mirror of
https://github.com/huggingface/transformers.git
synced 2025-10-21 01:23:56 +08:00
* Adapt and test huggingface_hub v1.0.0.rc0 * forgot to bump hfh * bump * code quality * code quality * relax dependency table * fix has_file * install hfh 1.0.0.rc0 in circle ci jobs * repostiryo * push to hub now returns a commit url * catch HfHubHTTPError * check commit on branch * add it back * fix ? * remove deprecated test * uncomment another test * trigger * no proxies * many more small changes * fix load PIL Image from httpx * require 1.0.0.rc0 * fix mocked tests * fix others * unchange * unchange * args * Update .circleci/config.yml * Bump to 1.0.0.rc1 * bump kernels version * fix deps
122 lines
5.6 KiB
Python
122 lines
5.6 KiB
Python
# Copyright 2021 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
|
|
import sys
|
|
import tempfile
|
|
import unittest
|
|
import unittest.mock as mock
|
|
from pathlib import Path
|
|
|
|
import httpx
|
|
|
|
from transformers import AutoFeatureExtractor, Wav2Vec2FeatureExtractor
|
|
from transformers.testing_utils import TOKEN, TemporaryHubRepo, get_tests_dir, is_staging_test
|
|
|
|
|
|
sys.path.append(str(Path(__file__).parent.parent.parent / "utils"))
|
|
|
|
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
|
|
|
|
|
|
SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR = get_tests_dir("fixtures")
|
|
|
|
|
|
class FeatureExtractorUtilTester(unittest.TestCase):
|
|
def test_cached_files_are_used_when_internet_is_down(self):
|
|
# A mock response for an HTTP head request to emulate server down
|
|
response_mock = mock.Mock()
|
|
response_mock.status_code = 500
|
|
response_mock.headers = {}
|
|
response_mock.raise_for_status.side_effect = httpx.HTTPStatusError(
|
|
"failed", request=mock.Mock(), response=mock.Mock()
|
|
)
|
|
response_mock.json.return_value = {}
|
|
|
|
# Download this model to make sure it's in the cache.
|
|
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
|
|
# Under the mock environment we get a 500 error when trying to reach the model.
|
|
with mock.patch("httpx.Client.request", return_value=response_mock) as mock_head:
|
|
_ = Wav2Vec2FeatureExtractor.from_pretrained("hf-internal-testing/tiny-random-wav2vec2")
|
|
# This check we did call the fake head request
|
|
mock_head.assert_called()
|
|
|
|
|
|
@is_staging_test
|
|
class FeatureExtractorPushToHubTester(unittest.TestCase):
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
cls._token = TOKEN
|
|
|
|
def test_push_to_hub(self):
|
|
with TemporaryHubRepo(token=self._token) as tmp_repo:
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
|
|
feature_extractor.push_to_hub(tmp_repo.repo_id, token=self._token)
|
|
|
|
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(tmp_repo.repo_id)
|
|
for k, v in feature_extractor.__dict__.items():
|
|
self.assertEqual(v, getattr(new_feature_extractor, k))
|
|
|
|
def test_push_to_hub_via_save_pretrained(self):
|
|
with TemporaryHubRepo(token=self._token) as tmp_repo:
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
feature_extractor.save_pretrained(
|
|
tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token
|
|
)
|
|
|
|
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(tmp_repo.repo_id)
|
|
for k, v in feature_extractor.__dict__.items():
|
|
self.assertEqual(v, getattr(new_feature_extractor, k))
|
|
|
|
def test_push_to_hub_in_organization(self):
|
|
with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
|
|
feature_extractor.push_to_hub(tmp_repo.repo_id, token=self._token)
|
|
|
|
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(tmp_repo.repo_id)
|
|
for k, v in feature_extractor.__dict__.items():
|
|
self.assertEqual(v, getattr(new_feature_extractor, k))
|
|
|
|
def test_push_to_hub_in_organization_via_save_pretrained(self):
|
|
with TemporaryHubRepo(namespace="valid_org", token=self._token) as tmp_repo:
|
|
feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
|
|
# Push to hub via save_pretrained
|
|
with tempfile.TemporaryDirectory() as tmp_dir:
|
|
feature_extractor.save_pretrained(
|
|
tmp_dir, repo_id=tmp_repo.repo_id, push_to_hub=True, token=self._token
|
|
)
|
|
|
|
new_feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(tmp_repo.repo_id)
|
|
for k, v in feature_extractor.__dict__.items():
|
|
self.assertEqual(v, getattr(new_feature_extractor, k))
|
|
|
|
def test_push_to_hub_dynamic_feature_extractor(self):
|
|
with TemporaryHubRepo(token=self._token) as tmp_repo:
|
|
CustomFeatureExtractor.register_for_auto_class()
|
|
feature_extractor = CustomFeatureExtractor.from_pretrained(SAMPLE_FEATURE_EXTRACTION_CONFIG_DIR)
|
|
|
|
feature_extractor.push_to_hub(tmp_repo.repo_id, token=self._token)
|
|
|
|
# This has added the proper auto_map field to the config
|
|
self.assertDictEqual(
|
|
feature_extractor.auto_map,
|
|
{"AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor"},
|
|
)
|
|
|
|
new_feature_extractor = AutoFeatureExtractor.from_pretrained(tmp_repo.repo_id, trust_remote_code=True)
|
|
# Can't make an isinstance check because the new_feature_extractor is from the CustomFeatureExtractor class of a dynamic module
|
|
self.assertEqual(new_feature_extractor.__class__.__name__, "CustomFeatureExtractor")
|