of them if lower than that)
self.keys = full_key_states[:, :, -self.sliding_window + 1 :, :]
self.values = full_value_states[:, :, -self.sliding_window + 1 :, :]
# Return the full states
return full_key_states, full_value_states
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
"""Return the length and offset of the cache, used to generate the attention mask"""
query_length = cache_position.shape[0]
is_full = self.cumulative_length >= self.sliding_window
kv_offset = max(self.cumulative_length - self.sliding_window + 1, 0)
if is_full:
kv_length = self.sliding_window - 1 + query_length
else:
kv_length = self.cumulative_length + query_length
return kv_length, kv_offset
def get_seq_length(self) -> int:
"""Returns the sequence length of the cached states."""
return self.cumulative_length
def get_max_cache_shape(self) -> int:
"""Return the maximum cache shape of the cache"""
return self.sliding_window
def crop(self, max_length: int) -> None:
"""
Crop the past key values up to a new `max_length` in terms of tokens. `max_length` can also be
negative to remove `max_length` tokens.
"""
if self.get_seq_length() >= self.sliding_window:
raise ValueError(
"Cannot `crop` a `DynamicSlidingWindowLayer` after it has seen more tokens than its"
"sliding window (otherwise some states are lost)"
)
super().crop(max_length)
self.cumulative_length = self.keys.shape[-2]
class StaticLayer(CacheLayerMixin):
"""
A static cache layer that stores the key and value states as static tensors of shape `[batch_size, num_heads, max_cache_len), head_dim]`.
It lazily allocates its full backing tensors, and then mutates them in-place. Built for `torch.compile` support.
Args:
max_cache_len (`int`):
Maximum number of tokens that can be stored, used for tensor preallocation.
"""
is_compileable = True
is_sliding = False
def __init__(self, max_cache_len: int):
super().__init__()
self.max_cache_len = max_cache_len
def lazy_initialization(self, key_states: torch.Tensor):
"""
Lazy initialization of the keys and values tensors. This allows to get all properties (dtype, device,
num_heads in case of TP etc...) at runtime directly, which is extremely practical as it avoids moving
devices, dtypes etc later on for each `update` (which could break the static dynamo addresses as well).
If this is unwanted, one can call `early_initialization(...)` on the Cache directly, which will call this
function ahead-of-time (this is required for `torch.export` for example). Note that for `compile`, as we
internally don't compile the prefill, this is guaranteed to have been called already when compiling.
If compiling the prefill as well, e.g. calling `model.compile(...)` before `generate` with a static cache,
it is still supported in general, but without guarantees depending on the compilation options (e.g. cuda graphs,
i.e. `mode="reduce-overhead"` is known to fail). But it will in general work correctly, and prefill should
not be compiled anyway for performances!
"""
self.max_batch_size, self.num_heads, _, self.head_dim = key_states.shape
self.dtype, self.device = key_states.dtype, key_states.device
self.keys = torch.zeros(
(self.max_batch_size, self.num_heads, self.max_cache_len, self.head_dim),
dtype=self.dtype,
device=self.device,
)
self.values = torch.zeros(
(self.max_batch_size, self.num_heads, self.max_cache_len, self.head_dim),
dtype=self.dtype,
device=self.device,
)
# Note: `mark_static_address` is used to tag the cache as a fixed data pointer, preventing compiled graph
# breaks when updating the cache. However, it is not supported when tracing the graph, so we skip it in this case.
# As prefill should never be compiled, this is not an issue and it will still be run (except when users compile
# prefill explicitly, but this should be avoided!)
if not is_torchdynamo_compiling():
torch._dynamo.mark_static_address(self.keys)
torch._dynamo.mark_static_address(self.values)
self.is_initialized = True
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Update the key and value caches in-place, and return the necessary keys and value states.
Args:
key_states (`torch.Tensor`): The new key states to cache.
value_states (`torch.Tensor`): The new value states to cache.
cache_kwargs (`dict[str, Any]`, *optional*): Additional arguments for the cache.
Returns:
tuple[`torch.Tensor`, `torch.Tensor`]: The key and value states.
"""
# Lazy initialization
if not self.is_initialized:
self.lazy_initialization(key_states)
# Some old models give None for `cache_position` or even omit passing `cache_kwargs` when used as cross-attention,
# in which case we should copy the whole Layer (key_states.shape[-2] == self.max_cache_len)
cache_position = cache_kwargs.get("cache_position") if cache_kwargs is not None else None
cache_position = (
cache_position if cache_position is not None else torch.arange(key_states.shape[-2], device=self.device)
)
# Update the cache
try:
self.keys.index_copy_(2, cache_position, key_states)
self.values.index_copy_(2, cache_position, value_states)
except NotImplementedError:
# Fallback for devices like MPS where index_copy_ might not be supported.
self.keys[:, :, cache_position] = key_states
self.values[:, :, cache_position] = value_states
return self.keys, self.values
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
"""Return the length and offset of the cache, used to generate the attention mask"""
kv_offset = 0
kv_length = self.max_cache_len
return kv_length, kv_offset
def get_seq_length(self) -> int:
"""Returns the sequence length of the cached states."""
# Occupied cache == any slot in the 3rd dim (sequence length) holds a non-zero value. To save on compute, let's
# limit the check to the first batch member and head dimension.
return (self.keys[0, 0].any(dim=-1)).sum() if self.is_initialized else 0
def get_max_cache_shape(self) -> int:
"""Return the maximum cache shape of the cache"""
return self.max_cache_len
class StaticSlidingWindowLayer(StaticLayer):
"""
A static cache layer that stores the key and value states as static tensors of shape
`[batch_size, num_heads, min(max_cache_len, sliding_window), head_dim]`. It lazily allocates its full backing
tensors, and then mutates them in-place. Built for `torch.compile` support.
Args:
max_cache_len (`int`):
Maximum number of tokens that can be stored, used for tensor preallocation.
sliding_window (`int`):
The size of the sliding window.
"""
is_sliding = True
def __init__(self, max_cache_len: int, sliding_window: int):
effective_max_cache_len = min(sliding_window, max_cache_len)
super().__init__(max_cache_len=effective_max_cache_len)
self.cumulative_length = 0
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Update the key and value caches in-place, and return the necessary keys and value states.
Args:
key_states (`torch.Tensor`): The new key states to cache.
value_states (`torch.Tensor`): The new value states to cache.
cache_kwargs (`dict[str, Any]`, *optional*): Additional arguments for the cache.
Returns:
tuple[`torch.Tensor`, `torch.Tensor`]: The key and value states.
"""
# Lazy initialization
if not self.is_initialized:
self.lazy_initialization(key_states)
# Some old models give None for `cache_position` or even omit passing `cache_kwargs` when used as cross-attention,
# in which case we should copy the whole Layer (key_states.shape[-2] == self.max_cache_len)
cache_position = cache_kwargs.get("cache_position") if cache_kwargs is not None else None
cache_position = (
cache_position if cache_position is not None else torch.arange(key_states.shape[-2], device=self.device)
)
cumulative_length = self.cumulative_length
is_full = cumulative_length >= self.max_cache_len
# Update it now that we saved the value above
self.cumulative_length += key_states.shape[-2]
if is_full:
# In general, we should use a much simpler `cat` here as well, independently of the states size. However,
# dynamo is currently bugged when doing it - see https://github.com/pytorch/pytorch/issues/159855 for more details
if key_states.shape[-2] == 1:
# Roll all values to the left by 1 position
new_keys = self.keys.roll(-1, dims=-2)
new_values = self.values.roll(-1, dims=-2)
# Overwrite the last position with new states
# (note: very important to use a tensor to index here, see https://github.com/pytorch/pytorch/issues/159855)
index = torch.tensor([-1], dtype=int, device=self.device)
new_keys[:, :, index] = key_states
new_values[:, :, index] = value_states
# Copy back into `self` (do not just assign again) in order to keep the static dynamo address
self.keys.copy_(new_keys)
self.values.copy_(new_values)
# Very important to return the `self` tensors here, as they have the static dynamo address
return self.keys, self.values
# Already full but using more than 1 new token (e.g. prefill caching, chat continuation, etc...)
else:
full_key_states = torch.cat((self.keys[:, :, 1:, :], key_states), dim=-2)
full_value_states = torch.cat((self.values[:, :, 1:, :], value_states), dim=-2)
# Not yet full, but becoming full on this update
elif cumulative_length + key_states.shape[2] > self.max_cache_len:
# Fast prefill path, no need to cat() in this case, as the cache is currently empty
if cumulative_length == 0:
full_key_states = key_states
full_value_states = value_states
else:
full_key_states = torch.cat((self.keys[:, :, :cumulative_length, :], key_states), dim=-2)
full_value_states = torch.cat((self.values[:, :, :cumulative_length, :], value_states), dim=-2)
else:
try:
self.keys.index_copy_(2, cache_position, key_states)
self.values.index_copy_(2, cache_position, value_states)
except NotImplementedError:
self.keys[:, :, cache_position] = key_states
self.values[:, :, cache_position] = value_states
# Very important to return the `self` tensors here, as they have the static dynamo address
return self.keys, self.values
# We only cache the last `sliding_window` tokens
self.keys.copy_(full_key_states[:, :, -self.max_cache_len :, :])
self.values.copy_(full_value_states[:, :, -self.max_cache_len :, :])
# we should return the whole states instead of `self.keys/values` here, as otherwise we lose some context
return full_key_states, full_value_states
def get_mask_sizes(self, cache_position: torch.Tensor) -> tuple[int, int]:
"""Return the length and offset of the cache, used to generate the attention mask"""
query_length = cache_position.shape[0]
sliding_window = self.max_cache_len
is_full = self.cumulative_length >= self.max_cache_len
kv_offset = max(self.cumulative_length - sliding_window + 1, 0)
# The cache is already full
if is_full:
kv_length = sliding_window + query_length - 1
# Not yet full, but becoming full on this update
elif self.cumulative_length + query_length > sliding_window:
kv_length = self.cumulative_length + query_length
# Here the Cache is still smaller than the local size, but we return the local size as it's static
else:
kv_length = sliding_window
return kv_length, kv_offset
def get_seq_length(self) -> int:
"""Returns the sequence length of the cached states."""
return self.cumulative_length
class QuantizedLayer(DynamicLayer):
"""
A quantized layer similar to what is described in the [KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache paper](https://huggingface.co/papers/2402.02750).
It allows the model to generate longer sequence length without allocating too much memory for the key and value caches by
applying quantization.
The cache has two types of storage, one for original precision and one for the quantized cache. A `residual length`
is set as a maximum capacity for the original precision cache. When the length goes beyond maximum capacity, the original
precision cache is discarded and moved into the quantized cache. The quantization is done per-channel with a set `q_group_size`
for both Keys and Values, in contrast to what was described in the paper.
"""
def __init__(
self,
nbits: int = 4,
axis_key: int = 0,
axis_value: int = 0,
q_group_size: int = 64,
residual_length: int = 128,
):
super().__init__()
self.nbits = nbits
self.axis_key = axis_key
self.axis_value = axis_value
self.q_group_size = q_group_size
self.residual_length = residual_length
self.cumulative_length = 0
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Update the key and value caches in-place, and return the necessary keys and value states.
Args:
key_states (`torch.Tensor`): The new key states to cache.
value_states (`torch.Tensor`): The new value states to cache.
cache_kwargs (`dict[str, Any]`, *optional*): Additional arguments for the cache.
Returns:
tuple[`torch.Tensor`, `torch.Tensor`]: The key and value states.
"""
self.cumulative_length += key_states.shape[-2]
# Lazy initialization
if not self.is_initialized:
self.lazy_initialization(key_states)
self._quantized_keys = self._quantize(key_states.contiguous(), axis=self.axis_key)
self._quantized_values = self._quantize(value_states.contiguous(), axis=self.axis_value)
return key_states, value_states
dequant_keys = self._dequantize(self._quantized_keys)
dequant_values = self._dequantize(self._quantized_values)
keys_to_return = torch.cat([dequant_keys, self.keys, key_states], dim=-2)
values_to_return = torch.cat([dequant_values, self.values, value_states], dim=-2)
if self.keys.dim() == 4 and self.keys.shape[-2] + 1 >= self.residual_length:
self._quantized_keys = self._quantize(keys_to_return.contiguous(), axis=self.axis_key)
self._quantized_values = self._quantize(values_to_return.contiguous(), axis=self.axis_value)
self.keys = torch.tensor([], dtype=key_states.dtype, device=key_states.device)
self.values = torch.tensor([], dtype=key_states.dtype, device=key_states.device)
else:
self.keys = torch.cat([self.keys, key_states], dim=-2)
self.values = torch.cat([self.values, value_states], dim=-2)
return keys_to_return, values_to_return
@abstractmethod
def _quantize(self, tensor, axis): ...
@abstractmethod
def _dequantize(self, q_tensor): ...
def get_seq_length(self) -> int:
"""Returns the sequence length of the cached states."""
return self.cumulative_length
class QuantoQuantizedLayer(QuantizedLayer):
def __init__(
self,
nbits: int = 4,
axis_key: int = 0,
axis_value: int = 0,
q_group_size: int = 64,
residual_length: int = 128,
):
super().__init__(
nbits=nbits,
axis_key=axis_key,
axis_value=axis_value,
q_group_size=q_group_size,
residual_length=residual_length,
)
# We need to import quanto here to avoid circular imports due to optimum/quanto/models/transformers_models.py
if is_quanto_greater("0.2.5", accept_dev=True):
from optimum.quanto import MaxOptimizer, qint2, qint4
else:
raise ImportError(
"You need optimum-quanto package version to be greater or equal than 0.2.5 to use `QuantoQuantizedCache`. "
)
if self.nbits not in [2, 4]:
raise ValueError(f"`nbits` for `quanto` backend has to be one of [`2`, `4`] but got {self.nbits}")
if self.axis_key not in [0, -1]:
raise ValueError(f"`axis_key` for `quanto` backend has to be one of [`0`, `-1`] but got {self.axis_key}")
if self.axis_value not in [0, -1]:
raise ValueError(
f"`axis_value` for `quanto` backend has to be one of [`0`, `-1`] but got {self.axis_value}"
)
self.qtype = qint4 if self.nbits == 4 else qint2
self.optimizer = MaxOptimizer() # hardcode as it's the only one for per-channel quantization
def _quantize(self, tensor, axis):
from optimum.quanto import quantize_weight
scale, zeropoint = self.optimizer(tensor, self.qtype, axis, self.q_group_size)
qtensor = quantize_weight(tensor, self.qtype, axis, scale, zeropoint, self.q_group_size)
return qtensor
def _dequantize(self, qtensor):
return qtensor.dequantize()
class HQQQuantizedLayer(QuantizedLayer):
def __init__(
self,
nbits: int = 4,
axis_key: int = 0,
axis_value: int = 0,
q_group_size: int = 64,
residual_length: int = 128,
):
super().__init__(
nbits=nbits,
axis_key=axis_key,
axis_value=axis_value,
q_group_size=q_group_size,
residual_length=residual_length,
)
if not is_hqq_available():
raise ImportError("You need to install `hqq` to use `HQQQuantizedLayer`")
if self.nbits not in [1, 2, 3, 4, 8]:
raise ValueError(
f"`nbits` for `HQQ` backend has to be one of [`1`, `2`, `3`, `4`, `8`] but got {self.nbits}"
)
if self.axis_key not in [0, 1]:
raise ValueError(f"`axis_key` for `HQQ` backend has to be one of [`0`, `1`] but got {self.axis_key}")
if self.axis_value not in [0, 1]:
raise ValueError(f"`axis_value` for `HQQ` backend has to be one of [`0`, `1`] but got {self.axis_value}")
self.quantizer = HQQQuantizer
def _quantize(self, tensor, axis):
qtensor, meta = self.quantizer.quantize(
tensor,
axis=axis,
device=self.keys.device,
compute_dtype=self.keys.dtype,
nbits=self.nbits,
group_size=self.q_group_size,
)
meta["compute_dtype"] = self.keys.dtype
self.quantizer.cuda(qtensor, meta=meta, device=self.keys.device) # Move to device and cast to dtype
meta["scale"] = meta["scale"].to(qtensor.device)
meta["zero"] = meta["zero"].to(qtensor.device)
return qtensor, meta
def _dequantize(self, qtensor):
quant_tensor, meta = qtensor
tensor = self.quantizer.dequantize(quant_tensor, meta)
return tensor
class Cache:
"""
A `Cache` is mostly a list of `CacheLayerMixin` objects, one per model layer. It serves as a container for
the Cache of each layer.
Args:
layers (`Optional`, *optional*):
A list of pre-created `CacheLayerMixin`. If omitted (`None`), then `layer_class_to_replicate` will
be used.
layer_class_to_replicate (`type[CacheLayerMixin]`, *optional*):
Only used if `layers` is omitted (`None`), in which case it will be used as the base class for each layer,
and the layers will be added lazily as soon as `update` is called with a `layer_idx` greater than the current
list of layers.
offloading (`bool`, *optional*, defaults to `False`):
Whether to perform offloading of the layers to `cpu`, to save GPU memory.
offload_only_non_sliding (`bool`, *optional*, defaults to `True`):
If `offloading` is `True`, this further decides if only the non-sliding layers will be offloaded (because
usually the sliding layers are small in size, so there is no need to offload them, and skipping it is faster).
"""
def __init__(
self,
layers: Optional[list[CacheLayerMixin]] = None,
layer_class_to_replicate: Optional[type[CacheLayerMixin]] = None,
offloading: bool = False,
offload_only_non_sliding: bool = True,
):
if layers is not None and layer_class_to_replicate is not None:
raise ValueError(
"You can construct a Cache either from a list `layers` of all the predefined `CacheLayer`, or from a "
"`layer_class_to_replicate`, in which case the Cache will append a new layer corresponding to "
"`layer_class_to_replicate` for each new call to `update` with an idx not already in the Cache."
)
if layers is None and layer_class_to_replicate is None:
raise ValueError(
"You should provide exactly one of `layers` or `layer_class_to_replicate` to initialize a Cache."
)
self.layers = layers if layers is not None else []
self.layer_class_to_replicate = layer_class_to_replicate
self.offloading = offloading
if self.offloading:
self.only_non_sliding = offload_only_non_sliding
self.prefetch_stream = torch.Stream() if _is_torch_greater_or_equal_than_2_7 else torch.cuda.Stream()
def __repr__(self):
return f"{self.__class__.__name__}(layers={self.layers})"
def prefetch(self, layer_idx: int, only_non_sliding: bool = True):
"""
Prefetch a given layer on its device. If `only_non_sliding` is True, it will try to prefetch only the layers
which are non-sliding. If the `layer_idx` is outside the range, this will circle back to the first layers.
Note that we use a non-default stream for this, to avoid blocking.
"""
if only_non_sliding:
# Try to find next non-sliding, starting at `layer_idx`
try:
layer_idx = layer_idx + self.is_sliding[layer_idx:].index(False)
# In this case, we need to circle back to the beginning
except ValueError:
layer_idx = self.is_sliding.index(False)
else:
layer_idx = layer_idx if layer_idx < len(self.layers) else 0
# Prefetch
with self.prefetch_stream if _is_torch_greater_or_equal_than_2_7 else torch.cuda.stream(self.prefetch_stream):
self.layers[layer_idx].prefetch()
def offload(self, layer_idx: int, only_non_sliding: bool = True):
"""
Offload a given `layer_idx`. If `only_non_sliding` is True, it will offload `layer_idx` only if it is a
non-sliding layer. Note that we do it on the default stream, so that we ensure all earlier
computation in the layer's `update` methods are finished.
"""
if not (only_non_sliding and self.is_sliding[layer_idx]):
self.layers[layer_idx].offload()
def update(
self,
key_states: torch.Tensor,
value_states: torch.Tensor,
layer_idx: int,
cache_kwargs: Optional[dict[str, Any]] = None,
) -> tuple[torch.Tensor, torch.Tensor]:
"""
Updates the cache with the new `key_states` and `value_states` for the layer `layer_idx`.
Parameters:
key_states (`torch.Tensor`):
The new key states to cache.
value_states (`torch.Tensor`):
The new value states to cache.
layer_idx (`int`):
The index of the layer to cache the states for.
cache_kwargs (`dict[str, Any]`, *optional*):
Additional arguments for the cache subclass. These are specific to each subclass and allow new types of
cache to be created.
Return:
A tuple containing the updated key and value states.
"""
# In this case, the `layers` were not provided, and we must append as much as `layer_idx`
if self.layer_class_to_replicate is not None:
while len(self.layers) <= layer_idx:
self.layers.append(self.layer_class_to_replicate())
if self.offloading:
# Wait for the stream to finish if needed, and start prefetching the next layer
torch.cuda.default_stream(key_states.device).wait_stream(self.prefetch_stream)
self.prefetch(layer_idx + 1, self.only_non_sliding)
keys, values = self.layers[layer_idx].update(key_states, value_states, cache_kwargs)
if self.offloading:
self.offload(layer_idx, self.only_non_sliding)
return keys, values
def early_initialization(
self, batch_size: int, num_heads: int, head_dim: int, dtype: torch.dtype, device: torch.device
):
"""
Initialize all the layers in advance (it's otherwise lazily initialized on the first `update` call).
This is useful for our `export` recipes, as `export` needs everything in advance.
"""
# Note that the initialization needs all dimensions (except -2), as well as device and dtype, so we use
# this fake tensor approach. It has size 0 on the -2 dimension, so it does not allocate any data (it only
# creates an empty tensor with correct shape, dtype and device), which is very efficient and practical
fake_keys_tensor = torch.zeros((batch_size, num_heads, 0, head_dim), dtype=dtype, device=device)
# Init all layers
for layer in self.layers:
layer.lazy_initialization(fake_keys_tensor)
def get_seq_length(self, layer_idx: int = 0) -> int:
"""Returns the sequence length of the cache for the given layer."""
if layer_idx >= len(self.layers):
return 0
return self.layers[layer_idx].get_seq_length()
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
"""
Return a tuple (kv_length, kv_offset) corresponding to the length and offset that will be returned for
the given layer at `layer_idx`.
The masks are then prepared according to the given lengths (kv_length, kv_offset) and patterns for each layer.
"""
# For DynamicCache, where the layers are created at runtime -> if it was not yet created, the size is
# simply the shape of `cache_position`
if layer_idx >= len(self.layers):
return cache_position.shape[0], 0
return self.layers[layer_idx].get_mask_sizes(cache_position)
def get_max_cache_shape(self, layer_idx: int = 0) -> int:
"""Returns maximum sequence length of the cache object. Dynamic caches do not have a maximum length."""
# For DynamicCache, where the layers are created at runtime -> if it was not yet created, return -1
# as DynamicLayer does
if layer_idx >= len(self.layers):
return -1
return self.layers[layer_idx].get_max_cache_shape()
def reset(self):
"""Recursively reset all layers tensors"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].reset()
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorder the cache for beam search"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].reorder_cache(beam_idx)
def crop(self, max_length: int):
"""Crop the cache to the given length"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].crop(max_length)
def batch_repeat_interleave(self, repeats: int):
"""Repeat and interleave the cache"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].batch_repeat_interleave(repeats)
def batch_select_indices(self, indices: torch.Tensor):
"""Select indices from the cache"""
for layer_idx in range(len(self.layers)):
self.layers[layer_idx].batch_select_indices(indices)
@property
def max_batch_size(self) -> int:
"""Return the maximum batch size of the cache"""
values = [layer.max_batch_size for layer in self.layers]
if len(set(values)) > 1:
raise ValueError(f"Max batch size is not consistent across layers: {values}")
return values[0]
@property
def max_cache_len(self) -> int:
"""Return the maximum cache length of the cache"""
values = [layer.max_cache_len for layer in self.layers]
return max(values)
@property
def is_compileable(self) -> bool:
"""Return whether the cache is compileable"""
# For DynamicCache dispatching the layers lazily (otherwise, all([]) is True)
if len(self.layers) == 0:
return False
return all(layer.is_compileable for layer in self.layers)
@property
def is_initialized(self) -> bool:
"""Return whether the cache data is initialized"""
return len(self.layers) > 0 and all(layer.is_initialized for layer in self.layers)
@property
def is_sliding(self) -> list[bool]:
"""Return whether the layers of the cache are sliding window"""
return [getattr(layer, "is_sliding", False) for layer in self.layers]
def __len__(self):
"""
This value corresponds to the number of layers in the model.
"""
# Note: for DynamicCache, layers are initialized lazily, so this will not be accurate before the first
# forward through all the layers
return len(self.layers)
class DynamicCache(Cache):
"""
A cache that grows dynamically as more tokens are generated. This is the default for generative models.
It stores the key and value states as a list of `CacheLayer`, one for each layer. The expected shape for each tensor
in the `CacheLayer`s is `[batch_size, num_heads, seq_len, head_dim]`.
If a config is passed, it will additionally check for sliding or hybrid cache structure, greatly reducing the
memory requirement of the cached tensors to `[batch_size, num_heads, min(seq_len, sliding_window), head_dim]`.
See `Cache` for details on common methods that are implemented by all cache classes.
Args:
ddp_cache_data (`Iterable[tuple[torch.Tensor, torch.Tensor]]`, *optional*):
It was originally added for compatibility with `torch.distributed` (DDP). In a nutshell, it is
`map(gather_map, zip(*caches))`, i.e. each item in the iterable contains the key and value states
for a layer gathered across replicas by torch.distributed (shape=[global batch size, num_heads, seq_len, head_dim]).
Note: it needs to be the 1st arg as well to work correctly
config (`PreTrainedConfig`, *optional*):
The config of the model for which this Cache will be used. If passed, it will be used to check for sliding
or hybrid layer structure, greatly reducing the memory requirement of the cached tensors to
`[batch_size, num_heads, min(seq_len, sliding_window), head_dim]`.
offloading (`bool`, *optional*, defaults to `False`):
Whether to perform offloading of the layers to `cpu`, to save GPU memory.
offload_only_non_sliding (`bool`, *optional*, defaults to `False`):
If `offloading` is `True`, this further decides if only the non-sliding layers will be offloaded (because
usually the sliding layers are small in size, so there is no need to offload them, and skipping it is faster).
Example:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, DynamicCache
>>> model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
>>> inputs = tokenizer(text="My name is Qwen2", return_tensors="pt")
>>> # Prepare a cache class and pass it to model's forward
>>> past_key_values = DynamicCache(config=model.config)
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> outputs.past_key_values # access cache filled with key/values from generation
```
"""
def __init__(
self,
ddp_cache_data: Optional[Iterable[tuple[Optional[torch.Tensor], torch.Tensor, torch.Tensor]]] = None,
config: Optional[PreTrainedConfig] = None,
offloading: bool = False,
offload_only_non_sliding: bool = False,
):
layers = []
# If a config is passed, use it to infer the layer types and initialize accordingly
if config is not None:
decoder_config = config.get_text_config(decoder=True)
sliding_window = getattr(decoder_config, "sliding_window", None) or getattr(
decoder_config, "attention_chunk_size", None
)
layer_types = getattr(decoder_config, "layer_types", None)
if layer_types is None:
layer_types = [
"sliding_attention" if sliding_window is not None else "full_attention"
for _ in range(decoder_config.num_hidden_layers)
]
# Some models have shared layers thus no cache is needed for them (e.g. Gemma3n)
if hasattr(decoder_config, "num_kv_shared_layers"):
layer_types = layer_types[: -decoder_config.num_kv_shared_layers]
for layer_type in layer_types:
# From a cache point of view, both sliding and chunked are the same in how they should behave and how many
# states they should return - only the mask changes to make them different at the end!
if layer_type in ("sliding_attention", "chunked_attention"):
layers.append(DynamicSlidingWindowLayer(sliding_window=sliding_window))
else:
layers.append(DynamicLayer())
# In this case, use the passed data to already fill in the Cache
if ddp_cache_data is not None:
# Init all the layers with the data
for layer_idx, (sliding_window_tensor, key_states, value_states) in enumerate(ddp_cache_data):
# If the config was not passed above, initialize a new cache layer for each entry of the ddp_data
if config is None:
if sliding_window_tensor is not None:
# Since the same layer is dispatched across replicas, sliding_window is the same for all
sliding_window = sliding_window_tensor[0].item()
layers.append(DynamicSlidingWindowLayer(sliding_window=sliding_window))
else:
layers.append(DynamicLayer())
# Update the layer with the data
_, _ = layers[layer_idx].update(key_states, value_states)
# If neither of config nor ddp_data was passed, then simply lazy init a full cache of DynamicLayer
if len(layers) == 0:
super().__init__(
layer_class_to_replicate=DynamicLayer,
offloading=offloading,
offload_only_non_sliding=offload_only_non_sliding,
)
else:
super().__init__(layers=layers, offloading=offloading, offload_only_non_sliding=offload_only_non_sliding)
def __iter__(self):
for layer in self.layers:
yield getattr(layer, "_sliding_window_tensor", None), layer.keys, layer.values
class StaticCache(Cache):
"""
Static Cache class to be used with `torch.compile(model)` and `torch.export()`. It will check the `config`
for potential hybrid cache structure, and initialize each layer accordingly.
See `Cache` for details on common methods that are implemented by all cache classes.
Args:
config (`PreTrainedConfig`):
The config of the model for which this Cache will be used. It will be used to check for sliding
or hybrid layer structure, and initialize each layer accordingly.
max_cache_len (`int`):
The maximum number of tokens that this Cache should hold.
offloading (`bool`, *optional*, defaults to `False`):
Whether to perform offloading of the layers to `cpu`, to save GPU memory.
offload_only_non_sliding (`bool`, *optional*, defaults to `True`):
If `offloading` is `True`, this further decides if only the non-sliding layers will be offloaded (because
usually the sliding layers are small in size, so there is no need to offload them, and skipping it is faster).
Example:
```python
>>> from transformers import AutoTokenizer, AutoModelForCausalLM, StaticCache
>>> model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-chat-hf")
>>> inputs = tokenizer(text="My name is Llama", return_tensors="pt")
>>> # Prepare a cache class and pass it to model's forward
>>> # Leave empty space for 10 new tokens, which can be used when calling forward iteratively 10 times to generate
>>> max_generated_length = inputs.input_ids.shape[1] + 10
>>> past_key_values = StaticCache(config=model.config, max_cache_len=max_generated_length)
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> outputs.past_key_values # access cache filled with key/values from generation
StaticCache()
```
"""
# Pass-in kwargs as well to avoid crashing for BC (it used more arguments before)
def __init__(
self,
config: PreTrainedConfig,
max_cache_len: int,
offloading: bool = False,
offload_only_non_sliding: bool = True,
**kwargs,
):
config = config.get_text_config(decoder=True)
layer_types = getattr(config, "layer_types", None)
# If `layer_types` is not explicitly provided, infer if the model is fully sliding
if layer_types is None:
if getattr(config, "sliding_window", None) is not None:
layer_types = ["sliding_attention" for _ in range(config.num_hidden_layers)]
elif getattr(config, "attention_chunk_size", None) is not None:
layer_types = ["chunked_attention" for _ in range(config.num_hidden_layers)]
else:
layer_types = ["full_attention" for _ in range(config.num_hidden_layers)]
# Some models have shared layers thus no cache is needed for them (e.g. Gemma3n)
if hasattr(config, "num_kv_shared_layers"):
layer_types = layer_types[: -config.num_kv_shared_layers]
layers = []
for layer_type in layer_types:
if layer_type == "sliding_attention":
layer = StaticSlidingWindowLayer(max_cache_len=max_cache_len, sliding_window=config.sliding_window)
elif layer_type == "chunked_attention":
# From a cache point of view, both sliding and chunked are the same in how they should behave and how many
# states they should return - only the mask changes to make them different at the end!
layer = StaticSlidingWindowLayer(
max_cache_len=max_cache_len, sliding_window=config.attention_chunk_size
)
else:
layer = StaticLayer(max_cache_len=max_cache_len)
layers.append(layer)
super().__init__(layers=layers, offloading=offloading, offload_only_non_sliding=offload_only_non_sliding)
class QuantizedCache(Cache):
"""
A quantizer cache similar to what is described in the
[KIVI: A Tuning-Free Asymmetric 2bit Quantization for KV Cache paper](https://huggingface.co/papers/2402.02750).
It allows the model to generate longer sequence length without allocating too much memory for keys and values
by applying quantization.
The cache has two types of storage, one for original precision and one for the
quantized cache. A `residual length` is set as a maximum capacity for the original precision cache. When the
length goes beyond maximum capacity, the original precision cache is discarded and moved into the quantized cache.
The quantization is done per-channel with a set `q_group_size` for both keys and values, in contrast to what was
described in the paper.
See `Cache` for details on common methods that are implemented by all cache classes.
Args:
backend (`str`):
The quantization backend to use. One of `("quanto", "hqq").
config (`PreTrainedConfig`):
The config of the model for which this Cache will be used.
nbits (`int`, *optional*, defaults to 4):
The number of bits for quantization.
axis_key (`int`, *optional*, defaults to 0):
The axis on which to quantize the keys.
axis_value (`int`, *optional*, defaults to 0):
The axis on which to quantize the values.
q_group_size (`int`, *optional*, defaults to 64):
Quantization is done per-channel according to a set `q_group_size` for both keys and values.
residual_length (`int`, *optional*, defaults to 128):
Maximum capacity for the original precision cache
"""
def __init__(
self,
backend: str,
config: PreTrainedConfig,
nbits: int = 4,
axis_key: int = 0,
axis_value: int = 0,
q_group_size: int = 64,
residual_length: int = 128,
):
if backend == "quanto":
layer_class = QuantoQuantizedLayer
elif backend == "hqq":
layer_class = HQQQuantizedLayer
else:
raise ValueError(f"Unknown quantization backend `{backend}`")
config = config.get_text_config(decoder=True)
layers = [
layer_class(nbits, axis_key, axis_value, q_group_size, residual_length)
for _ in range(config.num_hidden_layers)
]
super().__init__(layers=layers)
class EncoderDecoderCache(Cache):
"""
Base, abstract class for all encoder-decoder caches. Can be used to hold combinations of self-attention and
cross-attention caches.
See `Cache` for details on common methods that are implemented by all cache classes.
Args:
caches (`Iterable`):
Usually an iterable of length 2, containing 2 `Cache` objects, the first one for self-attention, the
second one for cross-attention. Can optionally also be an iterable of length 1, containing a
`tuple[tuple[torch.Tensor]]` (usually used for compatibility with torch dp and ddp).
Example:
```python
>>> from transformers import AutoProcessor, AutoModelForCausalLM, DynamicCache, EncoderDecoderCache
>>> model = AutoModelForCausalLM.from_pretrained("openai/whisper-small")
>>> processor = AutoProcessor.from_pretrained("openai/whisper-small")
>>> inputs = processor(audio=YOUR-AUDIO, return_tensors="pt")
>>> # Prepare cache classes for encoder and decoder and pass it to model's forward
>>> self_attention_cache = DynamicCache(config=self.config)
>>> cross_attention_cache = DynamicCache(config=self.config)
>>> past_key_values = EncoderDecoderCache(self_attention_cache, cross_attention_cache)
>>> outputs = model(**inputs, past_key_values=past_key_values, use_cache=True)
>>> outputs.past_key_values # access cache filled with key/values from generation
EncoderDecoderCache()
```
"""
def __init__(self, *caches) -> None:
# For dp and ddp support, if only one argument is passed, it should be an iterable of tuples of tensors
if len(caches) == 1:
self.self_attention_cache = DynamicCache()
self.cross_attention_cache = DynamicCache()
# Populate cache from the iterable
for layer_idx, key_value_states in enumerate(caches[0]):
key_states, value_states = key_value_states[:2]
self.self_attention_cache.update(key_states, value_states, layer_idx)
if len(key_value_states) > 2:
key_states, value_states = key_value_states[2:]
self.cross_attention_cache.update(key_states, value_states, layer_idx)
# Otherwise, we should get two arguments, a self-attention cache and a cross-attention cache
elif len(caches) == 2:
if not isinstance(caches[0], Cache) or not isinstance(caches[1], Cache):
raise TypeError(f"One of the two arguments is not a Cache: {type(caches[0]) = }, {type(caches[1]) = }")
self.self_attention_cache = caches[0]
self.cross_attention_cache = caches[1]
# Error case
else:
raise ValueError(f"Expected 1 or 2 arguments, got {len(caches)}")
self.is_updated = {}
for layer_idx in range(len(self.cross_attention_cache)):
self.is_updated[layer_idx] = bool(self.cross_attention_cache.get_seq_length(layer_idx) > 0)
def __repr__(self) -> str:
return (
f"{self.__class__.__name__}(self_attention_cache={self.self_attention_cache}, cross_attention_cache="
f"{self.cross_attention_cache})"
)
def __len__(self):
"""
Support for backwards-compatible `past_key_values` length, e.g. `len(past_key_values)`. This value corresponds
to the number of layers in the model.
"""
return len(self.self_attention_cache)
def get_seq_length(self, layer_idx: int = 0) -> int:
"""Returns the sequence length of the cached states. A layer index can be optionally passed."""
return self.self_attention_cache.get_seq_length(layer_idx)
def reset(self):
self.self_attention_cache.reset()
self.cross_attention_cache.reset()
for layer_idx in self.is_updated:
self.is_updated[layer_idx] = False
def reorder_cache(self, beam_idx: torch.LongTensor):
"""Reorders the cache for beam search, given the selected beam indices."""
self.self_attention_cache.reorder_cache(beam_idx)
self.cross_attention_cache.reorder_cache(beam_idx)
def check_dynamic_cache(self, method: str):
if not (
isinstance(self.self_attention_cache, DynamicCache)
and isinstance(self.cross_attention_cache, DynamicCache)
):
raise TypeError(
f"`{method}` is only defined for dynamic cache, got {self.self_attention_cache.__str__()} for the self "
f"attention cache and {self.cross_attention_cache.__str__()} for the cross attention cache."
)
# TODO(gante, sanchit-gandhi): move following functionality into `.generate`
def crop(self, maximum_length: int):
"""
Crop the past key values up to a new `maximum_length` in terms of tokens. `maximum_length` can also be
negative to remove `maximum_length` tokens. This is used in assisted decoding and contrastive search (on the Hub).
"""
self.check_dynamic_cache(self.crop.__name__)
self.self_attention_cache.crop(maximum_length)
def batch_split(self, full_batch_size: int, split_size: int) -> "list[EncoderDecoderCache]":
"""
Split the current instance into a list of `DynamicCache` by the batch size. This will be used by
`_split_model_inputs()` in `generation.utils`
"""
self.check_dynamic_cache(self.batch_split.__name__)
self_attention_cache = self.self_attention_cache.batch_split(full_batch_size, split_size)
cross_attention_cache = self.cross_attention_cache.batch_split(full_batch_size, split_size)
out = []
for self_attn, cross_attn in zip(self_attention_cache, cross_attention_cache):
out.append(EncoderDecoderCache(self_attn, cross_attn))
return out
def batch_repeat_interleave(self, repeats: int):
"""Repeat the cache `repeats` times in the batch dimension. Used in contrastive search (on the Hub)."""
self.check_dynamic_cache(self.batch_repeat_interleave.__name__)
self.self_attention_cache.batch_repeat_interleave(repeats)
self.cross_attention_cache.batch_repeat_interleave(repeats)
def batch_select_indices(self, indices: torch.Tensor):
"""Only keep the `indices` in the batch dimension of the cache. Used in contrastive search (on the Hub)."""
self.check_dynamic_cache(self.batch_select_indices.__name__)
self.self_attention_cache.batch_select_indices(indices)
self.cross_attention_cache.batch_select_indices(indices)
def get_max_cache_shape(self) -> int:
"""Returns the maximum sequence length (i.e. max capacity) of the cache object"""
return self.self_attention_cache.get_max_cache_shape()
def get_mask_sizes(self, cache_position: torch.Tensor, layer_idx: int) -> tuple[int, int]:
return self.self_attention_cache.get_mask_sizes(cache_position, layer_idx)
@property
def is_sliding(self):
return self.self_attention_cache.is_sliding
@property
def is_compileable(self) -> bool:
return self.self_attention_cache.is_compileable
### Deprecated classes
class SlidingWindowLayer(StaticSlidingWindowLayer):
def __init__(self, max_cache_len: int, sliding_window: int):
logger.warning_once(
"`SlidingWindowLayer` is deprecated and will be removed in version v4.59 "
"Use `StaticSlidingWindowLayer` instead, which is a better name for it."
)
super().__init__(max_cache_len, sliding_window)
class ChunkedSlidingLayer(StaticSlidingWindowLayer):
def __init__(self, max_cache_len: int, sliding_window: int):
logger.warning_once(
"`ChunkedSlidingLayer` is deprecated and will be removed in version v4.59 "
"Use `StaticSlidingWindowLayer` instead, which has the exact same functionalities."
)
super().__init__(max_cache_len, sliding_window)
class OffloadedCache(DynamicCache):
def __init__(self) -> None:
logger.warning_once(
"`OffloadedCache` is deprecated and will be removed in version v4.59 "
"Use `DynamicCache(offloading=True)` instead"
)
super().__init__(offloading=True)
class OffloadedStaticCache(StaticCache):
def __init__(self, config: PreTrainedConfig, max_cache_len: int, *args, **kwargs):
logger.warning_once(
"`OffloadedStaticCache` is deprecated and will be removed in version v4.59 "
"Use `StaticCache(..., offloading=True)` instead"
)
super().__init__(config=config, max_cache_len=max_cache_len, offloading=True)
class SlidingWindowCache(StaticCache):
def __init__(self, config: PreTrainedConfig, max_cache_len: int, *args, **kwargs):
logger.warning_once(
"`SlidingWindowCache` is deprecated and will be removed in version v4.59 "
"Use `StaticCache(...)` instead which will correctly infer the type of each layer."
)
super().__init__(config=config, max_cache_len=max_cache_len)
class HybridCache(StaticCache):
def __init__(self, config: PreTrainedConfig, max_cache_len: int, *args, **kwargs):
logger.warning_once(
"`HybridCache` is deprecated and will be removed in version v4.59 "
"Use `StaticCache(...)` instead which will correctly infer the type of each layer."
)
super().__init__(config=config, max_cache_len=max_cache_len)
class HybridChunkedCache(StaticCache):
def __init__(self, config: PreTrainedConfig, max_cache_len: int, *args, **kwargs):
logger.warning_once(
"`HybridChunkedCache` is deprecated and will be removed in version v4.59 "
"Use `StaticCache(...)` instead which will correctly infer the type of each layer."
)
super().__init__(config=config, max_cache_len=max_cache_len)
class OffloadedHybridCache(StaticCache):
def __init__(self, config: PreTrainedConfig, max_cache_len: int, *args, **kwargs):
logger.warning_once(
"`OffloadedHybridCache` is deprecated and will be removed in version v4.59 "
"Use `StaticCache(..., offload=True)` instead which will correctly infer the type of each layer."
)
super().__init__(config=config, max_cache_len=max_cache_len, offloading=True)
class QuantoQuantizedCache(QuantizedCache):
def __init__(
self,
config: PreTrainedConfig,
nbits: int = 4,
axis_key: int = 0,
axis_value: int = 0,
q_group_size: int = 64,
residual_length: int = 128,
):
logger.warning_once(
"`QuantoQuantizedCache` is deprecated and will be removed in version v4.59 "
"Use `QuantizedCache(backend='quanto', ...)` instead."
)
super().__init__("quanto", config, nbits, axis_key, axis_value, q_group_size, residual_length)
class HQQQuantizedCache(QuantizedCache):
def __init__(
self,
config: PreTrainedConfig,
nbits: int = 4,
axis_key: int = 0,
axis_value: int = 0,
q_group_size: int = 64,
residual_length: int = 128,
):
logger.warning_once(
"`HQQQuantizedCache` is deprecated and will be removed in version v4.59 "
"Use `QuantizedCache(backend='hqq', ...)` instead."
)
super().__init__("hqq", config, nbits, axis_key, axis_value, q_group_size, residual_length)