mirror of
				https://github.com/huggingface/transformers.git
				synced 2025-11-04 20:14:36 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			521 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			521 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#!/usr/bin/env python
 | 
						|
# coding=utf-8
 | 
						|
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
 | 
						|
#
 | 
						|
# Licensed under the Apache License, Version 2.0 (the "License");
 | 
						|
# you may not use this file except in compliance with the License.
 | 
						|
# You may obtain a copy of the License at
 | 
						|
#
 | 
						|
#     http://www.apache.org/licenses/LICENSE-2.0
 | 
						|
#
 | 
						|
# Unless required by applicable law or agreed to in writing, software
 | 
						|
# distributed under the License is distributed on an "AS IS" BASIS,
 | 
						|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						|
# See the License for the specific language governing permissions and
 | 
						|
 | 
						|
import json
 | 
						|
import logging
 | 
						|
import os
 | 
						|
import random
 | 
						|
import sys
 | 
						|
from dataclasses import dataclass, field
 | 
						|
from typing import Optional
 | 
						|
 | 
						|
import evaluate
 | 
						|
import numpy as np
 | 
						|
import torch
 | 
						|
from datasets import load_dataset
 | 
						|
from huggingface_hub import hf_hub_download
 | 
						|
from PIL import Image
 | 
						|
from torch import nn
 | 
						|
from torchvision import transforms
 | 
						|
from torchvision.transforms import functional
 | 
						|
 | 
						|
import transformers
 | 
						|
from transformers import (
 | 
						|
    AutoConfig,
 | 
						|
    AutoImageProcessor,
 | 
						|
    AutoModelForSemanticSegmentation,
 | 
						|
    HfArgumentParser,
 | 
						|
    Trainer,
 | 
						|
    TrainingArguments,
 | 
						|
    default_data_collator,
 | 
						|
)
 | 
						|
from transformers.trainer_utils import get_last_checkpoint
 | 
						|
from transformers.utils import check_min_version, send_example_telemetry
 | 
						|
from transformers.utils.versions import require_version
 | 
						|
 | 
						|
 | 
						|
""" Finetuning any 🤗 Transformers model supported by AutoModelForSemanticSegmentation for semantic segmentation leveraging the Trainer API."""
 | 
						|
 | 
						|
logger = logging.getLogger(__name__)
 | 
						|
 | 
						|
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
 | 
						|
check_min_version("4.27.0")
 | 
						|
 | 
						|
require_version("datasets>=2.0.0", "To fix: pip install -r examples/pytorch/semantic-segmentation/requirements.txt")
 | 
						|
 | 
						|
 | 
						|
def pad_if_smaller(img, size, fill=0):
 | 
						|
    size = (size, size) if isinstance(size, int) else size
 | 
						|
    original_width, original_height = img.size
 | 
						|
    pad_height = size[1] - original_height if original_height < size[1] else 0
 | 
						|
    pad_width = size[0] - original_width if original_width < size[0] else 0
 | 
						|
    img = functional.pad(img, (0, 0, pad_width, pad_height), fill=fill)
 | 
						|
    return img
 | 
						|
 | 
						|
 | 
						|
class Compose:
 | 
						|
    def __init__(self, transforms):
 | 
						|
        self.transforms = transforms
 | 
						|
 | 
						|
    def __call__(self, image, target):
 | 
						|
        for t in self.transforms:
 | 
						|
            image, target = t(image, target)
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
class Identity:
 | 
						|
    def __init__(self):
 | 
						|
        pass
 | 
						|
 | 
						|
    def __call__(self, image, target):
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
class Resize:
 | 
						|
    def __init__(self, size):
 | 
						|
        self.size = size
 | 
						|
 | 
						|
    def __call__(self, image, target):
 | 
						|
        image = functional.resize(image, self.size)
 | 
						|
        target = functional.resize(target, self.size, interpolation=transforms.InterpolationMode.NEAREST)
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
class RandomResize:
 | 
						|
    def __init__(self, min_size, max_size=None):
 | 
						|
        self.min_size = min_size
 | 
						|
        if max_size is None:
 | 
						|
            max_size = min_size
 | 
						|
        self.max_size = max_size
 | 
						|
 | 
						|
    def __call__(self, image, target):
 | 
						|
        size = random.randint(self.min_size, self.max_size)
 | 
						|
        image = functional.resize(image, size)
 | 
						|
        target = functional.resize(target, size, interpolation=transforms.InterpolationMode.NEAREST)
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
class RandomCrop:
 | 
						|
    def __init__(self, size):
 | 
						|
        self.size = size if isinstance(size, tuple) else (size, size)
 | 
						|
 | 
						|
    def __call__(self, image, target):
 | 
						|
        image = pad_if_smaller(image, self.size)
 | 
						|
        target = pad_if_smaller(target, self.size, fill=255)
 | 
						|
        crop_params = transforms.RandomCrop.get_params(image, self.size)
 | 
						|
        image = functional.crop(image, *crop_params)
 | 
						|
        target = functional.crop(target, *crop_params)
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
class RandomHorizontalFlip:
 | 
						|
    def __init__(self, flip_prob):
 | 
						|
        self.flip_prob = flip_prob
 | 
						|
 | 
						|
    def __call__(self, image, target):
 | 
						|
        if random.random() < self.flip_prob:
 | 
						|
            image = functional.hflip(image)
 | 
						|
            target = functional.hflip(target)
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
class PILToTensor:
 | 
						|
    def __call__(self, image, target):
 | 
						|
        image = functional.pil_to_tensor(image)
 | 
						|
        target = torch.as_tensor(np.array(target), dtype=torch.int64)
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
class ConvertImageDtype:
 | 
						|
    def __init__(self, dtype):
 | 
						|
        self.dtype = dtype
 | 
						|
 | 
						|
    def __call__(self, image, target):
 | 
						|
        image = functional.convert_image_dtype(image, self.dtype)
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
class Normalize:
 | 
						|
    def __init__(self, mean, std):
 | 
						|
        self.mean = mean
 | 
						|
        self.std = std
 | 
						|
 | 
						|
    def __call__(self, image, target):
 | 
						|
        image = functional.normalize(image, mean=self.mean, std=self.std)
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
class ReduceLabels:
 | 
						|
    def __call__(self, image, target):
 | 
						|
        if not isinstance(target, np.ndarray):
 | 
						|
            target = np.array(target).astype(np.uint8)
 | 
						|
        # avoid using underflow conversion
 | 
						|
        target[target == 0] = 255
 | 
						|
        target = target - 1
 | 
						|
        target[target == 254] = 255
 | 
						|
 | 
						|
        target = Image.fromarray(target)
 | 
						|
        return image, target
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class DataTrainingArguments:
 | 
						|
    """
 | 
						|
    Arguments pertaining to what data we are going to input our model for training and eval.
 | 
						|
    Using `HfArgumentParser` we can turn this class into argparse arguments to be able to specify
 | 
						|
    them on the command line.
 | 
						|
    """
 | 
						|
 | 
						|
    dataset_name: Optional[str] = field(
 | 
						|
        default="segments/sidewalk-semantic",
 | 
						|
        metadata={
 | 
						|
            "help": "Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."
 | 
						|
        },
 | 
						|
    )
 | 
						|
    dataset_config_name: Optional[str] = field(
 | 
						|
        default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
 | 
						|
    )
 | 
						|
    train_val_split: Optional[float] = field(
 | 
						|
        default=0.15, metadata={"help": "Percent to split off of train for validation."}
 | 
						|
    )
 | 
						|
    max_train_samples: Optional[int] = field(
 | 
						|
        default=None,
 | 
						|
        metadata={
 | 
						|
            "help": (
 | 
						|
                "For debugging purposes or quicker training, truncate the number of training examples to this "
 | 
						|
                "value if set."
 | 
						|
            )
 | 
						|
        },
 | 
						|
    )
 | 
						|
    max_eval_samples: Optional[int] = field(
 | 
						|
        default=None,
 | 
						|
        metadata={
 | 
						|
            "help": (
 | 
						|
                "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
 | 
						|
                "value if set."
 | 
						|
            )
 | 
						|
        },
 | 
						|
    )
 | 
						|
    reduce_labels: Optional[bool] = field(
 | 
						|
        default=False,
 | 
						|
        metadata={"help": "Whether or not to reduce all labels by 1 and replace background by 255."},
 | 
						|
    )
 | 
						|
 | 
						|
    def __post_init__(self):
 | 
						|
        if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
 | 
						|
            raise ValueError(
 | 
						|
                "You must specify either a dataset name from the hub or a train and/or validation directory."
 | 
						|
            )
 | 
						|
 | 
						|
 | 
						|
@dataclass
 | 
						|
class ModelArguments:
 | 
						|
    """
 | 
						|
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
 | 
						|
    """
 | 
						|
 | 
						|
    model_name_or_path: str = field(
 | 
						|
        default="nvidia/mit-b0",
 | 
						|
        metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"},
 | 
						|
    )
 | 
						|
    config_name: Optional[str] = field(
 | 
						|
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
 | 
						|
    )
 | 
						|
    cache_dir: Optional[str] = field(
 | 
						|
        default=None, metadata={"help": "Where do you want to store the pretrained models downloaded from s3"}
 | 
						|
    )
 | 
						|
    model_revision: str = field(
 | 
						|
        default="main",
 | 
						|
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
 | 
						|
    )
 | 
						|
    image_processor_name: str = field(default=None, metadata={"help": "Name or path of preprocessor config."})
 | 
						|
    use_auth_token: bool = field(
 | 
						|
        default=False,
 | 
						|
        metadata={
 | 
						|
            "help": (
 | 
						|
                "Will use the token generated when running `huggingface-cli login` (necessary to use this script "
 | 
						|
                "with private models)."
 | 
						|
            )
 | 
						|
        },
 | 
						|
    )
 | 
						|
 | 
						|
 | 
						|
def main():
 | 
						|
    # See all possible arguments in src/transformers/training_args.py
 | 
						|
    # or by passing the --help flag to this script.
 | 
						|
    # We now keep distinct sets of args, for a cleaner separation of concerns.
 | 
						|
 | 
						|
    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
 | 
						|
    if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
 | 
						|
        # If we pass only one argument to the script and it's the path to a json file,
 | 
						|
        # let's parse it to get our arguments.
 | 
						|
        model_args, data_args, training_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
 | 
						|
    else:
 | 
						|
        model_args, data_args, training_args = parser.parse_args_into_dataclasses()
 | 
						|
 | 
						|
    # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
 | 
						|
    # information sent is the one passed as arguments along with your Python/PyTorch versions.
 | 
						|
    send_example_telemetry("run_semantic_segmentation", model_args, data_args)
 | 
						|
 | 
						|
    # Setup logging
 | 
						|
    logging.basicConfig(
 | 
						|
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
 | 
						|
        datefmt="%m/%d/%Y %H:%M:%S",
 | 
						|
        handlers=[logging.StreamHandler(sys.stdout)],
 | 
						|
    )
 | 
						|
 | 
						|
    if training_args.should_log:
 | 
						|
        # The default of training_args.log_level is passive, so we set log level at info here to have that default.
 | 
						|
        transformers.utils.logging.set_verbosity_info()
 | 
						|
 | 
						|
    log_level = training_args.get_process_log_level()
 | 
						|
    logger.setLevel(log_level)
 | 
						|
    transformers.utils.logging.set_verbosity(log_level)
 | 
						|
    transformers.utils.logging.enable_default_handler()
 | 
						|
    transformers.utils.logging.enable_explicit_format()
 | 
						|
 | 
						|
    # Log on each process the small summary:
 | 
						|
    logger.warning(
 | 
						|
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
 | 
						|
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
 | 
						|
    )
 | 
						|
    logger.info(f"Training/evaluation parameters {training_args}")
 | 
						|
 | 
						|
    # Detecting last checkpoint.
 | 
						|
    last_checkpoint = None
 | 
						|
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
 | 
						|
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
 | 
						|
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
 | 
						|
            raise ValueError(
 | 
						|
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
 | 
						|
                "Use --overwrite_output_dir to overcome."
 | 
						|
            )
 | 
						|
        elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
 | 
						|
            logger.info(
 | 
						|
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
 | 
						|
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
 | 
						|
            )
 | 
						|
 | 
						|
    # Load dataset
 | 
						|
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
 | 
						|
    # download the dataset.
 | 
						|
    # TODO support datasets from local folders
 | 
						|
    dataset = load_dataset(data_args.dataset_name, cache_dir=model_args.cache_dir)
 | 
						|
 | 
						|
    # Rename column names to standardized names (only "image" and "label" need to be present)
 | 
						|
    if "pixel_values" in dataset["train"].column_names:
 | 
						|
        dataset = dataset.rename_columns({"pixel_values": "image"})
 | 
						|
    if "annotation" in dataset["train"].column_names:
 | 
						|
        dataset = dataset.rename_columns({"annotation": "label"})
 | 
						|
 | 
						|
    # If we don't have a validation split, split off a percentage of train as validation.
 | 
						|
    data_args.train_val_split = None if "validation" in dataset.keys() else data_args.train_val_split
 | 
						|
    if isinstance(data_args.train_val_split, float) and data_args.train_val_split > 0.0:
 | 
						|
        split = dataset["train"].train_test_split(data_args.train_val_split)
 | 
						|
        dataset["train"] = split["train"]
 | 
						|
        dataset["validation"] = split["test"]
 | 
						|
 | 
						|
    # Prepare label mappings.
 | 
						|
    # We'll include these in the model's config to get human readable labels in the Inference API.
 | 
						|
    if data_args.dataset_name == "scene_parse_150":
 | 
						|
        repo_id = "huggingface/label-files"
 | 
						|
        filename = "ade20k-id2label.json"
 | 
						|
    else:
 | 
						|
        repo_id = data_args.dataset_name
 | 
						|
        filename = "id2label.json"
 | 
						|
    id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
 | 
						|
    id2label = {int(k): v for k, v in id2label.items()}
 | 
						|
    label2id = {v: str(k) for k, v in id2label.items()}
 | 
						|
 | 
						|
    # Load the mean IoU metric from the datasets package
 | 
						|
    metric = evaluate.load("mean_iou")
 | 
						|
 | 
						|
    # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
 | 
						|
    # predictions and label_ids field) and has to return a dictionary string to float.
 | 
						|
    @torch.no_grad()
 | 
						|
    def compute_metrics(eval_pred):
 | 
						|
        logits, labels = eval_pred
 | 
						|
        logits_tensor = torch.from_numpy(logits)
 | 
						|
        # scale the logits to the size of the label
 | 
						|
        logits_tensor = nn.functional.interpolate(
 | 
						|
            logits_tensor,
 | 
						|
            size=labels.shape[-2:],
 | 
						|
            mode="bilinear",
 | 
						|
            align_corners=False,
 | 
						|
        ).argmax(dim=1)
 | 
						|
 | 
						|
        pred_labels = logits_tensor.detach().cpu().numpy()
 | 
						|
        metrics = metric.compute(
 | 
						|
            predictions=pred_labels,
 | 
						|
            references=labels,
 | 
						|
            num_labels=len(id2label),
 | 
						|
            ignore_index=0,
 | 
						|
            reduce_labels=image_processor.do_reduce_labels,
 | 
						|
        )
 | 
						|
        # add per category metrics as individual key-value pairs
 | 
						|
        per_category_accuracy = metrics.pop("per_category_accuracy").tolist()
 | 
						|
        per_category_iou = metrics.pop("per_category_iou").tolist()
 | 
						|
 | 
						|
        metrics.update({f"accuracy_{id2label[i]}": v for i, v in enumerate(per_category_accuracy)})
 | 
						|
        metrics.update({f"iou_{id2label[i]}": v for i, v in enumerate(per_category_iou)})
 | 
						|
 | 
						|
        return metrics
 | 
						|
 | 
						|
    config = AutoConfig.from_pretrained(
 | 
						|
        model_args.config_name or model_args.model_name_or_path,
 | 
						|
        label2id=label2id,
 | 
						|
        id2label=id2label,
 | 
						|
        cache_dir=model_args.cache_dir,
 | 
						|
        revision=model_args.model_revision,
 | 
						|
        use_auth_token=True if model_args.use_auth_token else None,
 | 
						|
    )
 | 
						|
    model = AutoModelForSemanticSegmentation.from_pretrained(
 | 
						|
        model_args.model_name_or_path,
 | 
						|
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
 | 
						|
        config=config,
 | 
						|
        cache_dir=model_args.cache_dir,
 | 
						|
        revision=model_args.model_revision,
 | 
						|
        use_auth_token=True if model_args.use_auth_token else None,
 | 
						|
    )
 | 
						|
    image_processor = AutoImageProcessor.from_pretrained(
 | 
						|
        model_args.image_processor_name or model_args.model_name_or_path,
 | 
						|
        cache_dir=model_args.cache_dir,
 | 
						|
        revision=model_args.model_revision,
 | 
						|
        use_auth_token=True if model_args.use_auth_token else None,
 | 
						|
    )
 | 
						|
 | 
						|
    # Define torchvision transforms to be applied to each image + target.
 | 
						|
    # Not that straightforward in torchvision: https://github.com/pytorch/vision/issues/9
 | 
						|
    # Currently based on official torchvision references: https://github.com/pytorch/vision/blob/main/references/segmentation/transforms.py
 | 
						|
    if "shortest_edge" in image_processor.size:
 | 
						|
        # We instead set the target size as (shortest_edge, shortest_edge) to here to ensure all images are batchable.
 | 
						|
        size = (image_processor.size["shortest_edge"], image_processor.size["shortest_edge"])
 | 
						|
    else:
 | 
						|
        size = (image_processor.size["height"], image_processor.size["width"])
 | 
						|
    train_transforms = Compose(
 | 
						|
        [
 | 
						|
            ReduceLabels() if data_args.reduce_labels else Identity(),
 | 
						|
            RandomCrop(size=size),
 | 
						|
            RandomHorizontalFlip(flip_prob=0.5),
 | 
						|
            PILToTensor(),
 | 
						|
            ConvertImageDtype(torch.float),
 | 
						|
            Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
 | 
						|
        ]
 | 
						|
    )
 | 
						|
    # Define torchvision transform to be applied to each image.
 | 
						|
    # jitter = ColorJitter(brightness=0.25, contrast=0.25, saturation=0.25, hue=0.1)
 | 
						|
    val_transforms = Compose(
 | 
						|
        [
 | 
						|
            ReduceLabels() if data_args.reduce_labels else Identity(),
 | 
						|
            Resize(size=size),
 | 
						|
            PILToTensor(),
 | 
						|
            ConvertImageDtype(torch.float),
 | 
						|
            Normalize(mean=image_processor.image_mean, std=image_processor.image_std),
 | 
						|
        ]
 | 
						|
    )
 | 
						|
 | 
						|
    def preprocess_train(example_batch):
 | 
						|
        pixel_values = []
 | 
						|
        labels = []
 | 
						|
        for image, target in zip(example_batch["image"], example_batch["label"]):
 | 
						|
            image, target = train_transforms(image.convert("RGB"), target)
 | 
						|
            pixel_values.append(image)
 | 
						|
            labels.append(target)
 | 
						|
 | 
						|
        encoding = {}
 | 
						|
        encoding["pixel_values"] = torch.stack(pixel_values)
 | 
						|
        encoding["labels"] = torch.stack(labels)
 | 
						|
 | 
						|
        return encoding
 | 
						|
 | 
						|
    def preprocess_val(example_batch):
 | 
						|
        pixel_values = []
 | 
						|
        labels = []
 | 
						|
        for image, target in zip(example_batch["image"], example_batch["label"]):
 | 
						|
            image, target = val_transforms(image.convert("RGB"), target)
 | 
						|
            pixel_values.append(image)
 | 
						|
            labels.append(target)
 | 
						|
 | 
						|
        encoding = {}
 | 
						|
        encoding["pixel_values"] = torch.stack(pixel_values)
 | 
						|
        encoding["labels"] = torch.stack(labels)
 | 
						|
 | 
						|
        return encoding
 | 
						|
 | 
						|
    if training_args.do_train:
 | 
						|
        if "train" not in dataset:
 | 
						|
            raise ValueError("--do_train requires a train dataset")
 | 
						|
        if data_args.max_train_samples is not None:
 | 
						|
            dataset["train"] = (
 | 
						|
                dataset["train"].shuffle(seed=training_args.seed).select(range(data_args.max_train_samples))
 | 
						|
            )
 | 
						|
        # Set the training transforms
 | 
						|
        dataset["train"].set_transform(preprocess_train)
 | 
						|
 | 
						|
    if training_args.do_eval:
 | 
						|
        if "validation" not in dataset:
 | 
						|
            raise ValueError("--do_eval requires a validation dataset")
 | 
						|
        if data_args.max_eval_samples is not None:
 | 
						|
            dataset["validation"] = (
 | 
						|
                dataset["validation"].shuffle(seed=training_args.seed).select(range(data_args.max_eval_samples))
 | 
						|
            )
 | 
						|
        # Set the validation transforms
 | 
						|
        dataset["validation"].set_transform(preprocess_val)
 | 
						|
 | 
						|
    # Initalize our trainer
 | 
						|
    trainer = Trainer(
 | 
						|
        model=model,
 | 
						|
        args=training_args,
 | 
						|
        train_dataset=dataset["train"] if training_args.do_train else None,
 | 
						|
        eval_dataset=dataset["validation"] if training_args.do_eval else None,
 | 
						|
        compute_metrics=compute_metrics,
 | 
						|
        tokenizer=image_processor,
 | 
						|
        data_collator=default_data_collator,
 | 
						|
    )
 | 
						|
 | 
						|
    # Training
 | 
						|
    if training_args.do_train:
 | 
						|
        checkpoint = None
 | 
						|
        if training_args.resume_from_checkpoint is not None:
 | 
						|
            checkpoint = training_args.resume_from_checkpoint
 | 
						|
        elif last_checkpoint is not None:
 | 
						|
            checkpoint = last_checkpoint
 | 
						|
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
 | 
						|
        trainer.save_model()
 | 
						|
        trainer.log_metrics("train", train_result.metrics)
 | 
						|
        trainer.save_metrics("train", train_result.metrics)
 | 
						|
        trainer.save_state()
 | 
						|
 | 
						|
    # Evaluation
 | 
						|
    if training_args.do_eval:
 | 
						|
        metrics = trainer.evaluate()
 | 
						|
        trainer.log_metrics("eval", metrics)
 | 
						|
        trainer.save_metrics("eval", metrics)
 | 
						|
 | 
						|
    # Write model card and (optionally) push to hub
 | 
						|
    kwargs = {
 | 
						|
        "finetuned_from": model_args.model_name_or_path,
 | 
						|
        "dataset": data_args.dataset_name,
 | 
						|
        "tags": ["image-segmentation", "vision"],
 | 
						|
    }
 | 
						|
    if training_args.push_to_hub:
 | 
						|
        trainer.push_to_hub(**kwargs)
 | 
						|
    else:
 | 
						|
        trainer.create_model_card(**kwargs)
 | 
						|
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    main()
 |